×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [138]
昆明植物所硕博研... [100]
资源植物与生物技术... [52]
中国科学院东亚植物... [46]
中国西南野生生物种... [46]
植物化学与西部植物... [17]
More...
Authors
Yang Yong... [27]
李德铢 [20]
吴建强 [17]
杨云强 [15]
高立志 [13]
许建初 [11]
More...
Document Type
Journal ... [334]
Thesis [100]
Book [28]
Conference... [2]
Academic p... [1]
Presentati... [1]
More...
Date Issued
2020 [28]
2019 [25]
2018 [28]
2017 [29]
2016 [31]
2015 [34]
More...
Language
英语 [249]
中文 [117]
Source Publication
植物分类与资源学报 [16]
PLOS ONE [15]
FUNGAL DI... [10]
MYCOSPHERE [7]
SCIENTIFIC... [7]
FRONTIERS ... [6]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"China Agriculture Research System[CARS-02]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3AChina%5C+Agriculture%5C+Research%5C+System%5C%5BCARS%5C-02%5C%5D"},{"jsname":"Cold stress is one of the major environmental factors that adversely influence plants growth. Cold stress not only limits plants geographic distribution, but also reduces plants yield by shortening growing season, which brought billions of dollars economic losses for global crop. In nature, responses of overwintering plants to low temperature can be divided into three distinct phases: cold acclimation (CA), freezing, and post-freezing recovery (PFR). Until now, plenty intensive study about molecular mechanism of cold stress mainly focused on the above-zero low temperature phase. However, the studies on the freezing phase below zero and the following PFR phase with temperature going up to above-zero were rare. The previous research form our lab hinted that the responses of plants to freezing and PFR were complex and important. Except for passive reflection, there were also crucial active responses during this process. Several special rules were presented at the different levels including gene expression, signal transduction and membrane lipids changes, and fully understanding these rules would be helpful for us to explore the responses of plants to low temperature and then proceed to improve the freezing resistance of plants. In the present study, the mechanisms of respond to freezing and PFR of model plant Arabidopsis thaliana and its close relative Thellungiella halophlia that with extreme tolerance to abiotic stresses were carried out, including regulation of gene expression, signal transduction pathway and membrane lipids changes three levels which were essential for the freezing resistance of plants. Ground on these work, we obtained results from the following five aspects. First, the complete picture of A. thaliana responding to freezing and PFR at transcriptome level was elaborated and three functional genes closely related to the phases were identified. Second, the cis-elements with high frequent presence in differentially expressed genes were elucidated, and the practical binding of one elements among them was experimental verified during freezing and PFR. Moreover, we predicted the new elements which would respond to freezing and PFR. Third, the regulation of freezing stress by microRNA in A. thaliana was preliminarily investigated and 36 functional genes possibly regulated by miRNA during freezing and PFR were gained. Fourth, the negative effect of phytohormone Auxin on A. thaliana subjected to freezing stress was identified. Fifth, for the freezing-resistant plant T. halophlia, the rules of membrane lipids composition changes under freezing stress were uncovered.