×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
昆明植物所硕博研... [203]
共享文献 [153]
资源植物与生物技术... [88]
中国西南野生生物种... [83]
中国科学院东亚植物... [67]
植物化学与西部植物... [25]
More...
Authors
高立志 [38]
Yang Yong... [36]
李德铢 [30]
杨云强 [25]
许建初 [16]
刘爱忠 [16]
More...
Document Type
Journal ... [504]
Thesis [203]
Book [32]
Conference... [4]
Other [4]
Academic p... [2]
More...
Date Issued
2021 [14]
2020 [85]
2019 [64]
2018 [41]
2017 [46]
2016 [52]
More...
Language
英语 [348]
中文 [177]
Source Publication
PLOS ONE [25]
植物分类与资源学报 [23]
FRONTIERS... [15]
FUNGAL DI... [12]
SCIENTIFI... [11]
INTERNATIO... [8]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Cold stress is one of the major environmental factors that adversely influence plants growth. Cold stress not only limits plants geographic distribution, but also reduces plants yield by shortening growing season, which brought billions of dollars economic losses for global crop. In nature, responses of overwintering plants to low temperature can be divided into three distinct phases: cold acclimation (CA), freezing, and post-freezing recovery (PFR). Until now, plenty intensive study about molecular mechanism of cold stress mainly focused on the above-zero low temperature phase. However, the studies on the freezing phase below zero and the following PFR phase with temperature going up to above-zero were rare. The previous research form our lab hinted that the responses of plants to freezing and PFR were complex and important. Except for passive reflection, there were also crucial active responses during this process. Several special rules were presented at the different levels including gene expression, signal transduction and membrane lipids changes, and fully understanding these rules would be helpful for us to explore the responses of plants to low temperature and then proceed to improve the freezing resistance of plants. In the present study, the mechanisms of respond to freezing and PFR of model plant Arabidopsis thaliana and its close relative Thellungiella halophlia that with extreme tolerance to abiotic stresses were carried out, including regulation of gene expression, signal transduction pathway and membrane lipids changes three levels which were essential for the freezing resistance of plants. Ground on these work, we obtained results from the following five aspects. First, the complete picture of A. thaliana responding to freezing and PFR at transcriptome level was elaborated and three functional genes closely related to the phases were identified. Second, the cis-elements with high frequent presence in differentially expressed genes were elucidated, and the practical binding of one elements among them was experimental verified during freezing and PFR. Moreover, we predicted the new elements which would respond to freezing and PFR. Third, the regulation of freezing stress by microRNA in A. thaliana was preliminarily investigated and 36 functional genes possibly regulated by miRNA during freezing and PFR were gained. Fourth, the negative effect of phytohormone Auxin on A. thaliana subjected to freezing stress was identified. Fifth, for the freezing-resistant plant T. halophlia, the rules of membrane lipids composition changes under freezing stress were uncovered.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3ACold%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+major%5C+environmental%5C+factors%5C+that%5C+adversely%5C+influence%5C+plants%5C+growth.%5C+Cold%5C+stress%5C+not%5C+only%5C+limits%5C+plants%5C+geographic%5C+distribution%2C%5C+but%5C+also%5C+reduces%5C+plants%5C+yield%5C+by%5C+shortening%5C+growing%5C+season%2C%5C+which%5C+brought%5C+billions%5C+of%5C+dollars%5C+economic%5C+losses%5C+for%5C+global%5C+crop.%5C+In%5C+nature%2C%5C+responses%5C+of%5C+overwintering%5C+plants%5C+to%5C+low%5C+temperature%5C+can%5C+be%5C+divided%5C+into%5C+three%5C+distinct%5C+phases%5C%3A%5C+cold%5C+acclimation%5C+%5C%28CA%5C%29%2C%5C+freezing%2C%5C+and%5C+post%5C-freezing%5C+recovery%5C+%5C%28PFR%5C%29.%5C+Until%5C+now%2C%5C+plenty%5C+intensive%5C+study%5C+about%5C+molecular%5C+mechanism%5C+of%5C+cold%5C+stress%5C+mainly%5C+focused%5C+on%5C+the%5C+above%5C-zero%5C+low%5C+temperature%5C+phase.%5C+However%2C%5C+the%5C+studies%5C+on%5C+the%5C+freezing%5C+phase%5C+below%5C+zero%5C+and%5C+the%5C+following%5C+PFR%5C+phase%5C+with%5C+temperature%5C+going%5C+up%5C+to%5C+above%5C-zero%5C+were%5C+rare.%5C+The%5C+previous%5C+research%5C+form%5C+our%5C+lab%5C+hinted%5C+that%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+freezing%5C+and%5C+PFR%5C+were%5C+complex%5C+and%5C+important.%5C+Except%5C+for%5C+passive%5C+reflection%2C%5C+there%5C+were%5C+also%5C+crucial%5C+active%5C+responses%5C+during%5C+this%5C+process.%5C+Several%5C+special%5C+rules%5C+were%5C+presented%5C+at%5C+the%5C+different%5C+levels%5C+including%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+and%5C+membrane%5C+lipids%5C+changes%2C%5C+and%5C+fully%5C+understanding%5C+these%5C+rules%5C+would%5C+be%5C+helpful%5C+for%5C+us%5C+to%5C+explore%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+low%5C+temperature%5C+and%5C+then%5C+proceed%5C+to%5C+improve%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+In%5C+the%5C+present%5C+study%2C%5C+the%5C+mechanisms%5C+of%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR%5C+of%5C+model%5C+plant%5C+Arabidopsis%5C+thaliana%5C+and%5C+its%5C+close%5C+relative%5C+Thellungiella%5C+halophlia%5C+that%5C+with%5C+extreme%5C+tolerance%5C+to%5C+abiotic%5C+stresses%5C+were%5C+carried%5C+out%2C%5C+including%5C+regulation%5C+of%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+pathway%5C+and%5C+membrane%5C+lipids%5C+changes%5C+three%5C+levels%5C+which%5C+were%5C+essential%5C+for%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+Ground%5C+on%5C+these%5C+work%2C%5C+we%5C+obtained%5C+results%5C+from%5C+the%5C+following%5C+five%5C+aspects.%5C+First%2C%5C+the%5C+complete%5C+picture%5C+of%5C+A.%5C+thaliana%5C+responding%5C+to%5C+freezing%5C+and%5C+PFR%5C+at%5C+transcriptome%5C+level%5C+was%5C+elaborated%5C+and%5C+three%5C+functional%5C+genes%5C+closely%5C+related%5C+to%5C+the%5C+phases%5C+were%5C+identified.%5C+Second%2C%5C+the%5C+cis%5C-elements%5C+with%5C+high%5C+frequent%5C+presence%5C+in%5C+differentially%5C+expressed%5C+genes%5C+were%5C+elucidated%2C%5C+and%5C+the%5C+practical%5C+binding%5C+of%5C+one%5C+elements%5C+among%5C+them%5C+was%5C+experimental%5C+verified%5C+during%5C+freezing%5C+and%5C+PFR.%5C+Moreover%2C%5C+we%5C+predicted%5C+the%5C+new%5C+elements%5C+which%5C+would%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR.%5C+Third%2C%5C+the%5C+regulation%5C+of%5C+freezing%5C+stress%5C+by%5C+microRNA%5C+in%5C+A.%5C+thaliana%5C+was%5C+preliminarily%5C+investigated%5C+and%5C+36%5C+functional%5C+genes%5C+possibly%5C+regulated%5C+by%5C+miRNA%5C+during%5C+freezing%5C+and%5C+PFR%5C+were%5C+gained.%5C+Fourth%2C%5C+the%5C+negative%5C+effect%5C+of%5C+phytohormone%5C+Auxin%5C+on%5C+A.%5C+thaliana%5C+subjected%5C+to%5C+freezing%5C+stress%5C+was%5C+identified.%5C+Fifth%2C%5C+for%5C+the%5C+freezing%5C-resistant%5C+plant%5C+T.