×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
昆明植物所硕博研究... [89]
共享文献 [88]
中国科学院东亚植物... [69]
中国西南野生生物种... [36]
资源植物与生物技术... [20]
植物分类与资源学报 [15]
More...
Authors
李德铢 [42]
郭振华 [9]
Sun Hang [8]
彭华 [8]
许建初 [8]
Yang Yongp... [6]
More...
Document Type
Journal ... [262]
Thesis [89]
Book [14]
Other [3]
Academic p... [1]
Presentati... [1]
More...
Date Issued
2021 [6]
2020 [26]
2019 [20]
2018 [11]
2017 [22]
2016 [16]
More...
Language
英语 [167]
中文 [107]
Source Publication
云南植物研究 [19]
植物分类与资源学报 [19]
MOLECULAR... [18]
TAXON [11]
American J... [9]
FUNGAL DIV... [9]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Key Laboratory of Ethnomedicine (Minzu University of China) of Ministry of Education of China[KLEM-ZZ201806]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AKey%5C+Laboratory%5C+of%5C+Ethnomedicine%5C+%5C%28Minzu%5C+University%5C+of%5C+China%5C%29%5C+of%5C+Ministry%5C+of%5C+Education%5C+of%5C+China%5C%5BKLEM%5C-ZZ201806%5C%5D"},{"jsname":"Kunming Institute of Botany, Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AKunming%5C+Institute%5C+of%5C+Botany%2C%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Ministry of Education of China","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AMinistry%5C+of%5C+Education%5C+of%5C+China"},{"jsname":"Minzu University of China[2015MDTD16C]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AMinzu%5C+University%5C+of%5C+China%5C%5B2015MDTD16C%5C%5D"},{"jsname":"Minzu University of China[YLDXXK201819]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AMinzu%5C+University%5C+of%5C+China%5C%5BYLDXXK201819%5C%5D"},{"jsname":"Mt. Jiaozi from Yunnan is located in the eastern of the Central Yunnan Plateau, falling between the Pudu river and the Xiaojiang river, between the Jinshajiang river to the north and the Zhuanlong town of Luquan county to the south. It stands in the boundary of the Sino-Himalayan forest subkingdom and the Sino-Japan forest subkingdom, so it has a significant status, dew to the heterogeneous geographical environment and the sharp elevation drop in addition. Through field survey, specimens collection and identification and literatures consultion, we have obtained a brief list of Mt. Jiaozi, about 1517 species in 141 families and 531 genera, including varieties and subspices, among of which, there are 23 species in 7 families and 12 genera of gymnosperm. Based on statistic analysis, we get some conclusions as below. 1. As a type locality for many species, with various biodiversity and as much as endemism and some endangered plants, the flora of Mt. Jiaozi is viewed as a key area which should be paid special attention to. The flora constitution of this area has complex origins and multiple elements through the statistics. 2. The modern flora of Mt. jiaozi mainly includes the Chinese endemic elements and the Asian endemic elements, these two parts take up 81.65%. The characteristic of this flora is typically temperate. 3. Mt. Jiaozi is the north or the south distribution limitation to some important species as a floristic node. For example, species as Ephedra likiangensis, Solms-Laubachia pulcherrima, Soroseris hirsute, Paraquilegia microphylla which were used to be throught as limited in the northwestern of Yunnan had been found in this area. It indicates that, Mt. Jiaozi should become one of the foci of the flora regionalization in Yunnan, even in China. 