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ACold%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+major%5C+environmental%5C+factors%5C+that%5C+adversely%5C+influence%5C+plants%5C+growth.%5C+Cold%5C+stress%5C+not%5C+only%5C+limits%5C+plants%5C+geographic%5C+distribution%2C%5C+but%5C+also%5C+reduces%5C+plants%5C+yield%5C+by%5C+shortening%5C+growing%5C+season%2C%5C+which%5C+brought%5C+billions%5C+of%5C+dollars%5C+economic%5C+losses%5C+for%5C+global%5C+crop.%5C+In%5C+nature%2C%5C+responses%5C+of%5C+overwintering%5C+plants%5C+to%5C+low%5C+temperature%5C+can%5C+be%5C+divided%5C+into%5C+three%5C+distinct%5C+phases%5C%3A%5C+cold%5C+acclimation%5C+%5C%28CA%5C%29%2C%5C+freezing%2C%5C+and%5C+post%5C-freezing%5C+recovery%5C+%5C%28PFR%5C%29.%5C+Until%5C+now%2C%5C+plenty%5C+intensive%5C+study%5C+about%5C+molecular%5C+mechanism%5C+of%5C+cold%5C+stress%5C+mainly%5C+focused%5C+on%5C+the%5C+above%5C-zero%5C+low%5C+temperature%5C+phase.%5C+However%2C%5C+the%5C+studies%5C+on%5C+the%5C+freezing%5C+phase%5C+below%5C+zero%5C+and%5C+the%5C+following%5C+PFR%5C+phase%5C+with%5C+temperature%5C+going%5C+up%5C+to%5C+above%5C-zero%5C+were%5C+rare.%5C+The%5C+previous%5C+research%5C+form%5C+our%5C+lab%5C+hinted%5C+that%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+freezing%5C+and%5C+PFR%5C+were%5C+complex%5C+and%5C+important.%5C+Except%5C+for%5C+passive%5C+reflection%2C%5C+there%5C+were%5C+also%5C+crucial%5C+active%5C+responses%5C+during%5C+this%5C+process.%5C+Several%5C+special%5C+rules%5C+were%5C+presented%5C+at%5C+the%5C+different%5C+levels%5C+including%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+and%5C+membrane%5C+lipids%5C+changes%2C%5C+and%5C+fully%5C+understanding%5C+these%5C+rules%5C+would%5C+be%5C+helpful%5C+for%5C+us%5C+to%5C+explore%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+low%5C+temperature%5C+and%5C+then%5C+proceed%5C+to%5C+improve%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+In%5C+the%5C+present%5C+study%2C%5C+the%5C+mechanisms%5C+of%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR%5C+of%5C+model%5C+plant%5C+Arabidopsis%5C+thaliana%5C+and%5C+its%5C+close%5C+relative%5C+Thellungiella%5C+halophlia%5C+that%5C+with%5C+extreme%5C+tolerance%5C+to%5C+abiotic%5C+stresses%5C+were%5C+carried%5C+out%2C%5C+including%5C+regulation%5C+of%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+pathway%5C+and%5C+membrane%5C+lipids%5C+changes%5C+three%5C+levels%5C+which%5C+were%5C+essential%5C+for%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+Ground%5C+on%5C+these%5C+work%2C%5C+we%5C+obtained%5C+results%5C+from%5C+the%5C+following%5C+five%5C+aspects.%5C+First%2C%5C+the%5C+complete%5C+picture%5C+of%5C+A.%5C+thaliana%5C+responding%5C+to%5C+freezing%5C+and%5C+PFR%5C+at%5C+transcriptome%5C+level%5C+was%5C+elaborated%5C+and%5C+three%5C+functional%5C+genes%5C+closely%5C+related%5C+to%5C+the%5C+phases%5C+were%5C+identified.%5C+Second%2C%5C+the%5C+cis%5C-elements%5C+with%5C+high%5C+frequent%5C+presence%5C+in%5C+differentially%5C+expressed%5C+genes%5C+were%5C+elucidated%2C%5C+and%5C+the%5C+practical%5C+binding%5C+of%5C+one%5C+elements%5C+among%5C+them%5C+was%5C+experimental%5C+verified%5C+during%5C+freezing%5C+and%5C+PFR.