%5C+halophlia%2C%5C+the%5C+rules%5C+of%5C+membrane%5C+lipids%5C+composition%5C+changes%5C+under%5C+freezing%5C+stress%5C+were%5C+uncovered."},{"jsname":"Craigia yunnanensis W. W. Smith & W. E. Evans (Tiliaceae) is an endangered deciduous tree species which has high scientific and economic value. C. yunnanensis is seriously threatened and has been pushed to the verge of extinction due to vegetation destruction in China and consequent contraction of its distribution. Hence, it was listed as a nationally rare and endangered plant in 1999 and has also been proposed as a second-ranked plant for national protection in China and included in IUCN red list. As a scientifically important and valued tree species with endangered status, the wild populations of C. yunnanensis therefore represent is a genetic resource that must be conserved. To provide basic information for its conservation, the population dynamics and population size structures, pollination biology and breeding system, eleven fitness-related characters and the genetic variability based on AFLP were comprehensively studied. The main results are summarized as follows: A total of six wild populations of C. yunnanensis were found in two disjunct regions of Yunnan, i.e. WenShan (SE Yunnan) and DeHong (SW Yunnan), from 2005 to 2007. Additionally, in all but one of the populations we detected, mature trees were felled between 2005 and 2007, so destruction of most of these populations is ongoing. Across the six populations of extant C. yunnanensis found during our study, the total number of mature (reproductive) individuals detected was 584 in 2007,plus larger numbers of seedling and resprouts from cut trunks. The result of surveying Population structure showed that there are two regeneration types which are seedlings and sprouts. Seedlings occurred abundantly in gaps or open areas and the size class frequency distributions were often discontinuous, and the same general pattern occurred in all the investigated populations for juveniles and adults. The numbers of seed-origin individuals did however decline sharply with increasing size, indicating a high mortality rate going from seedling to sapling stage may be a problem for this species. Additionally, the cash crop cultivation and logging seriously threaten the survival of the species. We conducted field observations and artificial pollination experiments on the floral biology, pollination process and breeding system of Craigia yunnanensis in Fadou, Xichou county of Yunnan province. The lifespan of a single hermaphrodite flower is approximately 3-4 days. A cyme has 2-9 flowered. The flowering period of an inflorescence is usually 5-14 days. The flowers of C. yunnanensis were protandrous. The stamens were within petal-like staminodes in the opening flowers until the flower withered. Without touchment, the bractlike staminodes can’t open. Self-pollination was partially avoided by temporal and spatial isolation of male and female organs within the same flower. However, autogamous and geitonogamous pollination is unavoidable because of the large number of flowers on a single tree and the action of pollinators. The values of both OCI (≥4) and P/O (1381) and the results of bagging tests indicated there was no apomixes in C. yunnanensis and the breeding system of the species was outcrossing with partial self-compatibility and the pollinators were required during the pollination process. The most frequent effective floral visitor was only beautiful fly (Chrysomyia megacephala). Fruit set and seed set in natural condition were 56.67±3.85% and 6.26±0.75%, respectively. Therefore, lack of pollinators, low pollination efficiency, unavoidable geitonogamous pollination and partial self-compatibility and inbreeding in small populations may account for the low fruit set, especially seed set.Variations in seed traits, seed germination, and seedling growth characters among six Craigia yunnanensis populations were evaluated. All seed and seedling traits exhibited significant differences among populations (P < 0.05). The fitness of seed as assessed by seed size, seed germination and seedling trait was independent of population size, except for the number of seeds per capsule (r = 0.93,P < 0.01). Correlations between geo-climatic variables of seed origin and seed and seedling related characters were insignificant (P > 0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"Environmental stresses could limit plant growth, development and propagation. Abiotic stress refers to the negative impact factors to the plants, such as extreme temperature, drought, flood, salinity, irradiation, chemicals and so on. To understand the mechanism of abiotic stress is very important.Membrane is the most sensitive organs in the cell that response to environmental changes. Cells respond and transduct environmental signals by changing content of membrane lipids and membrane proteins. The activity change of membrane phospholipase D (PLD) and the composition and content of membrane lipid molecules is one of the most anti-stress methods for the plants. It was reported that plants responded to some abiotic stresses such as freezing, thawing, seed aging and dehydration through changing lipid molecules especially the messenger phosphatidic acid (PA) and mutants of PLD were more tolerant to those stresses. It is important to investigate the characteristics and variation of membrane lipids and membrane proteins to understand the streee in plants.Three different kinds of stresses, including alpine scree temperature stress, allelopathy and Gamma irradiation stress, were studied in the present dissertation. And try to understand how plants response to those stresses by changing membrane system and the function of PLD in resistant to those stresses, lipidomic methods were used to profiling the changing of 11 lipids classes (160 lipids molecules) under thoses stresses. Moreover, PLD mutants were also used to study the role of PLD under those stresses. The mechanisms of plants response to stresses were very complicated; PLD and lipid molecules were not the only factors that response to stresses, the metabolism and phytohormones of tested plants under these stresses were also studied.In alpine scree of northwest Yunnan, the temperature was various from 33 °C during the midday to 4 °C at night, and the highest temperature could reach to 35 to 40 °C. Saussurea medusa and Solms-Laubachia linearifolia, which live in this environment, were chosen as studied model. The results showed that membrane lipid of these two plants significantly fluctuated with the temperature, while the double bond index (DBI) that had close relationship to temperature did not change. Furthermore, the the lysolipids which rise significantly under stresses did not change too much either. Laboratory mimic experiments also confermed the characteristics of lipids change to temperature in alpine scree plants. The results suggested that the plants living in such temperature changeable