×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
资源植物与生物技... [176]
中国科学院东亚植物... [95]
昆明植物所硕博研究... [44]
共享文献 [17]
植物化学与西部植物... [11]
离退休 [8]
More...
Authors
许建初 [195]
Yang Yong... [15]
何俊 [14]
翟德利 [11]
杨雪飞 [10]
Yang Jing [8]
More...
Document Type
Journal ... [377]
Thesis [44]
Book [4]
Other [3]
Presentati... [2]
Conference... [1]
More...
Date Issued
2022 [3]
2021 [11]
2020 [40]
2019 [46]
2018 [29]
2017 [46]
More...
Language
英语 [297]
中文 [33]
Source Publication
FUNGAL DI... [32]
MYCOSPHER... [19]
PHYTOTAXA [18]
PLOS ONE [12]
MOUNTAIN R... [9]
FORESTS [8]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Chinese Academy of Sciences[2013T2S0030]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C%5B2013T2S0030%5C%5D"},{"jsname":"Chinese Academy of Sciences[2013Y2SB0007]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C%5B2013Y2SB0007%5C%5D"},{"jsname":"Craigia yunnanensis W. W. Smith & W. E. Evans (Tiliaceae) is an endangered deciduous tree species which has high scientific and economic value. C. yunnanensis is seriously threatened and has been pushed to the verge of extinction due to vegetation destruction in China and consequent contraction of its distribution. Hence, it was listed as a nationally rare and endangered plant in 1999 and has also been proposed as a second-ranked plant for national protection in China and included in IUCN red list. As a scientifically important and valued tree species with endangered status, the wild populations of C. yunnanensis therefore represent is a genetic resource that must be conserved. To provide basic information for its conservation, the population dynamics and population size structures, pollination biology and breeding system, eleven fitness-related characters and the genetic variability based on AFLP were comprehensively studied. The main results are summarized as follows: A total of six wild populations of C. yunnanensis were found in two disjunct regions of Yunnan, i.e. WenShan (SE Yunnan) and DeHong (SW Yunnan), from 2005 to 2007. Additionally, in all but one of the populations we detected, mature trees were felled between 2005 and 2007, so destruction of most of these populations is ongoing. Across the six populations of extant C. yunnanensis found during our study, the total number of mature (reproductive) individuals detected was 584 in 2007,plus larger numbers of seedling and resprouts from cut trunks. The result of surveying Population structure showed that there are two regeneration types which are seedlings and sprouts. Seedlings occurred abundantly in gaps or open areas and the size class frequency distributions were often discontinuous, and the same general pattern occurred in all the investigated populations for juveniles and adults. The numbers of seed-origin individuals did however decline sharply with increasing size, indicating a high mortality rate going from seedling to sapling stage may be a problem for this species. Additionally, the cash crop cultivation and logging seriously threaten the survival of the species. We conducted field observations and artificial pollination experiments on the floral biology, pollination process and breeding system of Craigia yunnanensis in Fadou, Xichou county of Yunnan province. The lifespan of a single hermaphrodite flower is approximately 3-4 days. A cyme has 2-9 flowered. The flowering period of an inflorescence is usually 5-14 days. The flowers of C. yunnanensis were protandrous. The stamens were within petal-like staminodes in the opening flowers until the flower withered. Without touchment, the bractlike staminodes can’t open. Self-pollination was partially avoided by temporal and spatial isolation of male and female organs within the same flower. However, autogamous and geitonogamous pollination is unavoidable because of the large number of flowers on a single tree and the action of pollinators. The values of both OCI (≥4) and P/O (1381) and the results of bagging tests indicated there was no apomixes in C. yunnanensis and the breeding system of the species was outcrossing with partial self-compatibility and the pollinators were required during the pollination process. The most frequent effective floral visitor was only beautiful fly (Chrysomyia megacephala). Fruit set and seed set in natural condition were 56.67±3.85% and 6.26±0.75%, respectively. Therefore, lack of pollinators, low pollination efficiency, unavoidable geitonogamous pollination and partial self-compatibility and inbreeding in small populations may account for the low fruit set, especially seed set.Variations in seed traits, seed germination, and seedling growth characters among six Craigia yunnanensis populations were evaluated. All seed and seedling traits exhibited significant differences among populations (P < 0.05). The fitness of seed as assessed by seed size, seed germination and seedling trait was independent of population size, except for the number of seeds per capsule (r = 0.93,P < 0.01). Correlations between geo-climatic variables of seed origin and seed and seedling related characters were insignificant (P > 0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"GIZ/BMZ on behalf of the Government of the Federal Republic of Germany[13.1432.7-001.00]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AGIZ%5C%2FBMZ%5C+on%5C+behalf%5C+of%5C+the%5C+Government%5C+of%5C+the%5C+Federal%5C+Republic%5C+of%5C+Germany%5C%5B13.1432.7%5C-001.00%5C%5D"},{"jsname":"Key Research Program of Frontier Sciences, CAS[QYZDY-SSW-SMC014]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AKey%5C+Research%5C+Program%5C+of%5C+Frontier%5C+Sciences%2C%5C+CAS%5C%5BQYZDY%5C-SSW%5C-SMC014%5C%5D"},{"jsname":"Ministry of Science and Technology of the People''s Republic of China[2014CB954100]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AMinistry%5C+of%5C+Science%5C+and%5C+Technology%5C+of%5C+the%5C+People%27%27s%5C+Republic%5C+of%5C+China%5C%5B2014CB954100%5C%5D"},{"jsname":"National Natural Science Foundation of China[31500335]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31500335%5C%5D"},{"jsname":"National Natural Science Foundation of China[31570210]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31570210%5C%5D"},{"jsname":"National Natural Science Foundation of China[41661144001]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B41661144001%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B592010200112%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[60201000201]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B60201000201%5C%5D"},{"jsname":"National Science Foundation of China (NSFC)[31750110478]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3ANational%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B31750110478%5C%5D"},{"jsname":"University of Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AUniversity%5C+of%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"World Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AWorld%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Xiaozhongdian, a town of Shangri-la County, Diqing Prefecture, was chosen as the main field site for studying the structure and characters of traditional agricultural ecosystem, by using approaches of ethnobotany, cultural anthropology and ecology. Combined with interviewing exercises in Hanpi village, Jiantang Township, this paper also discussed the impact of traditional management on the biocultural diversity. The results showed: Traditional agroecosystem in Shangri-la is an integrated system with three subsystems, which are farming, forest and grazing subsystem. The seasonal shifting grazing activity in Shangri-la, following the natural season change and the recover process of plants, is a sustainable management that protects the local biodiversity. However, along