4. In the view of the endemism of 6 families and 66 genera and 544 species in East Asian, this eara is a part of the East Asiatic Kingdom. The status of the flora of Mt. jiaozi in the East Asiatic Kingdom should be classified as Central Yunnan plateau subregion--Yunnan plateau region--Sino-Himalayan forest subkingdom.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3AMt.%5C+Jiaozi%5C+from%5C+Yunnan%5C+is%5C+located%5C+in%5C+the%5C+eastern%5C+of%5C+the%5C+Central%5C+Yunnan%5C+Plateau%2C%5C+falling%5C+between%5C+the%5C+Pudu%5C+river%5C+and%5C+the%5C+Xiaojiang%5C+river%2C%5C+between%5C+the%5C+Jinshajiang%5C+river%5C+to%5C+the%5C+north%5C+and%5C+the%5C+Zhuanlong%5C+town%5C+of%5C+Luquan%5C+county%5C+to%5C+the%5C+south.%5C+It%5C+stands%5C+in%5C+the%5C+boundary%5C+of%5C+the%5C+Sino%5C-Himalayan%5C+forest%5C+subkingdom%5C+and%5C+the%5C+Sino%5C-Japan%5C+forest%5C+subkingdom%2C%5C+so%5C+it%5C+has%5C+a%5C+significant%5C+status%2C%5C+dew%5C+to%5C+the%5C+heterogeneous%5C+geographical%5C+environment%5C+and%5C+the%5C+sharp%5C+elevation%5C+drop%5C+in%5C+addition.%5C+Through%5C+field%5C+survey%2C%5C+specimens%5C+collection%5C+and%5C+identification%5C+and%5C+literatures%5C+consultion%2C%5C+we%5C+have%5C+obtained%5C+a%5C+brief%5C+list%5C+of%5C+Mt.%5C+Jiaozi%2C%5C+about%5C+1517%5C+species%5C+in%5C+141%5C+families%5C+and%5C+531%5C+genera%2C%5C+including%5C+varieties%5C+and%5C+subspices%2C%5C+among%5C+of%5C+which%2C%5C+there%5C+are%5C+23%5C+species%5C+in%5C+7%5C+families%5C+and%5C+12%5C+genera%5C+of%5C+gymnosperm.%5C+Based%5C+on%5C+statistic%5C+analysis%2C%5C+we%5C+get%5C+some%5C+conclusions%5C+as%5C+below.%5C+1.%5C+As%5C+a%5C+type%5C+locality%5C+for%5C+many%5C+species%2C%5C+with%5C+various%5C+biodiversity%5C+and%5C+as%5C+much%5C+as%5C+endemism%5C+and%5C+some%5C+endangered%5C+plants%2C%5C+the%5C+flora%5C+of%5C+Mt.%5C+Jiaozi%5C+is%5C+viewed%5C+as%5C+a%5C+key%5C+area%5C+which%5C+should%5C+be%5C+paid%5C+special%5C+attention%5C+to.%5C+The%5C+flora%5C+constitution%5C+of%5C+this%5C+area%5C+has%5C+complex%5C+origins%5C+and%5C+multiple%5C+elements%5C+through%5C+the%5C+statistics.%5C+2.%5C+The%5C+modern%5C+flora%5C+of%5C+Mt.%5C+jiaozi%5C+mainly%5C+includes%5C+the%5C+Chinese%5C+endemic%5C+elements%5C+and%5C+the%5C+Asian%5C+endemic%5C+elements%2C%5C+these%5C+two%5C+parts%5C+take%5C+up%5C+81.65%25.%5C+The%5C+characteristic%5C+of%5C+this%5C+flora%5C+is%5C+typically%5C+temperate.%5C+3.%5C+Mt.%5C+Jiaozi%5C+is%5C+the%5C+north%5C+or%5C+the%5C+south%5C+distribution%5C+limitation%5C+to%5C+some%5C+important%5C+species%5C+as%5C+a%5C+floristic%5C+node.%5C+For%5C+example%2C%5C+species%5C+as%5C+Ephedra%5C+likiangensis%2C%5C+Solms%5C-Laubachia%5C+pulcherrima%2C%5C+Soroseris%5C+hirsute%2C%5C+Paraquilegia%5C+microphylla%5C+which%5C+were%5C+used%5C+to%5C+be%5C+throught%5C+as%5C+limited%5C+in%5C+the%5C+northwestern%5C+of%5C+Yunnan%5C+had%5C+been%5C+found%5C+in%5C+this%5C+area.%5C+It%5C+indicates%5C+that%2C%5C+Mt.%5C+Jiaozi%5C+should%5C+become%5C+one%5C+of%5C+the%5C+foci%5C+of%5C+the%5C+flora%5C+regionalization%5C+in%5C+Yunnan%2C%5C+even%5C+in%5C+China.