%5C+Moreover%2C%5C+we%5C+predicted%5C+the%5C+new%5C+elements%5C+which%5C+would%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR.%5C+Third%2C%5C+the%5C+regulation%5C+of%5C+freezing%5C+stress%5C+by%5C+microRNA%5C+in%5C+A.%5C+thaliana%5C+was%5C+preliminarily%5C+investigated%5C+and%5C+36%5C+functional%5C+genes%5C+possibly%5C+regulated%5C+by%5C+miRNA%5C+during%5C+freezing%5C+and%5C+PFR%5C+were%5C+gained.%5C+Fourth%2C%5C+the%5C+negative%5C+effect%5C+of%5C+phytohormone%5C+Auxin%5C+on%5C+A.%5C+thaliana%5C+subjected%5C+to%5C+freezing%5C+stress%5C+was%5C+identified.%5C+Fifth%2C%5C+for%5C+the%5C+freezing%5C-resistant%5C+plant%5C+T.%5C+halophlia%2C%5C+the%5C+rules%5C+of%5C+membrane%5C+lipids%5C+composition%5C+changes%5C+under%5C+freezing%5C+stress%5C+were%5C+uncovered."},{"jsname":"Dendrobium officinale is a valuable medicinal plants,mainly distributed in Yunnan, Guangxi and Anhui. It is necessary to understand the environmental adaptation for the effective acclimation and cultivation of this species. Up till now, there is little information on the ecophysiological adaptation of D. officinale, especially on the photosynthetic response to temperature. This paper investigated the response of photosynthesis and growth of D. officinale to temperature, and the stem polysaccharide content of D. officinale at different temperatures, in order to understand how growth temperature affect the growth and development of D. officinale and to determine the suitable temperature ranges and day-night temperature differences for the growth and development of D. officinale. The result are summarized as follows: 1. Temperature has a significant effect on the photosynthetic rate (Pn) of D. officinale, The light saturated photosynthesis at ambient CO2 concentration (Pmax) of the plants were highest at T-30/20. High photosynthetic rate at T-30/20 were related to a larger leaf area (LA) and the more balance between the maximum rate of electron transport and maximum rate of RuBP-mediated carboxylation. 2. Temperature also has a significant effect on the growth and polysaccharide content of D. officinale’s stem. The polysaccharide content of D. officinale at T-20/10 was significantly higher than at the other temperatures, but the stem length, stem node number, stem fresh weight and stem dry weight was the highest at T-30/20. 3. The utilization of solar energy were highest at T-30/15 temperature difference between day and night, it also has the highest content of chlorophyll, and respiration rate was lower, resulting in higher dry matter accumulation and accumulation of relatively higher polysaccharide content. 4. The polysaccharide content of D. officinale T-30/20 temperature difference between day and night was significantly higher than at the other temperatures, but the leaf area was smaller and chlorophyll content, stem length, node number, the average stem length, stem fresh weight and stem dry weight and other indicators are relatively low. 5. My thesis illuminated how temperature affect the growth and development of D. officinale. The suitable temperature ranges and day-night temperature differences for the growth of D. officinale are recommended as below: day temperature is 25℃ ~ 30 ℃, night temperature is 15℃ ~ 20℃, and day-night temperature difference should be maintained at 10℃ ~ 15℃.