with the decay of shifting grazing tradition recently, the local Tibetans turned to use grass land and forest which is close to villages as the main grazing lands. It increased the pasturing pressure to these areas and caused productivity decreasing and biodiversity. As a symbolic part of Tibetan culture in Shangri-la, the sacred mountain culture has played a significant role in biodiversity conservation by restricting human’s behavior. The Tibetan traditional culture, indigenous knowledge and traditional ecosystem management in Shangri-la has contributed to the biodiversity conservation in this area. However, this research indicated that under the pressure of mainstream culture and market economy, traditional knowledge is vanishing; old crop land races are decreasing; diverse land use management is inclining to be single and seasonal shifting grazing tradition is fading away. The change of diversity to singularity might cause some negative impacts on the local environment and ecosystem. In this paper, advices were also given on how to combine Tibetan traditional knowledge and management experiences into sustainable development of modern agriculture. In this thesis, genetic diversity of Musella lasiocarpa (Franch.) C. Y. Wu ex H. W. Li, a plant endemic to southwest China, was also discussed through the approach of SSR markers. The wild populations of M. lasiocarpa are very rare now due to the habitat fragment and long time human’s disturbance. By conducting broad field investigation, we have found 5 wild populations near the boarder of Yunnan and Sichuan province. Seventeen microsatellite markers were isolated from M. lasiocarpa by using FIASCO method. 8 primers were selected to do the further genetic population structure and genetic diversity analysis. The results showed that genetic diversity of M. lasiocarpa’s wild populations is higher than cultivated populations. The genetic diversity difference between wild and cultivated populations is related to the different reproduction systems. Adopting the way of asexuality reproduction, the genetic basis of cultivated populations become narrow that decrease the genetic diversity. AMOVA analysis showed that 37.19% genetic differentiation is among populations and 62.81% is within population. Genetic differentiation among different populations is related to the limited gene communication. POPGENE analysis indicated that there is very little gene flow among different populations (0.4916), which is the main reason of high genetic differentiation among M. lasiocarpa populations.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Agroforestry%2BSystem&order=desc&&fq=dc.project.title_filter%3AXiaozhongdian%2C%5C+a%5C+town%5C+of%5C+Shangri%5C-la%5C+County%2C%5C+Diqing%5C+Prefecture%2C%5C+was%5C+chosen%5C+as%5C+the%5C+main%5C+field%5C+site%5C+for%5C+studying%5C+the%5C+structure%5C+and%5C+characters%5C+of%5C+traditional%5C+agricultural%5C+ecosystem%2C%5C+by%5C+using%5C+approaches%5C+of%5C+ethnobotany%2C%5C+cultural%5C+anthropology%5C+and%5C+ecology.%5C+Combined%5C+with%5C+interviewing%5C+exercises%5C+in%5C+Hanpi%5C+village%2C%5C+Jiantang%5C+Township%2C%5C+this%5C+paper%5C+also%5C+discussed%5C+the%5C+impact%5C+of%5C+traditional%5C+management%5C+on%5C+the%5C+biocultural%5C+diversity.%5C+The%5C+results%5C+showed%5C%3A%5C+Traditional%5C+agroecosystem%5C+in%5C+Shangri%5C-la%5C+is%5C+an%5C+integrated%5C+system%5C+with%5C+three%5C+subsystems%2C%5C+which%5C+are%5C+farming%2C%5C+forest%5C+and%5C+grazing%5C+subsystem.%5C+The%5C+seasonal%5C+shifting%5C+grazing%5C+activity%5C+in%5C+Shangri%5C-la%2C%5C+following%5C+the%5C+natural%5C+season%5C+change%5C+and%5C+the%5C+recover%5C+process%5C+of%5C+plants%2C%5C+is%5C+a%5C+sustainable%5C+management%5C+that%5C+protects%5C+the%5C+local%5C+biodiversity.