%5C+4.%5C+In%5C+the%5C+view%5C+of%5C+the%5C+endemism%5C+of%5C+6%5C+families%5C+and%5C+66%5C+genera%5C+and%5C+544%5C+species%5C+in%5C+East%5C+Asian%2C%5C+this%5C+eara%5C+is%5C+a%5C+part%5C+of%5C+the%5C+East%5C+Asiatic%5C+Kingdom.%5C+The%5C+status%5C+of%5C+the%5C+flora%5C+of%5C+Mt.%5C+jiaozi%5C+in%5C+the%5C+East%5C+Asiatic%5C+Kingdom%5C+should%5C+be%5C+classified%5C+as%5C+Central%5C+Yunnan%5C+plateau%5C+subregion%5C-%5C-Yunnan%5C+plateau%5C+region%5C-%5C-Sino%5C-Himalayan%5C+forest%5C+subkingdom."},{"jsname":"National Natural Science Foundation of China[31161140345]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31161140345%5C%5D"},{"jsname":"National Natural Science Foundation of China[31400182]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31400182%5C%5D"},{"jsname":"National Natural Science Foundation of China[31400196]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31400196%5C%5D"},{"jsname":"National Natural Science Foundation of China[31628002]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31628002%5C%5D"},{"jsname":"National Natural Science Foundation of China[31761143001]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31761143001%5C%5D"},{"jsname":"National Natural Science Foundation of China[31870316]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=GRAMINEAE&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31870316%5C%5D"},{"jsname":"lastIndexed","jscount":"2025-04-19"}],"Funding Project","dc.project.title_filter")'>
13th Five-... [1]
Bambusoide... [1]
Basic Work... [1]
CAS Presid... [1]
CAS-TWAS P... [1]
China Scho... [1]
More...
Indexed By
SCI [118]
CSCD [25]
BSCI [1]
Funding Organization
Kunming In... [2]
Ministry o... [2]
National K... [2]
National N... [2]
13th Five-... [1]
2008OC001) [1]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 370
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Systema Angiospermarum
期刊论文
出版物, 3111, 页码: 1—21
Authors:
Zuo Z(作者)
Adobe PDF(146Kb)
  |  
Favorite
  |  
View/Download:273/2
  |  
Submit date:2017/07/19
The identity of Dinochloa species and enumeration of Melocalamus (Poaceae: Bambusoideae) in China
期刊论文
PLANT DIVERSITY, 2023, 卷号: 45, 期号: 2, 页码: 133-146
Authors:
Liu,Jing-Xia
;
Xu,Zu-Chang
;
Zhang,Yu-Xiao
;
Zhou,Meng-Yuan
;
Li,De-Zhu
View
  |  
Adobe PDF(8016Kb)
  |  
Favorite
  |  
View/Download:95/14
  |  
Submit date:2024/05/09
ddRAD
Melocalamus orenudus
Melocalamus puberulus
Melocalamus utilis
New combinations
Lectotypification
GRAMINEAE
NUCLEAR
STACKS
GENE
A global phylogeny of Lycopodiaceae (Lycopodiales; lycophytes) with the description of a new genus, Brownseya, from Oceania
期刊论文
TAXON, 2022, 卷号: 71, 期号: 1, 页码: 25-51
Authors:
Chen,De-Kui
;
Zhou,Xin-Mao
;
Rothfels,Carl J.
;
Shepherd,Lara D.
;
Knapp,Ralf
;
Zhang,Liang
;
Lu,Ngan Thi
;
Fan,Xue-Ping
;
Wan,Xia
;
Gao,Xin-Fen
;
He,Hai
;
Zhang,Li-Bing
View
  |  
Adobe PDF(8520Kb)
  |  
Favorite
  |  
View/Download:377/19
  |  
Submit date:2022/04/02
Huperzia
Lycophyte Phylogeny
Lycopodiella Serpentina
Phlegmariurus
Phylloglossum
Vascular Plant Evolution
Complete Chloroplast Genome
Lycopodiopsida Lycopodiaceae
Generic Classification
Spore Morphology
Early Evolution
Land Plants