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ADendrobium%5C+officinale%5C+is%5C+a%5C+valuable%5C+medicinal%5C+plants%EF%BC%8Cmainly%5C+distributed%5C+in%5C+Yunnan%2C%5C+Guangxi%5C+and%5C+Anhui.%5C+It%5C+is%5C+necessary%5C+to%5C+understand%5C+the%5C+environmental%5C+adaptation%5C+for%5C+the%5C+effective%5C+acclimation%5C+and%5C+cultivation%5C+of%5C+this%5C+species.%5C+Up%5C+till%5C+now%2C%5C+there%5C+is%5C+little%5C+information%5C+on%5C+the%5C+ecophysiological%5C+adaptation%5C+of%5C+D.%5C+officinale%2C%5C+especially%5C+on%5C+the%5C+photosynthetic%5C+response%5C+to%5C+temperature.%5C+This%5C+paper%5C+investigated%5C+the%5C+response%5C+of%5C+photosynthesis%5C+and%5C+growth%5C+of%5C+D.%5C+officinale%5C+to%5C+temperature%2C%5C+and%5C+the%5C+stem%5C+polysaccharide%5C+content%5C+of%5C+D.%5C+officinale%5C+at%5C+different%5C+temperatures%2C%5C+in%5C+order%5C+to%5C+understand%5C+how%5C+growth%5C+temperature%5C+affect%5C+the%5C+growth%5C+and%5C+development%5C+of%5C+D.%5C+officinale%5C+and%5C+to%5C+determine%5C+the%5C+suitable%5C+temperature%5C+ranges%5C+and%5C+day%5C-night%5C+temperature%5C+differences%5C+for%5C+the%5C+growth%5C+and%5C+development%5C+of%5C+D.%5C+officinale.%5C+The%5C+result%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Temperature%5C+has%5C+a%5C+significant%5C+effect%5C+on%5C+the%5C+photosynthetic%5C+rate%5C+%5C%28Pn%5C%29%5C+of%5C+D.%5C+officinale%2C%5C+The%5C+light%5C+saturated%5C+photosynthesis%5C+at%5C+ambient%5C+CO2%5C+concentration%5C+%5C%28Pmax%5C%29%5C+of%5C+the%5C+plants%5C+were%5C+highest%5C+at%5C+T%5C-30%5C%2F20.%5C+High%5C+photosynthetic%5C+rate%5C+at%5C+T%5C-30%5C%2F20%5C+were%5C+related%5C+to%5C+a%5C+larger%5C+leaf%5C+area%5C+%5C%28LA%5C%29%5C+and%5C+the%5C+more%5C+balance%5C+between%5C+the%5C+maximum%5C+rate%5C+of%5C+electron%5C+transport%5C+and%C2%A0maximum%5C+rate%5C+of%5C+RuBP%5C-mediated%5C+carboxylation.%5C+2.%5C+Temperature%5C+also%5C+has%5C+a%5C+significant%5C+effect%5C+on%5C+the%5C+growth%5C+and%5C+polysaccharide%5C+content%5C+of%5C+D.%5C+officinale%E2%80%99s%5C+stem.%5C+The%5C+polysaccharide%5C+content%5C+of%5C+D.%5C+officinale%5C+at%5C+T%5C-20%5C%2F10%5C+was%5C+significantly%5C+higher%5C+than%5C+at%5C+the%5C+other%5C+temperatures%2C%5C+but%5C+the%5C+stem%5C+length%2C%5C+stem%5C+node%5C+number%2C%5C+stem%5C+fresh%5C+weight%5C+and%5C+stem%5C+dry%5C+weight%5C+was%5C+the%5C+highest%5C+at%5C+T%5C-30%5C%2F20.%5C+3.%5C+The%5C+utilization%5C+of%5C+solar%5C+energy%5C+were%5C+highest%5C+at%5C+T%5C-30%5C%2F15%5C+temperature%5C+difference%5C+between%5C+day%5C+and%5C+night%2C%5C+it%5C+also%5C+has%5C+the%5C+highest%5C+content%5C+of%5C+chlorophyll%2C%5C+and%5C+respiration%5C+rate%5C+was%5C+lower%2C%5C+resulting%5C+in%5C+higher%5C+dry%5C+matter%5C+accumulation%5C+and%5C+accumulation%5C+of%5C+relatively%5C+higher%5C+polysaccharide%5C+content.%5C+4.%5C+The%5C+polysaccharide%5C+content%5C+of%5C+D.%5C+officinale%5C+T%5C-30%5C%2F20%5C+temperature%5C+difference%5C+between%5C+day%5C+and%5C+night%5C+was%5C+significantly%5C+higher%5C+than%5C+at%5C+the%5C+other%5C+temperatures%2C%5C+but%5C+the%5C+leaf%5C+area%5C+was%5C+smaller%5C+and%5C+chlorophyll%5C+content%2C%5C+stem%5C+length%2C%5C+node%5C+number%2C%5C+the%5C+average%5C+stem%5C+length%2C%5C+stem%5C+fresh%5C+weight%5C+and%5C+stem%5C+dry%5C+weight%5C+and%5C+other%5C+indicators%5C+are%5C+relatively%5C+low.