environment had already adapted to this situation and their membrane responded to the temperature was a kind of adaptation instead of stress response.Since the first introduction in Yunnan province of China in 1940s, E. adenophorum has spread very rapidly especially in southwestern China. Without understanding its invasive mechanism, it is impossible to control it. o-Hydroxycinnamic acid (o-HCA), an allelochmeical isolated from leachates of aerial parts of E. adenophorum were studied. o-HCA was abundant in aerial parts of E. adenophorum (1g/10kg fresh weight). The data showed that o-HCA not only had strong allelopathic effect on Arabidopsis seeds germination, but also inhibited seedling growth, and even induced root death of Arabidopsis seedlings. It could be proposed that o-HCA affected seedlings indirectly, through inducing root cell death, and it disturbed the water and ion absorption of plants and finally induced seedling to die. Interestingly, o-HCA could also inhibit E. adenophorum seed germination, while it showed no effect on its seedling growth. E. adenophorum can produce thousands of seeds and has the ability to vegetative reproduction, with which may alleviate the harmful effect of o-HCA on E. adenophorum. Unlike E. adenophorum, its neighbors’ population was inhibited, under this situation, E. adenophorum coule have better condition to live and invade successfully.Arabidopsis were irradiated with gamma rays, and 50-100 Gy gamma irradiation could inhibit seedling growth, and with the dosage above 200 Gy it could inhibit seedling flowering. Treated Arabidopsis wild types and their PLD a and d mutant with gamma ray showed no significant differences among them. The lipid molecules changes of seedlings under stress of gamma ray were also tested, and found that Gamama ray induced lipids degradation, among which, MGDG and DGDG degraded dramatically, while the average carbons in lipids did not changed. The lipids content (nmol per mg dry weight) decreased significantly, while the mol% content (mol% of total) changed slightly. Gamma irradiation also leaded to dramatically change of Arabidopsis seedling metabolomics and the phytohormones (ABA,ZR,JA,IAA).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AEnvironmental%5C+stresses%5C+could%5C+limit%5C+plant%5C+growth%2C%5C+development%5C+and%5C+propagation.%5C+Abiotic%5C+stress%5C+refers%5C+to%5C+the%5C+negative%5C+impact%5C+factors%5C+to%5C+the%5C+plants%2C%5C+such%5C+as%5C+extreme%5C+temperature%2C%5C+drought%2C%5C+flood%2C%5C+salinity%2C%5C+irradiation%2C%5C+chemicals%5C+and%5C+so%5C+on.%5C+To%5C+understand%5C+the%5C+mechanism%5C+of%5C+abiotic%5C+stress%5C+is%5C+very%5C+important.Membrane%5C+is%5C+the%5C+most%5C+sensitive%5C+organs%5C+in%5C+the%5C+cell%5C+that%5C+response%5C+to%5C+environmental%5C+changes.%5C+Cells%5C+respond%5C+and%5C+transduct%5C+environmental%5C+signals%5C+by%5C+changing%5C+content%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins.%5C+The%5C+activity%5C+change%5C+of%5C+membrane%5C+phospholipase%5C+D%5C+%5C%28PLD%5C%29%5C+and%5C+the%5C+composition%5C+and%5C+content%5C+of%5C+membrane%5C+lipid%5C+molecules%5C+is%5C+one%5C+of%5C+the%5C+most%5C+anti%5C-stress%5C+methods%5C+for%5C+the%5C+plants.%5C+It%5C+was%5C+reported%5C+that%5C+plants%5C+responded%5C+to%5C+some%5C+abiotic%5C+stresses%5C+such%5C+as%5C+freezing%2C%5C+thawing%2C%5C+seed%5C+aging%5C+and%5C+dehydration%5C+through%5C+changing%5C+lipid%5C+molecules%5C+especially%5C+the%5C+messenger%5C+phosphatidic%5C+acid%5C+%5C%28PA%5C%29%5C+and%5C+mutants%5C+of%5C+PLD%5C+were%5C+more%5C+tolerant%5C+to%5C+those%5C+stresses.%5C+It%5C+is%5C+important%5C+to%5C+investigate%5C+the%5C+characteristics%5C+and%5C+variation%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins%5C+to%5C+understand%5C+the%5C+streee%5C+in%5C+plants.Three%5C+different%5C+kinds%5C+of%5C+stresses%2C%5C+including%5C+alpine%5C+scree%5C+temperature%5C+stress%2C%5C+allelopathy%5C+and%5C+Gamma%5C+irradiation%5C+stress%2C%5C+were%5C+studied%5C+in%5C+the%5C+present%5C+dissertation.%5C+And%5C+try%5C+to%5C+understand%5C+how%5C+plants%5C+response%5C+to%5C+those%5C+stresses%5C+by%5C+changing%5C+membrane%5C+system%5C+and%5C+the%5C+function%5C+of%5C+PLD%5C+in%5C+resistant%5C+to%5C+those%5C+stresses%2C%5C+lipidomic%5C+methods%5C+were%5C+used%5C+to%5C+profiling%5C+the%5C+changing%5C+of%5C+11%5C+lipids%5C+classes%5C+%5C%28160%5C+lipids%5C+molecules%5C%29%5C+under%5C+thoses%5C+stresses.%5C+Moreover%2C%5C+PLD%5C+mutants%5C+were%5C+also%5C+used%5C+to%5C+study%5C+the%5C+role%5C+of%5C+PLD%5C+under%5C+those%5C+stresses.%5C+The%5C+mechanisms%5C+of%5C+plants%5C+response%5C+to%5C+stresses%5C+were%5C+very%5C+complicated%5C%3B%5C+PLD%5C+and%5C+lipid%5C+molecules%5C+were%5C+not%5C+the%5C+only%5C+factors%5C+that%5C+response%5C+to%5C+stresses%2C%5C+the%5C+metabolism%5C+and%5C+phytohormones%5C+of%5C+tested%5C+plants%5C+under%5C+these%5C+stresses%5C+were%5C+also%5C+studied.In%5C+alpine%5C+scree%5C+of%5C+northwest%5C+Yunnan%2C%5C+the%5C+temperature%5C+was%5C+various%5C+from%5C+33%5C+%C2%B0C%5C+during%5C+the%5C+midday%5C+to%5C+4%5C+%C2%B0C%5C+at%5C+night%2C%5C+and%5C+the%5C+highest%5C+temperature%5C+could%5C+reach%5C+to%5C+35%5C+to%5C+40%5C+%C2%B0C.%5C+Saussurea%5C+medusa%5C+and%5C+Solms%5C-Laubachia%5C+linearifolia%2C%5C+which%5C+live%5C+in%5C+this%5C+environment%2C%5C+were%5C+chosen%5C+as%5C+studied%5C+model.%5C+The%5C+results%5C+showed%5C+that%5C+membrane%5C+lipid%5C+of%5C+these%5C+two%5C+plants%5C+significantly%5C+fluctuated%5C+with%5C+the%5C+temperature%2C%5C+while%5C+the%5C+double%5C+bond%5C+index%5C+%5C%28DBI%5C%29%5C+that%5C+had%5C+close%5C+relationship%5C+to%5C+temperature%5C+did%5C+not%5C+change.%5C+Furthermore%2C%5C+the%5C+the%5C+lysolipids%5C+which%5C+rise%5C+significantly%5C+under%5C+stresses%5C+did%5C+not%5C+change%5C+too%5C+much%5C+either.%5C+Laboratory%5C+mimic%5C+experiments%5C+also%5C+confermed%5C+the%5C+characteristics%5C+of%5C+lipids%5C+change%5C+to%5C+temperature%5C+in%5C+alpine%5C+scree%5C+plants.%5C+The%5C+results%5C+suggested%5C+that%5C+the%5C+plants%5C+living%5C+in%5C+such%5C+temperature%5C+changeable%5C+environment%5C+had%5C+already%5C+adapted%5C+to%5C+this%5C+situation%5C+and%5C+their%5C+membrane%5C+responded%5C+to%5C+the%5C+temperature%5C+was%5C+a%5C+kind%5C+of%5C+adaptation%5C+instead%5C+of%5C+stress%5C+response.Since%5C+the%5C+first%5C+introduction%5C+in%5C+Yunnan%5C+province%5C+of%5C+China%5C+in%5C+1940s%2C%5C+E.%5C+adenophorum%5C+has%5C+spread%5C+very%5C+rapidly%5C+especially%5C+in%5C+southwestern%5C+China.%5C+Without%5C+understanding%5C+its%5C+invasive%5C+mechanism%2C%5C+it%5C+is%5C+impossible%5C+to%5C+control%5C+it.%5C+o%5C-Hydroxycinnamic%5C+acid%5C+%5C%28o%5C-HCA%5C%29%2C%5C+an%5C+allelochmeical%5C+isolated%5C+from%5C+leachates%5C+of%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+were%5C+studied.%5C+o%5C-HCA%5C+was%5C+abundant%5C+in%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+%5C%281g%5C%2F10kg%5C+fresh%5C+weight%5C%29.