Rbcl Gene
Huperzia
Sequence
Likelihood
三江源区植物多样性信息的整理整合及数据库建设
学位论文
, 2021
Authors:
王露
Adobe PDF(5864Kb)
  |  
Favorite
  |  
View/Download:40/0
  |  
Submit date:2024/03/20
Phylogenomics of Fargesia and Yushania reveals a history of reticulate evolution
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 卷号: 59, 期号: 6, 页码: 1183-1197
Authors:
Ye,Xia-Ying
;
Ma,Peng-Fei
;
Guo,Cen
;
Li,De-Zhu
Favorite
  |  
View/Download:129/0
  |  
Submit date:2022/04/02
plastome
ddRAD
Fargesia
phylogenetic incongruence
reticulate evolution
Yushania
CONFLICTING GENE TREES
BAMBOOS POACEAE
ARUNDINARIEAE POACEAE
PHYLOGENETIC-RELATIONSHIPS
MORPHOLOGICAL EVOLUTION
BALANCING SELECTION
THAMNOCALAMUS GROUP
ALLIES GRAMINEAE
RADSEQ DATA
GBSSI GENE
The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis
期刊论文
NATURAL PRODUCT REPORTS, 2021, 卷号: 38, 期号: 12, 页码: 2293-2314
Authors:
Guo,Kai
;
Liu,Yan
;
Li,Sheng-Hong
View
  |  
Adobe PDF(3431Kb)
  |  
Favorite
  |  
View/Download:184/34
  |  
Submit date:2022/04/02
LEUCOSCEPTRUM-CANUM
GLANDULAR TRICHOMES
FERN CONSTITUENTS
AERIAL PARTS
ABSOLUTE STEREOCHEMISTRY
SALVIA
CYCLIZATION
SYNTHASES
NORSESTERTERPENES
CONFIGURATION
Arundinella tengchongensis (Poaceae), a name at new rank and newly combined based on morphological and molecular data
期刊论文
NORDIC JOURNAL OF BOTANY, 2021, 卷号: 39, 期号: 10
Authors:
Jiang,Li-Qiong
;
Peng,Hua
;
Wang,Yue-Hua
View
  |  
Adobe PDF(4507Kb)
  |  
Favorite
  |  
View/Download:238/77
  |  
Submit date:2022/04/02
Arundinella setosa
Arundinelleae
China
molecular phylogeny
morphological comparison
PHYLOGENETIC ANALYSIS
CHLOROPLAST
TAXA
Multi-Gene Phylogeny and Morphology Reveal Haplohelminthosporium gen. nov. and Helminthosporiella gen. nov. Associated with Palms in Thailand and A Checklist for Helminthosporium Reported Worldwide
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 5, 页码: 454
Authors:
Konta,Sirinapa
;
Hyde,Kevin D.
;
Karunarathna,Samantha C.
;
Mapook,Ausana
;
Senwanna,Chanokned
;
Dauner,Lucas A. P.
;
Nanayakkara,Chandrika M.
;
Xu,Jianchu
;
Tibpromma,Saowaluck
;
Lumyong,Saisamorn
View
  |  
Adobe PDF(3760Kb)
  |  
Favorite
  |  
View/Download:384/60
  |  
Submit date:2022/04/02
4 new taxa
Massarinaceae
morphology
multi-genes
palm fungi
Thailand
MOLECULAR PHYLOGENY
YUNNAN PROVINCE
SIMILAR GENERA
FAM. NOV.
FUNGI
PLEOSPORALES
DNA
DIVERSITY
CHINA
MASSARINACEAE
An extremely promiscuous terpenoid synthase from the Lamiaceae plant Colquhounia coccinea var. mollis catalyzes the formation of sester-/di-/sesqui-/mono-terpenoids
期刊论文
PLANT COMMUNICATIONS, 2021, 卷号: 2, 期号: 5, 页码: 100233
Authors:
Li,De-Sen
;
Hua,Juan
;
Luo,Shi-Hong
;
Liu,Yan-Chun
;
Chen,Yue-Gui
;
Ling,Yi
;
Guo,Kai
;
Liu,Yan
;
Li,Sheng-Hong
View
  |  
Adobe PDF(2409Kb)
  |  
Favorite
  |  
View/Download:194/44
  |  
Submit date:2022/04/02
terpenoid diversity
terpenoid synthase
promiscuous enzyme
sester-/di-/sesqui-/mono-terpenoids
Colquhounia coccinea var
mollis
GERANYLFARNESYL DIPHOSPHATE SYNTHASE
GLANDULAR TRICHOMES
DITERPENE SYNTHASE
LEUCOSCEPTRUM-CANUM
IDENTIFICATION
BRASSICACEAE
BIOLOGY
FAMILY
HARBOR
GENES
滇缅泰地区巨竹属(禾本科:竹亚科)的分类修订
学位论文
, 2020
Authors:
许祖昌
Adobe PDF(15131Kb)
  |  
Favorite
  |  
View/Download:235/0
  |  
Submit date:2023/11/02