%5C+However%2C%5C+along%5C+with%5C+the%5C+decay%5C+of%5C+shifting%5C+grazing%5C+tradition%5C+recently%2C%5C+the%5C+local%5C+Tibetans%5C+turned%5C+to%5C+use%5C+grass%5C+land%5C+and%5C+forest%5C+which%5C+is%5C+close%5C+to%5C+villages%5C+as%5C+the%5C+main%5C+grazing%5C+lands.%5C+It%5C+increased%5C+the%5C+pasturing%5C+pressure%5C+to%5C+these%5C+areas%5C+and%5C+caused%5C+productivity%5C+decreasing%5C+and%5C+biodiversity.%5C+As%5C+a%5C+symbolic%5C+part%5C+of%5C+Tibetan%5C+culture%5C+in%5C+Shangri%5C-la%2C%5C+the%5C+sacred%5C+mountain%5C+culture%5C+has%5C+played%5C+a%5C+significant%5C+role%5C+in%5C+biodiversity%5C+conservation%5C+by%5C+restricting%5C+human%E2%80%99s%5C+behavior.%5C+The%5C+Tibetan%5C+traditional%5C+culture%2C%5C+indigenous%5C+knowledge%5C+and%5C+traditional%5C+ecosystem%5C+management%5C+in%5C+Shangri%5C-la%5C+has%5C+contributed%5C+to%5C+the%5C+biodiversity%5C+conservation%5C+in%5C+this%5C+area.%5C+However%2C%5C+this%5C+research%5C+indicated%5C+that%5C+under%5C+the%5C+pressure%5C+of%5C+mainstream%5C+culture%5C+and%5C+market%5C+economy%2C%5C+traditional%5C+knowledge%5C+is%5C+vanishing%5C%3B%5C+old%5C+crop%5C+land%5C+races%5C+are%5C+decreasing%5C%3B%5C+diverse%5C+land%5C+use%5C+management%5C+is%5C+inclining%5C+to%5C+be%5C+single%5C+and%5C+seasonal%5C+shifting%5C+grazing%5C+tradition%5C+is%5C+fading%5C+away.%5C+The%5C+change%5C+of%5C+diversity%5C+to%5C+singularity%5C+might%5C+cause%5C+some%5C+negative%5C+impacts%5C+on%5C+the%5C+local%5C+environment%5C+and%5C+ecosystem.%5C+In%5C+this%5C+paper%2C%5C+advices%5C+were%5C+also%5C+given%5C+on%5C+how%5C+to%5C+combine%5C+Tibetan%5C+traditional%5C+knowledge%5C+and%5C+management%5C+experiences%5C+into%5C+sustainable%5C+development%5C+of%5C+modern%5C+agriculture.%5C+In%5C+this%5C+thesis%2C%5C+genetic%5C+diversity%5C+of%5C+Musella%5C+lasiocarpa%5C+%5C%28Franch.%5C%29%5C+C.%5C+Y.%5C+Wu%5C+ex%5C+H.%5C+W.%5C+Li%2C%5C+a%5C+plant%5C+endemic%5C+to%5C+southwest%5C+China%2C%5C+was%5C+also%5C+discussed%5C+through%5C+the%5C+approach%5C+of%5C+SSR%5C+markers.%5C+The%5C+wild%5C+populations%5C+of%5C+M.%5C+lasiocarpa%5C+are%5C+very%5C+rare%5C+now%5C+due%5C+to%5C+the%5C+habitat%5C+fragment%5C+and%5C+long%5C+time%5C+human%E2%80%99s%5C+disturbance.%5C+By%5C+conducting%5C+broad%5C+field%5C+investigation%2C%5C+we%5C+have%5C+found%5C+5%5C+wild%5C+populations%5C+near%5C+the%5C+boarder%5C+of%5C+Yunnan%5C+and%5C+Sichuan%5C+province.%5C+Seventeen%5C+microsatellite%5C+markers%5C+were%5C+isolated%5C+from%5C+M.%5C+lasiocarpa%5C+by%5C+using%5C+FIASCO%5C+method.%5C+8%5C+primers%5C+were%5C+selected%5C+to%5C+do%5C+the%5C+further%5C+genetic%5C+population%5C+structure%5C+and%5C+genetic%5C+diversity%5C+analysis.%5C+The%5C+results%5C+showed%5C+that%5C+genetic%5C+diversity%5C+of%5C+M.%5C+lasiocarpa%E2%80%99s%5C+wild%5C+populations%5C+is%5C+higher%5C+than%5C+cultivated%5C+populations.%5C+The%5C+genetic%5C+diversity%5C+difference%5C+between%5C+wild%5C+and%5C+cultivated%5C+populations%5C+is%5C+related%5C+to%5C+the%5C+different%5C+reproduction%5C+systems.%5C+Adopting%5C+the%5C+way%5C+of%5C+asexuality%5C+reproduction%2C%5C+the%5C+genetic%5C+basis%5C+of%5C+cultivated%5C+populations%5C+become%5C+narrow%5C+that%5C+decrease%5C+the%5C+genetic%5C+diversity.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+37.19%25%5C+genetic%5C+differentiation%5C+is%5C+among%5C+populations%5C+and%5C+62.81%25%5C+is%5C+within%5C+population.%5C+Genetic%5C+differentiation%5C+among%5C+different%5C+populations%5C+is%5C+related%5C+to%5C+the%5C+limited%5C+gene%5C+communication.%5C+POPGENE%5C+analysis%5C+indicated%5C+that%5C+there%5C+is%5C+very%5C+little%5C+gene%5C+flow%5C+among%5C+different%5C+populations%5C+%5C%280.4916%5C%29%2C%5C+which%5C+is%5C+the%5C+main%5C+reason%5C+of%5C+high%5C+genetic%5C+differentiation%5C+among%5C+M.%5C+lasiocarpa%5C+populations."},{"jsname":"lastIndexed","jscount":"2025-02-14"}],"Funding Project","dc.project.title_filter")'>
Thailand R... [2]
Bureau of ... [1]
CAS Presid... [1]
Camellia t... [1]
Chinese Ac... [1]
Chinese Ac... [1]
More...