%5C+The%5C+data%5C+showed%5C+that%5C+o%5C-HCA%5C+not%5C+only%5C+had%5C+strong%5C+allelopathic%5C+effect%5C+on%5C+Arabidopsis%5C+seeds%5C+germination%2C%5C+but%5C+also%5C+inhibited%5C+seedling%5C+growth%2C%5C+and%5C+even%5C+induced%5C+root%5C+death%5C+of%5C+Arabidopsis%5C+seedlings.%5C+It%5C+could%5C+be%5C+proposed%5C+that%5C+o%5C-HCA%5C+affected%5C+seedlings%5C+indirectly%2C%5C+through%5C+inducing%5C+root%5C+cell%5C+death%2C%5C+and%5C+it%5C+disturbed%5C+the%5C+water%5C+and%5C+ion%5C+absorption%5C+of%5C+plants%5C+and%5C+finally%5C+induced%5C+seedling%5C+to%5C+die.%5C+Interestingly%2C%5C+o%5C-HCA%5C+could%5C+also%5C+inhibit%5C+E.%5C+adenophorum%5C+seed%5C+germination%2C%5C+while%5C+it%5C+showed%5C+no%5C+effect%5C+on%5C+its%5C+seedling%5C+growth.%5C+E.%5C+adenophorum%5C+can%5C+produce%5C+thousands%5C+of%5C+seeds%5C+and%5C+has%5C+the%5C+ability%5C+to%5C+vegetative%5C+reproduction%2C%5C+with%5C+which%5C+may%5C+alleviate%5C+the%5C+harmful%5C+effect%5C+of%5C+o%5C-HCA%5C+on%5C+E.%5C+adenophorum.%5C+Unlike%5C+E.%5C+adenophorum%2C%5C+its%5C+neighbors%E2%80%99%5C+population%5C+was%5C+inhibited%2C%5C+under%5C+this%5C+situation%2C%5C+E.%5C+adenophorum%5C+coule%5C+have%5C+better%5C+condition%5C+to%5C+live%5C+and%5C+invade%5C+successfully.Arabidopsis%5C+were%5C+irradiated%5C+with%5C+gamma%5C+rays%2C%5C+and%5C+50%5C-100%5C+Gy%5C+gamma%5C+irradiation%5C+could%5C+inhibit%5C+seedling%5C+growth%2C%5C+and%5C+with%5C+the%5C+dosage%5C+above%5C+200%5C+Gy%5C+it%5C+could%5C+inhibit%5C+seedling%5C+flowering.%5C+Treated%5C+Arabidopsis%5C+wild%5C+types%5C+and%5C+their%5C+PLD%5C+a%5C+and%5C+d%5C+mutant%5C+with%5C+gamma%5C+ray%5C+showed%5C+no%5C+significant%5C+differences%5C+among%5C+them.%5C+The%5C+lipid%5C+molecules%5C+changes%5C+of%5C+seedlings%5C+under%5C+stress%5C+of%5C+gamma%5C+ray%5C+were%5C+also%5C+tested%2C%5C+and%5C+found%5C+that%5C+Gamama%5C+ray%5C+induced%5C+lipids%5C+degradation%2C%5C+among%5C+which%2C%5C+MGDG%5C+and%5C+DGDG%5C+degraded%5C+dramatically%2C%5C+while%5C+the%5C+average%5C+carbons%5C+in%5C+lipids%5C+did%5C+not%5C+changed.%5C+The%5C+lipids%5C+content%5C+%5C%28nmol%5C+per%5C+mg%5C+dry%5C+weight%5C%29%5C+decreased%5C+significantly%2C%5C+while%5C+the%5C+mol%25%5C+content%5C+%5C%28mol%25%5C+of%5C+total%5C%29%5C+changed%5C+slightly.%5C+Gamma%5C+irradiation%5C+also%5C+leaded%5C+to%5C+dramatically%5C+change%5C+of%5C+Arabidopsis%5C+seedling%5C+metabolomics%5C+and%5C+the%5C+phytohormones%5C+%5C%28ABA%EF%BC%8CZR%EF%BC%8CJA%EF%BC%8CIAA%5C%29."},{"jsname":"How has natural selection determined the evolution of gene regulation by acting on major regulatory factors? This question has been attractive to many evolutionary biologists for a long time. MicroRNAs (miRNAs) are endogenous posttranscriptional repressors and play essential roles in diverse biological processes in plants. To understand how natural selection has targeted on the entire lay of miRNA regulatory modules during flower development, we resequenced 31 miRNA target sites involved in flower development from five rice populations. We found that purifying selection serves as a major evolutionary force to act on the conserved miRNA binding sites, leading to the globally reduced genetic variation in highly conserved miRNA binding sequences within the entire rice samples. Conversely, positive selection allows variations at nonconserved miRNA binding sites and acts on them in a population-specific behaviour. Further analysis revealed that the polymorphisms within target sites may serve as raw materials for diverse functions of miRNAs by means of the destabilization of duplex, abolishment of existing target sites, and creation of novel ones. Together, the above-mentioned results indicate that variations at conserved binding sites are likely deleterious during rice flower development, whereas variants at nonconserved binding sites may be conductive to flower development-related phenotypic diversities and rice population adaption to variable environmental conditions as well. To further assess functional effects and evolutionary significance of variable alleles at the target genes, we reported the detailed characterization of the haplotype and linkage disequilibrium (LD) patterns of the entire target gene (LOC_Os01g18850,SPL 1) and the 1.4 Mb flanking regions in three rice populations, namely japonica, indica and O. rufipogon. The genetic profile of SNPs at target site and its flanking regions revealed high haplotype frequency, low haplotype diversity and strong LD in two cultivatedricepopulations. By contrast, we observed the opposite phenomena in O. rufipogon. Using the long-range haplotype (LRT) test, we found strong evidence of recent positive selection for SNP 3C/T alleles at target site in the combined O. sativa. Comparsion between the two rice subpopulations indicated that the major haplotype mh 2 containing SNP 3C accounts for half of all haplotypes in indica, while mh 3 containing SNP 3T is 91% in japonica. Moreover, the extent of LD is stronger in japonica than that in inidca. These differences suggest that independent evolutionary events may have occurred in target sequences of two cultivated rice populations and stronger positive selection acted on japonica. Next, we examined geographic distribution of polymorphic variants at target sites. We found that the major alleles SNP 3T and tightly linked SNP 4A in japonica appear to be associated with the adaption to the northern climates during rice flower development.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AHow%5C+has%5C+natural%5C+selection%5C+determined%5C+the%5C+evolution%5C+of%5C+gene%5C+regulation%5C+by%5C+acting%5C+on%5C+major%5C+regulatory%5C+factors%5C%3F%5C+This%5C+question%5C+has%5C+been%5C+attractive%5C+to%5C+many%5C+evolutionary%5C+biologists%5C+for%5C+a%5C+long%5C+time.%5C+MicroRNAs%5C+%5C%28miRNAs%5C%29%5C+are%5C+endogenous%5C+posttranscriptional%5C+repressors%5C+and%5C+play%5C+essential%5C+roles%5C+in%5C+diverse%5C+biological%5C+processes%5C+in%5C+plants.%5C+To%5C+understand%5C+how%5C+natural%5C+selection%5C+has%5C+targeted%5C+on%5C+the%5C+entire%5C+lay%5C+of%5C+miRNA%5C+regulatory%5C+modules%5C+during%5C+flower%5C+development%2C%5C+we%5C+resequenced%5C+31%5C+miRNA%5C+target%5C+sites%5C+involved%5C+in%5C+flower%5C+development%5C+from%5C+five%5C+rice%5C+populations.%5C+We%5C+found%5C+that%5C+purifying%5C+selection%5C+serves%5C+as%5C+a%5C+major%5C+evolutionary%5C+force%5C+to%5C+act%5C+on%5C+the%5C+conserved%5C+miRNA%5C+binding%5C+sites%2C%5C+leading%5C+to%5C+the%5C+globally%5C+reduced%5C+genetic%5C+variation%5C+in%5C+highly%5C+conserved%5C+miRNA%5C+binding%5C+sequences%5C+within%5C+the%5C+entire%5C+rice%5C+samples.%5C+Conversely%2C%5C+positive%5C+selection%5C+allows%5C+variations%5C+at%5C+nonconserved%5C+miRNA%5C+binding%5C+sites%5C+and%5C+acts%5C+on%5C+them%5C+in%5C+a%5C+population%5C-specific%5C+behaviour.%5C+Further%5C+analysis%5C+revealed%5C+that%5C+the%5C+polymorphisms%5C+within%5C+target%5C+sites%5C+may%5C+serve%5C+as%5C+raw%5C+materials%5C+for%5C+diverse%5C+functions%5C+of%5C+miRNAs%5C+by%5C+means%5C+of%5C+the%5C+destabilization%5C+of%5C+duplex%2C%5C+abolishment%5C+of%5C+existing%5C+target%5C+sites%2C%5C+and%5C+creation%5C+of%5C+novel%5C+ones.