%5C+5.%5C+My%5C+thesis%5C+illuminated%5C+how%5C+temperature%5C+affect%5C+the%5C+growth%5C+and%5C+development%5C+of%5C+D.%5C+officinale.%5C+The%5C+suitable%5C+temperature%5C+ranges%5C+and%5C+day%5C-night%5C+temperature%5C+differences%5C+for%5C+the%5C+growth%5C+of%5C+D.%5C+officinale%5C+are%5C+recommended%5C+as%5C+below%5C%3A%5C+day%5C+temperature%5C+is%5C+25%E2%84%83%5C+%5C%7E%5C+30%5C+%E2%84%83%2C%5C+night%5C+temperature%5C+is%5C+15%E2%84%83%5C+%5C%7E%5C+20%E2%84%83%2C%5C+and%5C+day%5C-night%5C+temperature%5C+difference%5C+should%5C+be%5C+maintained%5C+at%5C+10%E2%84%83%5C+%5C%7E%5C+15%E2%84%83."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"In Chapter 1, we isolated a flavonoid prenyltransferase-like gene from traditional Chinese medicinal herb, Epimedium L. (berberidaceae). Epimedium species have a high content of the prenylated flavonol glycosides. Icariin and epimedin A, B and C are frequently used as marker compounds for the quality control of Epimedium. Here we speculate prenyl flavonoids biosynthesis pathway in Epimedium: The flavonoid prenyltransferase is responsible for the prenylation of flavonoids (naringenin 、kaempferol or apigenin) at the 8-position or 3'' or 5''-position. Leaves of Epimedium acuminatum Franch in the nursery were collected every month, and then detected the icariin content. The results show that leaves in March have the highest icariin content. Total RNA was extracted from leaves in March as template. A similarity-based cloning strategy yielded a flavonoid prenyltransferase-like gene, named EaPT1. In E. coli. expression system, pET32a(+) was chosen as the expression vector for use in Rosetta-gamiB(DE3)、RosettaTM 2(DE3)plysS、BL21(DE3)plysE、BL21(DE3)gold and BL21(DE3) cells. The full length ORF and truncated sequence were ligated with pET32a(+). We did not detect the target protein in SDS-PAGE. In Saccharomyces cerevisiae expression system, the full length ORF was ligated with pYES2. In this expression system, we still could not detect the protein in SDS-PAGE. LC/MS did not detect the activity of prenyltransferase, with naringenin as substrate. Chapter 2 describes functional expression and characterization of two copalyl pyrophosphate synthase gene from Isodon ericalyx (Dunn) Kudo, named IeCPS7 and IeCPS11. Their full length ORF and truncated sequence were ligated into pET32a(+). These vectors were used to transform E.coli BL21(DE)3. The truncated IeCPS7 sequence expressed a soluble His-tag recombinant protein, 104699.41D, pI5.87, 924aa. The recombinant protein was characterized for diterpene synthase activity by using geranylgeranyl diphosphate(GGPP) as substrates and subsequent GC/MS analysis of products. The purified recombinant IeCPS showed optimum activity at pH7.1. In addition, IeCPS showed maximum activity at 30℃. The enzymatic activity was increased by addition of MgCl2 to the reaction mixture. Unexpectedly, MnCl2 actually inhibited the enzyme activity. In addition,only insoluble recombinant proteins were expressed for IeCPS11 in BL21(DE)3, Rosetta-gamiB(DE3) and RosettaTM 2(DE3)plysS. The last part reviews the advances in molecular studies of aromatic prenyltransferase in plants and fungi, focusing on membrane-bound homogentisate prenyltransferses, flavonoid prenyltransferases as well as soluble indole prenyltransferases.