×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [410]
昆明植物所硕博研... [341]
资源植物与生物技... [271]
中国科学院东亚植... [189]
植物化学与西部植... [148]
中国西南野生生物... [137]
More...
Authors
许建初 [93]
Yang Yong... [72]
李德铢 [62]
高立志 [46]
黄伟 [39]
刘爱忠 [37]
More...
Document Type
Journal... [1383]
Thesis [341]
Book [73]
Presentati... [9]
Other [5]
Conference... [3]
More...
Date Issued
2021 [51]
2020 [158]
2019 [144]
2018 [100]
2017 [113]
2016 [131]
More...
Language
英语 [974]
中文 [347]
Source Publication
植物分类与资源学报 [65]
PLOS ONE [45]
FRONTIERS... [32]
FUNGAL DI... [29]
SCIENTIFI... [23]
Science [22]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Chiang Mai University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3AChiang%5C+Mai%5C+University"},{"jsname":"China Agriculture Research System[CARS-02]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3AChina%5C+Agriculture%5C+Research%5C+System%5C%5BCARS%5C-02%5C%5D"},{"jsname":"China Postdoctoral Science Foundation","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3AChina%5C+Postdoctoral%5C+Science%5C+Foundation"},{"jsname":"China postdoc foundation[2017M613021]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3AChina%5C+postdoc%5C+foundation%5C%5B2017M613021%5C%5D"},{"jsname":"Chinese Academy of Sciences President International Fellowship Initiative (CAS-PIFI)[2017PC0035]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=RICE&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C+President%5C+International%5C+Fellowship%5C+Initiative%5C+%5C%28CAS%5C-PIFI%5C%29%5C%5B2017PC0035%5C%5D"},{"jsname":"lastIndexed","jscount":"2025-03-15"}],"Funding Project","dc.project.title_filter")'>
CAS Pionee... [2]
National K... [2]
National N... [2]
National N... [2]
''Investis... [1]
13th Five-... [1]
More...
Indexed By
SCI [728]
CSCD [79]
SSCI [37]
IC [15]
ISTP [2]
CCR [1]
More...
Funding Organization
National ... [12]
Chinese Ac... [7]
National N... [7]
Project of... [7]
Chinese Ac... [5]
National N... [5]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 1816
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Pharmacology and anti-addiction effects of the novel kappa opioid receptor agonist Mesyl Sal B, a potent and long-acting analogue of salvinorin A
期刊论文
出版物, 3111, 期号: 0, 页码: 1-53
Authors:
B Simonson
;
A S Morani
;
A W M Ewald
;
L Walker
;
N Kumar
;
D Simpson
;
J H Miller
;
T E Prisinzano
;
B M Kivell
Adobe PDF(1394Kb)
  |  
Favorite
  |  
View/Download:381/1
  |  
Submit date:2017/07/24
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:340/4
  |  
Submit date:2017/07/19
Boron in plants: deficiency and toxicity
期刊论文
出版物, 3111, 期号: 0, 页码: 1—24
Authors:
Juan J. Camacho-Cristóbal
;
Jesús Rexach
;
Agustín González-Fontes
Adobe PDF(123Kb)
  |  
Favorite
  |  
View/Download:196/1
  |  
Submit date:2017/07/21
POLYMORPHISM OF MICROSATELLITE SEQUENCE WITHIN ABC TRANSPORTER GENES IN PHYTOPATHOGENIC FUNGUS,MAGNAPORTHE GRISEA
期刊论文
出版物, 3111, 期号: 0, 页码: 553-558
Authors:
Lin Liu
;
Chengyun Li
;
Jing Yang
;
Jinbin Li
;
Yuan Su
;
Yunyue Wang
;
Yong Xie
;
Youyong Zhu
Adobe PDF(332Kb)
  |  
Favorite
  |  
View/Download:371/1
  |  
Submit date:2017/07/21
Cajanus cajan (L.) Millsp.
期刊论文
pigeon pea, 3111, 期号: 0, 页码: 1—3
Authors:
FABACEAE
Adobe PDF(108Kb)
  |  
Favorite
  |  
View/Download:189/1
  |  
Submit date:2017/07/21
The pharmacokinetics of anthocyanins and their metabolites in humans
期刊论文
出版物, 3111, 期号: 0, 页码: 1-37
Authors:
R M de Ferrars
;
C Czank
;
Q Zhang
;
N P Botting
;
P A Kroon
;
A Cassidy
;
C D Kay
Adobe PDF(1873Kb)
  |  
Favorite
  |  
View/Download:225/1
  |  
Submit date:2017/07/24
Anthocyanins
Metabolites
Hippuric Acid
Ferulic Acid
Vanillic Acid
POLYMORPHISM OF MICROSATELLITESEQUENCE WITHIN PROTEIN KINASE ORFSIN PHYTOPATHOGENIC FUNGUS,MAGNAPORTHE GRISEA
期刊论文
出版物, 3111, 期号: 0, 页码: 559-563
Authors:
Chengyun Li
;
Lin Liu
;
Jing Yang
;
Jinbin Li
;
Zhang Yue
;
Yunyue Wang
;
Yong Xie
;
Youyong Zhu
Adobe PDF(757Kb)
  |  
Favorite
  |  
View/Download:277/2
  |  
Submit date:2017/07/21
Agricultural pesticide regulatory environment for pollinator protection across geographical regions
期刊论文
FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2023, 卷号: 7, 页码: 1241601
Authors:
Phan,Ngoc T.
;
Rajotte,Edwin G.
;
Smagghe,Guy
;
Ren,Zong-Xin
;
Biddinger,David J.
;
Joshi,Neelendra K.
Adobe PDF(531Kb)
  |  
Favorite
  |  
View/Download:41/13
  |  
Submit date:2024/07/10
agricultural pesticides
pesticide regulations
pollinator conservation
Integrated Pest Management (IPM)
Integrated Pest and Pollinator Management (IPPM)
INTEGRATED PEST-MANAGEMENT
CHLORPYRIFOS EXPOSURE
CROP PROTECTION
SOUTHEAST-ASIA
MEKONG DELTA
EAST-ASIA
FOOD
RICE
CHALLENGES
FARMERS
Botryorhodine J, a new anti-MRSA depsidone isolated from endophytic fungus Alternaria alternata Pas11
期刊论文
NATURAL PRODUCT RESEARCH, 2023
Authors:
Li,Wen-Yuan
;
Hu,Cheng-Cheng
;
Liu,Jin-Hai
;
Wang,Heng-Jie
;
Lu,Ling-Pan
;
Qiao,Min
;
Jiang,Ya-Ling
;
Wu,Rui
Adobe PDF(1105Kb)
  |  
Favorite
  |  
View/Download:89/17
  |  
Submit date:2024/07/25
Phragmites australis
endophytic fungus
Alternaria alternata
botryorhodine J
antibacterial activity
ACID
Jasmonate-mediated gibberellin catabolism constrains growth during herbivore attack in rice
期刊论文
PLANT CELL, 2023, 卷号: 35, 期号: 10, 页码: 3828-3844
Authors:
Jin,Gaochen
;
Qi,Jinfeng
;
Zu,Hongyue
;
Liu,Shuting
;
Gershenzon,Jonathan
;
Lou,Yonggen
;
Baldwin,Ian T.
;
Li,Ran
Adobe PDF(7843Kb)
  |  
Favorite
  |  
View/Download:101/23
  |  
Submit date:2024/05/09
DEFENSE
MYC2
PLANTS
METABOLISM
PERCEPTION
REPRESSORS
RESISTANCE
FRAMEWORK
PROTEINS
TARGETS