%5C+Together%2C%5C+the%5C+above%5C-mentioned%5C+results%5C+indicate%5C+that%5C+variations%5C+at%5C+conserved%5C+binding%5C+sites%5C+are%5C+likely%5C+deleterious%5C+during%5C+rice%5C+flower%5C+development%2C%5C+whereas%5C+variants%5C+at%5C+nonconserved%5C+binding%5C+sites%5C+may%5C+be%5C+conductive%5C+to%5C+flower%5C+development%5C-related%5C+phenotypic%5C+diversities%5C+and%5C+rice%5C+population%5C+adaption%5C+to%5C+variable%5C+environmental%5C+conditions%5C+as%5C+well.%5C+To%5C+further%5C+assess%5C+functional%5C+effects%5C+and%5C+evolutionary%5C+significance%5C+of%5C+variable%5C+alleles%5C+at%5C+the%5C+target%5C+genes%2C%5C+we%5C+reported%5C+the%5C+detailed%5C+characterization%5C+of%5C+the%5C+haplotype%5C+and%5C+linkage%5C+disequilibrium%5C+%5C%28LD%5C%29%5C+patterns%5C+of%5C+the%5C+entire%5C+target%5C+gene%5C+%5C%28LOC_Os01g18850%EF%BC%8CSPL%5C+1%5C%29%5C+and%5C+the%5C+1.4%5C+Mb%5C+flanking%5C+regions%5C+in%5C+three%5C+rice%5C+populations%2C%5C+namely%5C+japonica%2C%5C+indica%5C+and%5C+O.%5C+rufipogon.%5C+The%5C+genetic%5C+profile%5C+of%5C+SNPs%5C+at%5C+target%5C+site%5C+and%5C+its%5C+flanking%5C+regions%5C+revealed%5C+high%5C+haplotype%5C+frequency%2C%5C+low%5C+haplotype%5C+diversity%5C+and%5C+strong%5C+LD%5C+in%5C+two%5C+cultivatedricepopulations.%5C+By%5C+contrast%2C%5C+we%5C+observed%5C+the%5C+opposite%5C+phenomena%5C+in%5C+O.%5C+rufipogon.%5C+Using%5C+the%5C+long%5C-range%5C+haplotype%5C+%5C%28LRT%5C%29%5C+test%2C%5C+we%5C+found%5C+strong%5C+evidence%5C+of%5C+recent%5C+positive%5C+selection%5C+for%5C+SNP%5C+3C%5C%2FT%5C+alleles%5C+at%5C+target%5C+site%5C+in%5C+the%5C+combined%5C+O.%5C+sativa.%5C+Comparsion%5C+between%5C+the%5C+two%5C+rice%5C+subpopulations%5C+indicated%5C+that%5C+the%5C+major%5C+haplotype%5C+mh%5C+2%5C+containing%5C+SNP%5C+3C%5C+accounts%5C+for%5C+half%5C+of%5C+all%5C+haplotypes%5C+in%5C+indica%2C%5C+while%5C+mh%5C+3%5C+containing%5C+SNP%5C+3T%5C+is%5C+91%25%5C+in%5C+japonica.%5C+Moreover%2C%5C+the%5C+extent%5C+of%5C+LD%5C+is%5C+stronger%5C+in%5C+japonica%5C+than%5C+that%5C+in%5C+inidca.%5C+These%5C+differences%5C+suggest%5C+that%5C+independent%5C+evolutionary%5C+events%5C+may%5C+have%5C+occurred%5C+in%5C+target%5C+sequences%5C+of%5C+two%5C+cultivated%5C+rice%5C+populations%5C+and%5C+stronger%5C+positive%5C+selection%5C+acted%5C+on%5C+japonica.%5C+Next%2C%5C+we%5C+examined%5C+geographic%5C+distribution%5C+of%5C+polymorphic%5C+variants%5C+at%5C+target%5C+sites.%5C+We%5C+found%5C+that%5C+the%5C+major%5C+alleles%5C+SNP%5C+3T%5C+and%5C+tightly%5C+linked%5C+SNP%5C+4A%5C+in%5C+japonica%5C+appear%5C+to%5C+be%5C+associated%5C+with%5C+the%5C+adaption%5C+to%5C+the%5C+northern%5C+climates%5C+during%5C+rice%5C+flower%5C+development."},{"jsname":"In Chapter 1, we isolated a flavonoid prenyltransferase-like gene from traditional Chinese medicinal herb, Epimedium L. (berberidaceae). Epimedium species have a high content of the prenylated flavonol glycosides. Icariin and epimedin A, B and C are frequently used as marker compounds for the quality control of Epimedium. Here we speculate prenyl flavonoids biosynthesis pathway in Epimedium: The flavonoid prenyltransferase is responsible for the prenylation of flavonoids (naringenin 、kaempferol or apigenin) at the 8-position or 3'' or 5''-position. Leaves of Epimedium acuminatum Franch in the nursery were collected every month, and then detected the icariin content. The results show that leaves in March have the highest icariin content. Total RNA was extracted from leaves in March as template. A similarity-based cloning strategy yielded a flavonoid prenyltransferase-like gene, named EaPT1. In E. coli. expression system, pET32a(+) was chosen as the expression vector for use in Rosetta-gamiB(DE3)、RosettaTM 2(DE3)plysS、BL21(DE3)plysE、BL21(DE3)gold and BL21(DE3) cells. The full length ORF and truncated sequence were ligated with pET32a(+). We did not detect the target protein in SDS-PAGE. In Saccharomyces cerevisiae expression system, the full length ORF was ligated with pYES2. In this expression system, we still could not detect the protein in SDS-PAGE. LC/MS did not detect the activity of prenyltransferase, with naringenin as substrate. Chapter 2 describes functional expression and characterization of two copalyl pyrophosphate synthase gene from Isodon ericalyx (Dunn) Kudo, named IeCPS7 and IeCPS11. Their full length ORF and truncated sequence were ligated into pET32a(+). These vectors were used to transform E.coli BL21(DE)3. The truncated IeCPS7 sequence expressed a soluble His-tag recombinant protein, 104699.41D, pI5.87, 924aa. The recombinant protein was characterized for diterpene synthase activity by using geranylgeranyl diphosphate(GGPP) as substrates and subsequent GC/MS analysis of products. The purified recombinant IeCPS showed optimum activity at pH7.1. In addition, IeCPS showed maximum activity at 30℃. The enzymatic activity was increased by addition of MgCl2 to the reaction mixture. Unexpectedly, MnCl2 actually inhibited the enzyme activity. In addition,only insoluble recombinant proteins were expressed for IeCPS11 in BL21(DE)3, Rosetta-gamiB(DE3) and RosettaTM 2(DE3)plysS. The last part reviews the advances in molecular studies of aromatic prenyltransferase in plants and fungi, focusing on membrane-bound homogentisate prenyltransferses, flavonoid prenyltransferases as well as soluble indole prenyltransferases.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AIn%5C+Chapter%5C+1%2C%5C+we%5C+isolated%5C+a%5C+flavonoid%5C+prenyltransferase%5C-like%5C+gene%5C+from%5C+traditional%5C+Chinese%5C+medicinal%5C+herb%2C%5C+Epimedium%5C+L.%5C+%5C%28berberidaceae%5C%29.%5C+Epimedium%5C+species%5C+have%5C+a%5C+high%5C+content%5C+of%5C+the%5C+prenylated%5C+flavonol%5C+glycosides.%5C+Icariin%5C+and%5C+epimedin%5C+A%2C%5C+B%5C+and%5C+C%5C+are%5C+frequently%5C+used%5C+as%5C+marker%5C+compounds%5C+for%5C+the%5C+quality%5C+control%5C+of%5C+Epimedium.%5C+Here%5C+we%5C+speculate%5C+prenyl%5C+flavonoids%5C+biosynthesis%5C+pathway%5C+in%5C+Epimedium%5C%3A%5C+The%5C+flavonoid%5C+prenyltransferase%5C+is%5C+responsible%5C+for%5C+the%5C+prenylation%5C+of%5C+flavonoids%5C+%5C%28naringenin%5C+%E3%80%81kaempferol%5C+or%5C+apigenin%5C%29%5C+at%5C+the%5C+8%5C-position%5C+or%5C+3%27%27%5C+or%5C+5%27%27%5C-position.%5C+Leaves%5C+of%5C+Epimedium%5C+acuminatum%5C+Franch%5C+in%5C+the%5C+nursery%5C+were%5C+collected%5C+every%5C+month%2C%5C+and%5C+then%5C+detected%5C+the%5C+icariin%5C+content.%5C+The%5C+results%5C+show%5C+that%5C+leaves%5C+in%5C+March%5C+have%5C+the%5C+highest%5C+icariin%5C+content.%5C+Total%5C+RNA%5C+was%5C+extracted%5C+from%5C+leaves%5C+in%5C+March%5C+as%5C+template.%5C+A%5C+similarity%5C-based%5C+cloning%5C+strategy%5C+yielded%5C+a%5C+flavonoid%5C+prenyltransferase%5C-like%5C+gene%2C%5C+named%5C+EaPT1.%5C+In%5C+E.%5C+coli.%5C+expression%5C+system%2C%5C+pET32a%5C%28%5C%2B%5C%29%5C+was%5C+chosen%5C+as%5C+the%5C+expression%5C+vector%5C+for%5C+use%5C+in%5C+Rosetta%5C-gamiB%5C%28DE3%5C%29%E3%80%81RosettaTM%5C+2%EF%BC%88DE3%EF%BC%89plysS%E3%80%81BL21%5C%28DE3%5C%29plysE%E3%80%81BL21%5C%28DE3%5C%29gold%5C+and%5C+BL21%5C%28DE3%5C%29%5C+cells.