Indexed By
SCI [281]
SSCI [47]
CSCD [11]
ISTP [3]
IC [1]
Funding Organization
Chinese A... [11]
CGIAR Rese... [7]
Chinese Ac... [5]
Humidtropi... [5]
13.1432.7-... [4]
Deanship o... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 431
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
干热河谷特色生态修复物种筛选与农林复合系统构建
学位论文
: 中国科学院大学, 2022
Authors:
赵高卷
Adobe PDF(5740Kb)
  |  
Favorite
  |  
View/Download:64/0
  |  
Submit date:2024/05/14
干热河谷,种质资源,农林复合系统,抗旱机制,生物固氮,乔灌草立体修复模式,生态恢复
dry-hot valley, germplasm resources, agroforestry system, drought resistance mechanism, biological nitrogen fixation, three-dimensional trees-shrubs-herbs restoration model, ecological restoration
Review on factors affecting coffee volatiles: from seed to cup
期刊论文
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2022, 卷号: 102, 期号: 4, 页码: 1341-1352
Authors:
Wang,Xiaoyuan
;
Wang,Yanbing
;
Hu,Guilin
;
Hong,Defu
;
Guo,Tieying
;
Li,Jinhong
;
Li,Zhongrong
;
Qiu,Minghua
View
  |  
Adobe PDF(1947Kb)
  |  
Favorite
  |  
View/Download:175/32
  |  
Submit date:2022/04/02
aroma modification
controlled fermentation
superheated steam (SHS)
cold brew
coffee omics
STARTER CULTURES
AROMA COMPOUNDS
ROASTED COFFEE
ARABICA COFFEE
FERMENTATION
QUALITY
FLAVOR
BEANS
EXTRACTION
STORAGE
Carbon fluxes within tree-crop-grass agroforestry system: C-13 field labeling and tracing
期刊论文
BIOLOGY AND FERTILITY OF SOILS, 2022, 卷号: 58, 期号: 7, 页码: 733-743
Authors:
Zhou, Jie
;
Shao, Guodong
;
Kumar, Amit
;
Shi, Lingling
;
Kuzyakov, Yakov
;
Pausch, Johanna
View
  |  
Adobe PDF(1724Kb)
  |  
Favorite
  |  
View/Download:151/22
  |  
Submit date:2024/03/11
Reviewing the world's edible mushroom species: A new evidence-based classification system
期刊论文
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021
Authors:
Li,Huili
;
Tian,Yang
;
Menolli Jr,Nelson
;
Ye,Lei
;
Karunarathna,Samantha C.
;
Perez-Moreno,Jesus
;
Rahman,Mohammad Mahmudur
;
Rashid,Md Harunur
;
Phengsintham,Pheng
;
Rizal,Leela
;
Kasuya,Taiga
;
Lim,Young Woon
;
Dutta,Arun Kumar
;
Khalid,Abdul Nasir
;
Le Thanh Huyen
;
Balolong,Marilen Parungao
;
Baruah,Gautam
;
Madawala,Sumedha
;
Thongklang,Naritsada
;
Hyde,Kevin D.
;
Kirk,Paul M.
;
Xu,Jianchu
;
Sheng,Jun
;
Boa,Eric
;
Mortimer,Peter E.
View
  |  
Adobe PDF(1089Kb)
  |  
Favorite
  |  
View/Download:243/72
  |  
Submit date:2023/09/08
Colletotrichum dracaenigenum, a new species on Dracaena fragrans
期刊论文
PHYTOTAXA, 2021, 卷号: 491, 期号: 2, 页码: 143-157
Authors:
Chaiwan,Napalai
;
Tibpromma,Saowaluck
;
Jayawardena,Ruvishika S.
;
Mapook,Ausana
;
Wanasinghe,Dhanushka N.
;
Mortimer,Peter E.
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
View
  |  
Adobe PDF(5895Kb)
  |  
Favorite
  |  
View/Download:158/56
  |  
Submit date:2022/04/02
Morphology
Multi-locus
Novel species
Phylogeny
Taxonomy
FUNGI
DIVERSITY
SPP.
ANTHRACNOSE
FAMILIES
GENERA
Introduction of Neolophiotrema xiaokongense gen. et sp. nov. to the poorly represented Anteagloniaceae (Pleosporales, Dothideomycetes)
期刊论文
PHYTOTAXA, 2021, 卷号: 482, 期号: 1, 页码: 25-35
Authors:
Ren,Guang-Cong
;
Wanasinghe,Dhanushka N.
;
Monkai,Jutamart
;
Hyde,Kevin D.
;
Mortimer,Peter E.