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3AIn%5C+Chapter%5C+1%2C%5C+we%5C+isolated%5C+a%5C+flavonoid%5C+prenyltransferase%5C-like%5C+gene%5C+from%5C+traditional%5C+Chinese%5C+medicinal%5C+herb%2C%5C+Epimedium%5C+L.%5C+%5C%28berberidaceae%5C%29.%5C+Epimedium%5C+species%5C+have%5C+a%5C+high%5C+content%5C+of%5C+the%5C+prenylated%5C+flavonol%5C+glycosides.%5C+Icariin%5C+and%5C+epimedin%5C+A%2C%5C+B%5C+and%5C+C%5C+are%5C+frequently%5C+used%5C+as%5C+marker%5C+compounds%5C+for%5C+the%5C+quality%5C+control%5C+of%5C+Epimedium.%5C+Here%5C+we%5C+speculate%5C+prenyl%5C+flavonoids%5C+biosynthesis%5C+pathway%5C+in%5C+Epimedium%5C%3A%5C+The%5C+flavonoid%5C+prenyltransferase%5C+is%5C+responsible%5C+for%5C+the%5C+prenylation%5C+of%5C+flavonoids%5C+%5C%28naringenin%5C+%E3%80%81kaempferol%5C+or%5C+apigenin%5C%29%5C+at%5C+the%5C+8%5C-position%5C+or%5C+3%27%27%5C+or%5C+5%27%27%5C-position.%5C+Leaves%5C+of%5C+Epimedium%5C+acuminatum%5C+Franch%5C+in%5C+the%5C+nursery%5C+were%5C+collected%5C+every%5C+month%2C%5C+and%5C+then%5C+detected%5C+the%5C+icariin%5C+content.%5C+The%5C+results%5C+show%5C+that%5C+leaves%5C+in%5C+March%5C+have%5C+the%5C+highest%5C+icariin%5C+content.%5C+Total%5C+RNA%5C+was%5C+extracted%5C+from%5C+leaves%5C+in%5C+March%5C+as%5C+template.%5C+A%5C+similarity%5C-based%5C+cloning%5C+strategy%5C+yielded%5C+a%5C+flavonoid%5C+prenyltransferase%5C-like%5C+gene%2C%5C+named%5C+EaPT1.%5C+In%5C+E.%5C+coli.%5C+expression%5C+system%2C%5C+pET32a%5C%28%5C%2B%5C%29%5C+was%5C+chosen%5C+as%5C+the%5C+expression%5C+vector%5C+for%5C+use%5C+in%5C+Rosetta%5C-gamiB%5C%28DE3%5C%29%E3%80%81RosettaTM%5C+2%EF%BC%88DE3%EF%BC%89plysS%E3%80%81BL21%5C%28DE3%5C%29plysE%E3%80%81BL21%5C%28DE3%5C%29gold%5C+and%5C+BL21%5C%28DE3%5C%29%5C+cells.%5C+The%5C+full%5C+length%5C+ORF%5C+and%5C+truncated%5C+sequence%5C+were%5C+ligated%5C+with%5C+pET32a%5C%28%5C%2B%5C%29.%5C+We%5C+did%5C+not%5C+detect%5C+the%5C+target%5C+protein%5C+in%5C+SDS%5C-PAGE.%5C+In%5C+Saccharomyces%5C+cerevisiae%5C+expression%5C+system%2C%5C+the%5C+full%5C+length%5C+ORF%5C+was%5C+ligated%5C+with%5C+pYES2.%5C+In%5C+this%5C+expression%5C+system%2C%5C+we%5C+still%5C+could%5C+not%5C+detect%5C+the%5C+protein%5C+in%5C+SDS%5C-PAGE.%5C+LC%5C%2FMS%5C+did%5C+not%5C+detect%5C+the%5C+activity%5C+of%5C+prenyltransferase%2C%5C+with%5C+naringenin%5C+as%5C+substrate.%5C+Chapter%5C+2%5C+describes%5C+functional%5C+expression%5C+and%5C+characterization%5C+of%5C+two%5C+copalyl%5C+pyrophosphate%5C+synthase%5C+gene%5C+from%5C+Isodon%5C+ericalyx%5C+%5C%28Dunn%5C%29%5C+Kudo%2C%5C+named%5C+IeCPS7%5C+and%5C+IeCPS11.%5C+Their%5C+full%5C+length%5C+ORF%5C+and%5C+truncated%5C+sequence%5C+were%5C+ligated%5C+into%5C+pET32a%5C%28%5C%2B%5C%29.%5C+These%5C+vectors%5C+were%5C+used%5C+to%5C+transform%5C+E.coli%5C+BL21%5C%28DE%5C%293.%5C+The%5C+truncated%5C+IeCPS7%5C+sequence%5C+expressed%5C+a%5C+soluble%5C+His%5C-tag%5C+recombinant%5C+protein%2C%5C+104699.41D%2C%5C+pI5.87%2C%5C+924aa.