%5C+The%5C+full%5C+length%5C+ORF%5C+and%5C+truncated%5C+sequence%5C+were%5C+ligated%5C+with%5C+pET32a%5C%28%5C%2B%5C%29.%5C+We%5C+did%5C+not%5C+detect%5C+the%5C+target%5C+protein%5C+in%5C+SDS%5C-PAGE.%5C+In%5C+Saccharomyces%5C+cerevisiae%5C+expression%5C+system%2C%5C+the%5C+full%5C+length%5C+ORF%5C+was%5C+ligated%5C+with%5C+pYES2.%5C+In%5C+this%5C+expression%5C+system%2C%5C+we%5C+still%5C+could%5C+not%5C+detect%5C+the%5C+protein%5C+in%5C+SDS%5C-PAGE.%5C+LC%5C%2FMS%5C+did%5C+not%5C+detect%5C+the%5C+activity%5C+of%5C+prenyltransferase%2C%5C+with%5C+naringenin%5C+as%5C+substrate.%5C+Chapter%5C+2%5C+describes%5C+functional%5C+expression%5C+and%5C+characterization%5C+of%5C+two%5C+copalyl%5C+pyrophosphate%5C+synthase%5C+gene%5C+from%5C+Isodon%5C+ericalyx%5C+%5C%28Dunn%5C%29%5C+Kudo%2C%5C+named%5C+IeCPS7%5C+and%5C+IeCPS11.%5C+Their%5C+full%5C+length%5C+ORF%5C+and%5C+truncated%5C+sequence%5C+were%5C+ligated%5C+into%5C+pET32a%5C%28%5C%2B%5C%29.%5C+These%5C+vectors%5C+were%5C+used%5C+to%5C+transform%5C+E.coli%5C+BL21%5C%28DE%5C%293.%5C+The%5C+truncated%5C+IeCPS7%5C+sequence%5C+expressed%5C+a%5C+soluble%5C+His%5C-tag%5C+recombinant%5C+protein%2C%5C+104699.41D%2C%5C+pI5.87%2C%5C+924aa.%5C+The%5C+recombinant%5C+protein%5C+was%5C+characterized%5C+for%5C+diterpene%5C+synthase%5C+activity%5C+by%5C+using%5C+geranylgeranyl%5C+diphosphate%5C%28GGPP%5C%29%5C+as%5C+substrates%5C+and%5C+subsequent%5C+GC%5C%2FMS%5C+analysis%5C+of%5C+products.%5C+The%5C+purified%5C+recombinant%5C+IeCPS%5C+showed%5C+optimum%5C+activity%5C+at%5C+pH7.1.%5C+In%5C+addition%2C%5C+IeCPS%5C+showed%5C+maximum%5C+activity%5C+at%5C+30%E2%84%83.%5C+The%5C+enzymatic%5C+activity%5C+was%5C+increased%5C+by%5C+addition%5C+of%5C+MgCl2%5C+to%5C+the%5C+reaction%5C+mixture.%5C+Unexpectedly%2C%5C+MnCl2%5C+actually%5C+inhibited%5C+the%5C+enzyme%5C+activity.%5C+In%5C+addition%2Conly%5C+insoluble%5C+recombinant%5C+proteins%5C+were%5C+expressed%5C+for%5C+IeCPS11%5C+in%5C+BL21%5C%28DE%5C%293%2C%5C+Rosetta%5C-gamiB%5C%28DE3%5C%29%5C+and%5C+RosettaTM%5C+2%EF%BC%88DE3%EF%BC%89plysS.%5C+The%5C+last%5C+part%5C+reviews%5C+the%5C+advances%5C+in%5C+molecular%5C+studies%5C+of%5C+aromatic%5C+prenyltransferase%5C+in%5C+plants%5C+and%5C+fungi%2C%5C+focusing%5C+on%5C+membrane%5C-bound%5C+homogentisate%5C+prenyltransferses%2C%5C+flavonoid%5C+prenyltransferases%5C+as%5C+well%5C+as%5C+soluble%5C+indole%5C+prenyltransferases."},{"jsname":"Key Laboratory of Ethnomedicine (Minzu University of China) of Ministry of Education of China[KLEM-ZZ201806]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AKey%5C+Laboratory%5C+of%5C+Ethnomedicine%5C+%5C%28Minzu%5C+University%5C+of%5C+China%5C%29%5C+of%5C+Ministry%5C+of%5C+Education%5C+of%5C+China%5C%5BKLEM%5C-ZZ201806%5C%5D"},{"jsname":"Keynote Projects of the National Natural Science Foundation of China[40830209]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AKeynote%5C+Projects%5C+of%5C+the%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B40830209%5C%5D"},{"jsname":"Low temperature stress is one of the main environmental factors which limit plant growth, development and distribution. The physiological, biochemical and molecular mechanisms research on plant response to low temperature injury can provide theoretical basis for improving plant tolerance to low temperature,and benefit agricultural production practices. The membrane is a major injury site induced by low temperature. Previous studies have shown that membrane lipids have undergone great changes in low-temperature treatments like cold acclimation, freezing and thawing.This study used ESI / MS-MS and TLC technologies to detecte the changes of membrane lipid species in the process of low-temperature injury and injury recovery in Arabidopsis thaliana, Brassica napus, Oryza sativa (rice) and Cucumis satirus (cucumber). Arabidopsis and Brassica napus have resistance to subzero low temperature to some extent, whereas rice and cucumber are sensitive to unfreezing low temperature.When Arabidopsisexperienced reversible low temperature stress, absolute concentration of the membrane lipid species changed,while this change could back to normal after temperature returned to normal. When the plant could not be restored through the low-temperature stress and died, membrane lipid species except PA and lysophospholipids had undergone a large-scale degradation orderly, which occurred most violently in the process of thawing. PA increased significantly during thawing, and degraded during cold de-acclimation, but still significantly higher than normal level. At the same time, some new type of membrane lipid species appeared. The changing pattern of two types of glycolipids were different: MGDG changed drastically while DGDG changed moderately. On the contrast of different Arabidopsis genotypes underwent low temperature stress found that there were no significant difference between mutant-type and wild-type, indicating PLDα1 and PLDδ play a small role in low temperature process of degradation of membrane lipid induced by irreversible injury. Many phospholipase involved in lipid degradation. By the research on relative content of various lipids found that some lipids decreased in absolute concentration while increased in the relative concentration indicating the degradation order and rate of different lipids was different. Under the reversible low temperature stress, the double bond index (DBI) of membrane lipid was unchanged, while that changed continuously under the irreversible low temperature stress. Specific analysis on changes in DBI of every lipid class revealed that changes were not obvious, which indicated that under irreversible low-temperature stress, the decrease of relative concentration of some membrane lipids like MGDG which had high DBI induced the DBI of total membrane lipid to decline.There was similar discipline in Brassica napus. When rice and cucumber experienced reversible and irreversible unfreezing low-temperature stress, PA also increased and other lipids decreased, indicating low-temperature-induced membrane disintegration had little to do with intracellular ice.In short, when plant experienced reversible low-temperature injury, lipid species could regulate the ratio of each component to ensure the survival of plants. When the temperature returned to normal, the membrane lipids had also been restored. When the plants suffered irreversible damage at low temperature, the membrane lipid molecules would degrade orderly and severely. Various types of membrane lipid molecules might be first degraded to PA, then PA degraded, so PA would first significantly increase, and then decreased. The knowledge on discipline of plants response to low temperature stress on the necrotic process can provide a theoretical basis for us to avoid the plants necrosis induced by cold and other stress-induced.