;
Xu,Jianchu
;
Pang,Aimin
;
Gui,Heng
View
  |  
Adobe PDF(3002Kb)
  |  
Favorite
  |  
View/Download:142/6
  |  
Submit date:2022/04/02
2 new taxa
guttulate
phylogeny
saprobic
taxonomy
BAYESIAN PHYLOGENETIC INFERENCE
MULTIPLE SEQUENCE ALIGNMENT
YUNNAN PROVINCE
DIVERSITY
FUNGI
PROBABILITY
REAPPRAISAL
CHOICE
Climate-Fungal Pathogen Modeling Predicts Loss of Up to One-Third of Tea Growing Areas
期刊论文
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2021, 卷号: 11, 页码: 610567
Authors:
Tibpromma,Saowaluck
;
Dong,Yang
;
Ranjitkar,Sailesh
;
Schaefer,Douglas A.
;
Karunarathna,Samantha C.
;
Hyde,Kevin D.
;
Jayawardena,Ruvishika S.
;
Manawasinghe,Ishara S.
;
Bebber,Daniel P.
;
Promputtha,Itthayakorn
;
Xu,Jianchu
;
Mortimer,Peter E.
;
Sheng,Jun
View
  |  
Adobe PDF(12054Kb)
  |  
Favorite
  |  
View/Download:171/39
  |  
Submit date:2022/04/02
Camellia sinensis
climate change
crop loss
fungal diseases
perennial crops
BROWN BLIGHT DISEASE
CAMELLIA-SINENSIS
COLLETOTRICHUM-ACUTATUM
1ST REPORT
EXOBASIDIUM-VEXANS
YUNNAN PROVINCE
PLANT
GLOEOSPORIOIDES
PESTS
LEAF
Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 4, 页码: 363
Authors:
Tibpromma,Saowaluck
;
Zhang,Lu
;
Karunarathna,Samantha C.
;
Du,Tian-Ye
;
Phukhamsakda,Chayanard
;
Rachakunta,Munikishore
;
Suwannarach,Nakarin
;
Xu,Jianchu
;
Mortimer,Peter E.
;
Wang,Yue-Hu
View
  |  
Adobe PDF(15322Kb)
  |  
Favorite
  |  
View/Download:135/16
  |  
Submit date:2022/04/02
agarwood
chemical constituents
endophytic fungi
GC-MS analysis
PHYLOGENETIC-RELATIONSHIPS
AGARWOOD
The flux of root-derived carbon via fungi and bacteria into soil microarthropods (Collembola) differs markedly between cropping systems
期刊论文
SOIL BIOLOGY & BIOCHEMISTRY, 2021, 卷号: 160, 页码: 108336
Authors:
Li,Zhipeng
;
Shi,Lingling
;
Kuzyakov,Yakov
;
Pausch,Johanna
;
Scheu,Stefan
;
Pollierer,Melanie M.
View
  |  
Adobe PDF(2324Kb)
  |  
Favorite
  |  
View/Download:167/27
  |  
Submit date:2022/04/02
Agroforestry
Bacterial energy channel
C-13 labeling
Collembola Fungal energy channel
NLFAs
MICROBIAL COMMUNITY COMPOSITION
ARBUSCULAR MYCORRHIZAL FUNGI
FOOD WEBS
FATTY-ACIDS
PLANT CARBON
ARABLE SOIL
RHIZOSPHERE
C-13
ASSIMILATION
NITROGEN
Impact of land use and land cover changes on carbon storage in rubber dominated tropical Xishuangbanna, South West China
期刊论文
ECOSYSTEM HEALTH AND SUSTAINABILITY, 2021, 卷号: 7, 期号: 1, 页码: 1915183
Authors:
Sarathchandra,Chaya
;
Alemu Abebe,Yirga
;
Worthy,Fiona Ruth
;
Lakmali Wijerathne,Iresha
;
Ma,Huaixia
;
Bi,Yingfeng
;
Guo,Jiayu
;
Chen,Huafang
;
Yan,Qiaoshun
;
Geng,Yanfei
;
Weragoda,Dayani S.
;
Li,Li-Li
;
Yang,Fengchun
;
Wickramasinghe,Sriyani
;
Xu,Jianchu
View
  |  
Adobe PDF(4133Kb)
  |  
Favorite
  |  
View/Download:133/6
  |  
Submit date:2022/04/02
Carbon storage
deforestation
economic plantations
ecosystem services
land cover changes
land use
PROTECTED AREAS
ABOVEGROUND BIOMASS
TREE GROWTH
FOREST
STOCKS
SEQUESTRATION
AGROFORESTRY
BIODIVERSITY
YUNNAN
AFFORESTATION