%5C+The%5C+recombinant%5C+protein%5C+was%5C+characterized%5C+for%5C+diterpene%5C+synthase%5C+activity%5C+by%5C+using%5C+geranylgeranyl%5C+diphosphate%5C%28GGPP%5C%29%5C+as%5C+substrates%5C+and%5C+subsequent%5C+GC%5C%2FMS%5C+analysis%5C+of%5C+products.%5C+The%5C+purified%5C+recombinant%5C+IeCPS%5C+showed%5C+optimum%5C+activity%5C+at%5C+pH7.1.%5C+In%5C+addition%2C%5C+IeCPS%5C+showed%5C+maximum%5C+activity%5C+at%5C+30%E2%84%83.%5C+The%5C+enzymatic%5C+activity%5C+was%5C+increased%5C+by%5C+addition%5C+of%5C+MgCl2%5C+to%5C+the%5C+reaction%5C+mixture.%5C+Unexpectedly%2C%5C+MnCl2%5C+actually%5C+inhibited%5C+the%5C+enzyme%5C+activity.%5C+In%5C+addition%2Conly%5C+insoluble%5C+recombinant%5C+proteins%5C+were%5C+expressed%5C+for%5C+IeCPS11%5C+in%5C+BL21%5C%28DE%5C%293%2C%5C+Rosetta%5C-gamiB%5C%28DE3%5C%29%5C+and%5C+RosettaTM%5C+2%EF%BC%88DE3%EF%BC%89plysS.%5C+The%5C+last%5C+part%5C+reviews%5C+the%5C+advances%5C+in%5C+molecular%5C+studies%5C+of%5C+aromatic%5C+prenyltransferase%5C+in%5C+plants%5C+and%5C+fungi%2C%5C+focusing%5C+on%5C+membrane%5C-bound%5C+homogentisate%5C+prenyltransferses%2C%5C+flavonoid%5C+prenyltransferases%5C+as%5C+well%5C+as%5C+soluble%5C+indole%5C+prenyltransferases."},{"jsname":"Major State Basic Research Development Program[2010CB951704]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3AMajor%5C+State%5C+Basic%5C+Research%5C+Development%5C+Program%5C%5B2010CB951704%5C%5D"},{"jsname":"National Key Laboratory of Crop Genetic Improvement","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Key%5C+Laboratory%5C+of%5C+Crop%5C+Genetic%5C+Improvement"},{"jsname":"National Key Research and Development Program of China[2017YFD0201802]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Key%5C+Research%5C+and%5C+Development%5C+Program%5C+of%5C+China%5C%5B2017YFD0201802%5C%5D"},{"jsname":"National Natural Science Foundation of China (NSFC)[41271058]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B41271058%5C%5D"},{"jsname":"National Natural Science Foundation of China[31570311]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31570311%5C%5D"},{"jsname":"National Natural Science Foundation of China[31571262]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31571262%5C%5D"},{"jsname":"National Natural Science Foundation of China[31670342]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31670342%5C%5D"},{"jsname":"National Natural Science Foundation of China[41671280]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Zea%2Bmays&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B41671280%5C%5D"},{"jsname":"lastIndexed","jscount":"2022-08-11"}],"Funding Project","dc.project.title_filter")'>
13th Five-... [1]
1ncarville... [1]
Bambusoide... [1]
CAS Key La... [1]
CAS Pionee... [1]
CAS Presid... [1]
More...
Indexed By
SCI [161]
CSCD [17]
Funding Organization
Max Planck... [3]
National N... [3]
Chinese Ac... [2]
Chinese Ac... [2]
Deanship o... [2]
Major Stat... [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 467
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
The formation and function of plant volatiles: perfumes for pollinator attraction and defense
期刊论文
Physiology and metabolism, 3111, 期号: 0, 页码: 237-243
Authors:
Eran Pichersky
;
Jonathan Gershenzon
Adobe PDF(103Kb)
  |  
Favorite
  |  
View/Download:50/1
  |  
Submit date:2017/07/26