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3ALow%5C+temperature%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+main%5C+environmental%5C+factors%5C+which%5C+limit%5C+plant%5C+growth%2C%5C+development%5C+and%5C+distribution.%5C+The%5C+physiological%2C%5C+biochemical%5C+and%5C+molecular%5C+mechanisms%5C+research%5C+on%5C+plant%5C+response%5C+to%5C+low%5C+temperature%5C+injury%5C+can%5C+provide%5C+theoretical%5C+basis%5C+for%5C+improving%5C+plant%5C+tolerance%5C+to%5C+low%5C+temperature%EF%BC%8Cand%5C+benefit%5C+agricultural%5C+production%5C+practices.%5C+The%5C+membrane%5C+is%5C+a%5C+major%5C+injury%5C+site%5C+induced%5C+by%5C+low%5C+temperature.%5C+Previous%5C+studies%5C+have%5C+shown%5C+that%5C+membrane%5C+lipids%5C+have%5C+undergone%5C+great%5C+changes%5C+in%5C+low%5C-temperature%5C+treatments%5C+like%5C+cold%5C+acclimation%2C%5C+freezing%5C+and%5C+thawing.This%5C+study%5C+used%5C+ESI%5C+%5C%2F%5C+MS%5C-MS%5C+and%5C+TLC%5C+technologies%5C+to%5C+detecte%5C+the%5C+changes%5C+of%5C+membrane%5C+lipid%5C+species%5C+in%5C+the%5C+process%5C+of%5C+low%5C-temperature%5C+injury%5C+and%5C+injury%5C+recovery%5C+in%5C+Arabidopsis%5C+thaliana%2C%5C+Brassica%5C+napus%2C%5C+Oryza%5C+sativa%5C+%5C%28rice%5C%29%5C+and%5C+Cucumis%5C+satirus%5C+%5C%28cucumber%5C%29.%5C+Arabidopsis%5C+and%5C+Brassica%5C+napus%5C+have%5C+resistance%5C+to%5C+subzero%5C+low%5C+temperature%5C+to%5C+some%5C+extent%2C%5C+whereas%5C+rice%5C+and%5C+cucumber%5C+are%5C+sensitive%5C+to%5C+unfreezing%5C+low%5C+temperature.When%5C+Arabidopsisexperienced%5C+reversible%5C+low%5C+temperature%5C+stress%2C%5C+absolute%5C+concentration%5C+of%5C+the%5C+membrane%5C+lipid%5C+species%5C+changed%EF%BC%8Cwhile%5C+this%5C+change%5C+could%5C+back%5C+to%5C+normal%5C+after%5C+temperature%5C+returned%5C+to%5C+normal.%5C+When%5C+the%5C+plant%5C+could%5C+not%5C+be%5C+restored%5C+through%5C+the%5C+low%5C-temperature%5C+stress%5C+and%5C+died%2C%5C+membrane%5C+lipid%5C+species%5C+except%5C+PA%5C+and%5C+lysophospholipids%5C+had%5C+undergone%5C+a%5C+large%5C-scale%5C+degradation%5C+orderly%2C%5C+which%5C+occurred%5C+most%5C+violently%5C+in%5C+the%5C+process%5C+of%5C+thawing.%5C+PA%5C+increased%5C+significantly%5C+during%5C+thawing%2C%5C+and%5C+degraded%5C+during%5C+cold%5C+de%5C-acclimation%2C%5C+but%5C+still%5C+significantly%5C+higher%5C+than%5C+normal%5C+level.%5C+At%5C+the%5C+same%5C+time%2C%5C+some%5C+new%5C+type%5C+of%5C+membrane%5C+lipid%5C+species%5C+appeared.%5C+The%5C+changing%5C+pattern%5C+of%5C+two%5C+types%5C+of%5C+glycolipids%5C+were%5C+different%5C%3A%5C+MGDG%5C+changed%5C+drastically%5C+while%5C+DGDG%5C+changed%5C+moderately.%5C+On%5C+the%5C+contrast%5C+of%5C+different%5C+Arabidopsis%5C+genotypes%5C+underwent%5C+low%5C+temperature%5C+stress%5C+found%5C+that%5C+there%5C+were%5C+no%5C+significant%5C+difference%5C+between%5C+mutant%5C-type%5C+and%5C+wild%5C-type%2C%5C+indicating%5C+PLD%CE%B11%5C+and%5C+PLD%CE%B4%5C+play%5C+a%5C+small%5C+role%5C+in%5C+low%5C+temperature%5C+process%5C+of%5C+degradation%5C+of%5C+membrane%5C+lipid%5C+induced%5C+by%5C+irreversible%5C+injury.%5C+Many%5C+phospholipase%5C+involved%5C+in%5C+lipid%5C+degradation.%5C+By%5C+the%5C+research%5C+on%5C+relative%5C+content%5C+of%5C+various%5C+lipids%5C+found%5C+that%5C+some%5C+lipids%5C+decreased%5C+in%5C+absolute%5C+concentration%5C+while%5C+increased%5C+in%5C+the%5C+relative%5C+concentration%5C+indicating%5C+the%5C+degradation%5C+order%5C+and%5C+rate%5C+of%5C+different%5C+lipids%5C+was%5C+different.%5C+Under%5C+the%5C+reversible%5C+low%5C+temperature%5C+stress%2C%5C+the%5C+double%5C+bond%5C+index%5C+%5C%28DBI%5C%29%5C+of%5C+membrane%5C+lipid%5C+was%5C+unchanged%2C%5C+while%5C+that%5C+changed%5C+continuously%5C+under%5C+the%5C+irreversible%5C+low%5C+temperature%5C+stress.%5C+Specific%5C+analysis%5C+on%5C+changes%5C+in%5C+DBI%5C+of%5C+every%5C+lipid%5C+class%5C+revealed%5C+that%5C+changes%5C+were%5C+not%5C+obvious%2C%5C+which%5C+indicated%5C+that%5C+under%5C+irreversible%5C+low%5C-temperature%5C+stress%2C%5C+the%5C+decrease%5C+of%5C+relative%5C+concentration%5C+of%5C+some%5C+membrane%5C+lipids%5C+like%5C+MGDG%5C+which%5C+had%5C+high%5C+DBI%5C+induced%5C+the%5C+DBI%5C+of%5C+total%5C+membrane%5C+lipid%5C+to%5C+decline.There%5C+was%5C+similar%5C+discipline%5C+in%5C+Brassica%5C+napus.%5C+When%5C+rice%5C+and%5C+cucumber%5C+experienced%5C+reversible%5C+and%5C+irreversible%5C+unfreezing%5C+low%5C-temperature%5C+stress%2C%5C+PA%5C+also%5C+increased%5C+and%5C+other%5C+lipids%5C+decreased%2C%5C+indicating%5C+low%5C-temperature%5C-induced%5C+membrane%5C+disintegration%5C+had%5C+little%5C+to%5C+do%5C+with%5C+intracellular%5C+ice.In%5C+short%2C%5C+when%5C+plant%5C+experienced%5C+reversible%5C+low%5C-temperature%5C+injury%2C%5C+lipid%5C+species%5C+could%5C+regulate%5C+the%5C+ratio%5C+of%5C+each%5C+component%5C+to%5C+ensure%5C+the%5C+survival%5C+of%5C+plants.%5C+When%5C+the%5C+temperature%5C+returned%5C+to%5C+normal%2C%5C+the%5C+membrane%5C+lipids%5C+had%5C+also%5C+been%5C+restored.%5C+When%5C+the%5C+plants%5C+suffered%5C+irreversible%5C+damage%5C+at%5C+low%5C+temperature%2C%5C+the%5C+membrane%5C+lipid%5C+molecules%5C+would%5C+degrade%5C+orderly%5C+and%5C+severely.%5C+Various%5C+types%5C+of%5C+membrane%5C+lipid%5C+molecules%5C+might%5C+be%5C+first%5C+degraded%5C+to%5C+PA%2C%5C+then%5C+PA%5C+degraded%2C%5C+so%5C+PA%5C+would%5C+first%5C+significantly%5C+increase%2C%5C+and%5C+then%5C+decreased.%5C+The%5C+knowledge%5C+on%5C+discipline%5C+of%5C+plants%5C+response%5C+to%5C+low%5C+temperature%5C+stress%5C+on%5C+the%5C+necrotic%5C+process%5C+can%5C+provide%5C+a%5C+theoretical%5C+basis%5C+for%5C+us%5C+to%5C+avoid%5C+the%5C+plants%5C+necrosis%5C+induced%5C+by%5C+cold%5C+and%5C+other%5C+stress%5C-induced."},{"jsname":"MSTC (Ministry of Science and Technology)[2017FY100100]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AMSTC%5C+%5C%28Ministry%5C+of%5C+Science%5C+and%5C+Technology%5C%29%5C%5B2017FY100100%5C%5D"},{"jsname":"MSTC (Ministry of Science and Technology)[2017YFC0505200]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AMSTC%5C+%5C%28Ministry%5C+of%5C+Science%5C+and%5C+Technology%5C%29%5C%5B2017YFC0505200%5C%5D"},{"jsname":"Major International Joint Research Project of the National Natural Science Foundation of China[31320103919]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Oryza&order=desc&&fq=dc.project.title_filter%3AMajor%5C+International%5C+Joint%5C+Research%5C+Project%5C+of%5C+the%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31320103919%5C%5D"},{"jsname":"lastIndexed","jscount":"2025-04-19"}],"Funding Project","dc.project.title_filter")'>
13th Five-... [1]
13th Five-... [1]
Aconitum c... [1]
Applied Ba... [1]
Bambusoide... [1]
C. sinensi... [1]
More...
Indexed By
SCI [277]
CSCD [24]
SSCI [4]
Funding Organization
Project of... [5]
Top Talent... [5]
Hundred Ov... [4]
National K... [4]
National N... [4]
100 Talent... [3]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 750
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice
期刊论文
PLANT CELL, 2023, 卷号: 35, 期号: 10, 页码: 3828-3844
Authors:
Jin,Gaochen
;
Qi,Jinfeng
;
Zu,Hongyue
;
Liu,Shuting
;
Gershenzon,Jonathan
;
Lou,Yonggen
;
Baldwin,Ian T.
;
Li,Ran
View
  |  
Adobe PDF(7843Kb)
  |  
Favorite
  |  
View/Download:119/28
  |  
Submit date:2024/05/09
DEFENSE
MYC2
PLANTS
METABOLISM
PERCEPTION
REPRESSORS
RESISTANCE
FRAMEWORK
PROTEINS
TARGETS
Defensive Specialized Metabolites from the Latex of Euphorbia jolkinii
期刊论文
JOURNAL OF CHEMICAL ECOLOGY, 2023
Authors:
Luo,Shihong
;
Huang,Chunshuai
;
Hua,Juan
;
Jing,Shuxi
;
Teng,Linlin
;
Tang,Ting
;
Liu,Yan
;
Li,Shenghong
View
  |  
Adobe PDF(1579Kb)
  |  
Favorite
  |  
View/Download:148/45
  |  
Submit date:2024/05/09
Plant latex
Euphorbia jolkinii
meta-Tyrosine
Phytotoxic activity
Specialized metabolites
PLANT LATEX
META-TYROSINE
DITERPENOIDS
ROOTS
ACID
DERIVATIVES
COMPONENTS
GLYCOSIDE
FRUIT
A de novo evolved gene contributes to rice grain shape difference between indica and japonica
期刊论文
NATURE COMMUNICATIONS, 2023, 卷号: 14, 期号: 1, 页码: 5906
Authors:
Chen,Rujia
;
Xiao,Ning
;
Lu,Yue
;
Tao,Tianyun
;
Huang,Qianfeng
;
Wang,Shuting
;
Wang,Zhichao
;
Chuan,Mingli
;
Bu,Qing
;
Lu,Zhou
;
Wang,Hanyao
;
Su,Yanze
;
Ji,Yi
;
Ding,Jianheng
;
Gharib,Ahmed
;
Liu,Huixin
;
Zhou,Yong
;
Tang,Shuzhu
;
Liang,Guohua
;
Zhang,Honggen
;
Yi,Chuandeng
;
Zheng,Xiaoming
;
Cheng,Zhukuan
;
Xu,Yang
;
Li,Pengcheng
;
Xu,Chenwu
;
Huang,Jinling
;
Li,Aihong
;
Yang,Zefeng
View
  |  
Adobe PDF(3906Kb)
  |  
Favorite
  |  
View/Download:170/23
  |  
Submit date:2024/05/09
NATURAL VARIATION
ORIGIN
SIZE
PROTEIN
GENOME
ASSOCIATION
PREDICTION
DIVERSITY
SEQUENCE
QUALITY
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis
期刊论文
CURRENT ISSUES IN MOLECULAR BIOLOGY, 2022, 卷号: 44, 期号: 11, 页码: 5579-5592
Authors:
Zhou, Yanli
;
Zhang, Jingling
;
Zhao, Changhong
;
Long, Guangqiang
;
Zhou, Chengli
;
Sun, Xudong
;
Yang, Yunqiang
;
Zhang, Chengjun
;
Yang, Yongping
View
  |  
Adobe PDF(3371Kb)
  |  
Favorite
  |  
View/Download:157/22
  |  
Submit date:2024/04/30
calcineurin B-like protein
cold tolerance
Stipa capillacea
transcriptome
tonoplast
CALCIUM SENSOR
GENE-EXPRESSION
MONOSACCHARIDE TRANSPORTER
STRESS TOLERANCE
ABIOTIC STRESS
DROUGHT
ACCLIMATION
PROTEINS
PHOSPHORYLATION
OVEREXPRESSION
Gene fusion as an important mechanism to generate new genes in the genus Oryza
期刊论文
GENOME BIOLOGY, 2022, 卷号: 23, 期号: 1, 页码: 130
Authors:
Zhou, Yanli
;
Zhang, Chengjun
;
Zhang, Li
;
Ye, Qiannan
;
Liu, Ningyawen
;
Wang, Muhua
;
Long, Guangqiang
;
Fan, Wei
;
Lon, Manyuan
;
Wing, Rod A.
View
  |  
Adobe PDF(2953Kb)
  |  
Favorite
  |  
View/Download:158/27
  |  
Submit date:2024/04/30
Fusion gene
Oryza
Evolutionary patterns
Phenotype
TRANSPOSABLE ELEMENTS
RAPID EVOLUTION
CHIMERIC GENES
RICE GENOME
DUPLICATION
EXPRESSION
RETROPOSITION
ORIGINATION
COMPLEXITY
GLABERRIMA
Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis)
期刊论文
GENES, 2022, 卷号: 13, 期号: 5, 页码: 795
Authors:
Wang, Qianwen
;
Zhao, Kai
;
Gong, Yuqiang
;
Yang, Yunqiang
;
Yue, Yanling
View
  |  
Adobe PDF(4079Kb)
  |  
Favorite
  |  
View/Download:145/27
  |  
Submit date:2024/04/30
abiotic stresses
BraCBL-BraCIPK
Chinese cabbage
expression profiles
functional differentiation
preferential interactions
CALCIUM SENSOR
PHYLOGENETIC ANALYSIS
ION HOMEOSTASIS
PLANT-GROWTH
ORYZA-SATIVA
ARABIDOPSIS
EVOLUTION
RESPONSES
CHANNEL
DOMAIN
Genome Size Variation and Evolution Driven by Transposable Elements in the Genus Oryza
期刊论文
FRONTIERS IN PLANT SCIENCE, 2022, 卷号: 13, 页码: 921937
Authors:
Dai, Shuang-feng
;
Zhu, Xun-ge
;
Hutang, Ge-rang
;
Li, Jia-yue
;
Tian, Jia-qi
;
Jiang, Xian-hui
;
Zhang, Dan
;
Gao, Li-zhi
View
  |  
Adobe PDF(6591Kb)
  |  
Favorite
  |  
View/Download:100/34
  |  
Submit date:2024/08/21
Oryza
genome size
flow cytometry
k-mer analysis
transposable elements
NUCLEAR-DNA CONTENT
RICE GENOME
GENETIC DIVERSITY
DRAFT SEQUENCE
FLOW-CYTOMETRY
C-VALUE
K-MER
WILD
ORIGIN
TOOL
Genetic Diversity Evaluation and Conservation of Kam Fragrant Glutinous Rice (Oryza sativa L.) Germplasm in Southeast Guizhou, China
期刊论文
PLANTS-BASEL, 2021, 卷号: 10, 期号: 9, 页码: 1898
Authors:
Lei,Qi-Yi
;
Zhou,Jiang-Ju
;
Xiong,Yong
;
Zhang,Wen-Hua
;
Luo,Jing
;
Long,Chun-Lin
Favorite
  |  
View/Download:118/0
  |  
Submit date:2022/04/02
rice varieties
landraces protection
morphological traits
genomics
traditional folk classification
SSR ANALYSIS
LANDRACES
BIODIVERSITY
POPULATIONS
MANAGEMENT
VARIETIES
RESOURCES
PROVINCE
EROSION
YUNNAN
INDITTO2 transposon conveys auxin-mediated DRO1 transcription for rice drought avoidance
期刊论文
PLANT CELL AND ENVIRONMENT, 2021, 卷号: 44, 期号: 6, 页码: 1846-1857
Authors:
Zhao,Yiting
;
Wu,Lixia
;
Fu,Qijing
;
Wang,Dong
;
Li,Jing
;
Yao,Baolin
;
Yu,Si
;
Jiang,Li
;
Qian,Jie
;
Zhou,Xuan
;
Han,Li
;
Zhao,Shuanglu
;
Ma,Canrong
;
Zhang,Yanfang
;
Luo,Chongyu
;
Dong,Qian
;
Li,Saijie
;
Zhang,Lina
;
Jiang,Xi
;
Li,Youchun
;
Luo,Hao
;
Li,Kuixiu
;
Yang,Jing
;
Luo,Qiong
;
Li,Lichi
;
Peng,Sheng
;
Huang,Huichuan
;
Zuo,Zhili
;
Liu,Changning
;
Wang,Lei
;
Li,Chengyun
;
He,Xiahong
;
Friml,Jiri
;
Du,Yunlong
Favorite
  |  
View/Download:228/0
  |  
Submit date:2022/04/02
DNA transposable elements
indoleacetic acid
Oryza
stress
The complete chloroplast genome sequence of Oryza sativa Temperate japonica
期刊论文
MITOCHONDRIAL DNA PART B-RESOURCES, 2021, 卷号: 6, 期号: 3, 页码: 927-928
Authors:
Feng,Qi
;
Song,Wei-Cai
;
Zhang,Yun-Jiao
;
Shi,Chao
Favorite
  |  
View/Download:137/0
  |  
Submit date:2022/04/02
Oryza sativa
Temperate japonica
chloroplast genome
Poaceae
RICE