Maize diversity for fall armyworm resistance in a warming world
期刊论文
CROP SCIENCE, 2022, 卷号: 62, 期号: 1, 页码: 1-19
Authors:
Singh,G. Mahendra
;
Xu,Jianchu
;
Schaefer,Douglas
;
Day,Roger
;
Wang,Zhenying
;
Zhang,Feng
Favorite
  |  
View/Download:4/0
  |  
Submit date:2022/04/02
SPODOPTERA-FRUGIPERDA LEPIDOPTERA
PLANT GENETIC-RESOURCES
QUANTITATIVE TRAIT LOCI
CORN-BORER LEPIDOPTERA
LEAF-FEEDING DAMAGE
GERMPLASM LINES
POPULATION-DYNAMICS
SMITH LEPIDOPTERA
WILD RELATIVES
CLIMATE-CHANGE
Transcriptomic Responses of Fall Armyworms (Spodoptera frugiperda) Feeding on a Resistant Maize Inbred Line Xi502 with High Benzoxazinoid Content
期刊论文
AGRONOMY-BASEL, 2021, 卷号: 11, 期号: 12, 页码: 2503
Authors:
Malook,Saif ul
;
Liu,Xiao-Feng
;
Ma,Caiyan
;
Qi,Jinfeng
;
Liu,Wende
;
Zhou,Shaoqun
Favorite
  |  
View/Download:3/0
  |  
Submit date:2022/04/02
Spodoptera frugiperda
Zea mays
plant-insect interactions
benzoxazinoids
specialized metabolism
CORN-EARWORM LEPIDOPTERA
GERMPLASM LINES
BACILLUS-THURINGIENSIS
DEFENSE RESPONSES
INSECT
DETOXIFICATION
NOCTUIDAE
SMITH
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
期刊论文
nature plants, 2021
Authors:
Gregory W. Stull
View
  |  
Adobe PDF(3425Kb)
  |  
Favorite
  |  
View/Download:115/28
  |  
Submit date:2021/08/23
ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188
期刊论文
NEW PHYTOLOGIST, 2020
Authors:
Zhang, Cuiping
;
Li, Jing
;
Li, Sen
;
Ma, Canrong
;
Liu, Hui
;
Wang, Lei
;
Qi, Jinfeng
;
Wu, Jianqiang
View
  |  
Adobe PDF(2892Kb)
  |  
Favorite
  |  
View/Download:32/8
  |  
Submit date:2021/01/05
SMRT- and Illumina-based RNA-seq analyses unveil the ginsinoside biosynthesis and transcriptomic complexity in Panax notoginseng
期刊论文
SCIENTIFIC REPORTS, 2020
Authors:
Zhang, Dan
;
Li, Wei
;
Chen, Zhong-jian
;
Wei, Fu-gang
;
Liu, Yun-long
;
Gao, Li-zhi
View
  |  
Adobe PDF(2284Kb)
  |  
Favorite
  |  
View/Download:27/5
  |  
Submit date:2021/01/05
Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity
期刊论文
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020
Authors:
Yasmeen, Tahira
;
Ahmad, Aqeel
;
Arif, Muhammad Saleem
;
Mubin, Muhammad
;
Rehman, Khadija
;
Shahzad, Sher Muhammad
;
Iqbal, Shahid
;
Rizwan, Muhammad
;
Ali, Shafaqat
;
Alyemeni, Mohammed Nasser
;
Wijaya, Leonard
View
  |  
Adobe PDF(5037Kb)
  |  
Favorite
  |  
View/Download:17/6
  |  
Submit date:2021/01/05
Blue genome: chromosome-scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in Strobilanthes cusia
期刊论文
PLANT JOURNAL, 2020
Authors:
Xu, Wei
;
Zhang, Libin
;
Cunningham, Anthony B.
;
Li, Shan
;
Zhuang, Huifu
;
Wang, Yuhua
;
Liu, Aizhong
View
  |  
Adobe PDF(3027Kb)
  |  
Favorite
  |  
View/Download:33/12
  |  
Submit date:2021/01/05
Evidence for a Dark Septate Endophyte (Exophiala Pisciphila, H93) Enhancing Phosphorus Absorption by Maize Seedlings
期刊论文
PLANT AND SOIL, 2020
Authors:
Xu, Runbing
;
Li, Tao
;
Shen, Mi
;
Yang, Zhu L.
;
Zhao, Zhi-Wei
View
  |  
Adobe PDF(1591Kb)
  |  
Favorite
  |  
View/Download:21/6
  |  
Submit date:2021/01/05
The draft genome sequence of an upland wild rice species, Oryza granulata
期刊论文
SCIENTIFIC DATA, 2020
Authors:
Shi, Cong
;
Li, Wei
;
Zhang, Qun-Jie
;
Zhang, Yun
;
Tong, Yan
;
Li, Kui
;
Liu, Yun-Long
;
Gao, Li-Zhi
View
  |  
Adobe PDF(1670Kb)
  |  
Favorite
  |  
View/Download:39/8
  |  
Submit date:2021/01/05