×
验证码:
换一张
忘记密码?
记住我
×
登录
中文版
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
登录
注册
ALL
ORCID
题名
作者
学科领域
关键词
资助项目
文献类型
出处
收录类别
出版者
发表日期
存缴日期
学科门类
学习讨论厅
图片搜索
粘贴图片网址
首页
研究单元&专题
作者
文献类型
学科分类
知识图谱
新闻&公告
在结果中检索
研究单元&专题
中国科学院东亚植... [418]
昆明植物所硕博研... [212]
共享文献 [196]
资源植物与生物技... [108]
中国西南野生生物种... [65]
植物化学与西部植物... [41]
更多...
作者
杨祝良 [95]
许建初 [76]
孙航 [55]
李德铢 [47]
龚洵 [40]
赵琪 [36]
更多...
文献类型
期刊论文 [1002]
学位论文 [212]
专著 [62]
其他 [5]
会议论文 [2]
会议录 [1]
更多...
发表日期
2021 [73]
2020 [138]
2019 [132]
2018 [90]
2017 [99]
2016 [120]
更多...
语种
英语 [712]
中文 [173]
出处
PHYTOTAX... [122]
FUNGAL DI... [69]
MYCOSPHER... [49]
MYCOLOGIC... [47]
PLOS ONE [31]
CRYPTOGAM... [25]
更多...
资助项目
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal-rna%2BSequences&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Cytology study can reveal important biological features of plants and answers to a certain degree in phylogeny and distribution of genetic materials and so forth. By hard working of cytologists, chromosome data of plants have been increased to a great abundance, but yet disorderly distributed in different magazines, which made researches based on the whole chromosome data of one taxon rarely launched. Scientific databases have become increasingly indispensable as researching data growing daily. As Cytological studies are booming in China, in order to fill the absence of digital and statistical data of plant chromosome researches and chromosome atlas, we started to develop a Chinese Seed Plants Chromosome Database, aiming to construct a database and start to record published chromosome data of Chinese seed plants. Based on this database, we chose the part of gymnosperms and gave a discussion to the features of its chromosomes’ evolution and variation. Cytological experiments have been applied to some important phyto-groups for phylogeny research and germplasm identification.Part I: The Chinese Seed Plants Chromosome Database and Discussion on the features of Gymnosperms chromosomes,1 The Chinese Seed Plants Chromosome Database,The frame of database was constructed by Microsoft Access 2003. 19 items of data were included in, they are: Chinese and Latin names of family, genus and species; plant pictures, mitosis metaphase and karyotype figures; morphological characteristics and distributions of the plant; chromosome numbers and basic numbers; karyotype formula; karyotype description; origin of the plant material; literature and the source of photos. In this database, data can be checked and shared easily by extracted out in species sorted interface or family sorted interface. 120 species in 29 genera and 10 families of Gymnospers have been collected and input to the database. In Angiosperms, 61 species in 10 genera of family Magnoliaceae and 80 species in 3 genera of family Theaceae have been collected and input to the database.2 Discussion on the features of evolution and variation of Gymnosperms chromosomes,By data collection of the database, we analyzed chromosome features of the group Gymnosperm. Plants of Gymnosperm had been through a long historical evolution on earth, fossil records of which originated from the late Devonian period. Once an authoritative and major classification level in the plant kingdom, most Gymnosperms have been extinct unless conifers, cycads, Ginkgo and Getales. Three main features of Gymnosperm chromosomes are: relatively large chromosome, which can be recognized from figures in the database; constant chromosome numbers, in most families of Gymnosperm the basic chromosome number keeps a certain value; comparatively low variation, karyotype under family level differs a little. The variation of chromosomes in Gymnosperm is dominated by Robertsonian changes. Contrary to common variation type in Angiosperms, the variation from high unsymmetric karyotype to low unsymmetric karyotype was found in existence in Gymnosperm.Part II: cytology research on some important phyto-groups,3 Karyomorphology of three species in the order Huerteales and their phylogenetic implications,The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, was investigated in the study. Recent molecular research has discovered close relationships among these three genera, which has led to the establishment of the order Huerteales with Perrottetia being placed in Dipentodontaceae. Herein we report the chromosome numbers of D. sinicus and P. racemosa for the first time, and present their karyotype formulas as 2n = 34 = 22sm + 12st (D. sinicus), 2n = 20 = 11m + 9sm (P. racemosa), and 2n = 30 = 22m(2SAT) + 8sm (T. sinensis). Asymmetry of their karyotypes is categorized to be Type 3B in D. sinicus, Type 2A in P. racemosa, and Type 2A in T. sinensis. Each of the species shows special cytological features. Compared with Perrottetia, Dipentodon has a different basic chromosome number, a higher karyotype asymmetry, and different karyomorphology of its interphase nuclei, mitotic prophase, and metaphase. Thus, on the basis of these results, we have reservations regarding the suggestion of placing Dipentodon and Perrottetia together in the family Dipentodontaceae.4 Genomic analyses of intergeneric hybrids between Michelia crassipes and M. calcicola by GISH,Genomic in situ hybridization (GISH) is becoming the method of choice for identifying parental chromosomes in interspecific hybrids. Interspecific F1 hybrid between Michelia crassipes and M. calcicola, tow highly ornamental species in Michelia of Magnolicaceae, has been analized by double-colored GISH with its parents’ genome as the probe. Research gave the results that the chromosome number of the F1 hybrid is 2n=38 as the same of species in Michelia and other genera in Magnoliaceae, the basic chromosome is x=19, the karyotype formula is 2n=38=32m+6sm, and the asymmetry of karyotype is 1B type. Based on chromosome data of Michelia in our database, the karyotype of this genus is featured mostly by metacentric chromosomes and submetacentric chromosomes. In Mechelia, the variation range of submetacentric chromosomes is 4 to 18 and of the karyotype asymmetry is 1A to 2B type. Both the karyotype and karyotype asymmetry type of F1 hybrid is among the variation range of Michelia. The figure of GISH showed that all the 38 chromosomes of F1 hybrid have crossing parental signals, and signal on the no.1 and no.7 chromosome showed differences, which proved that both the parental genome have been transmitted to and recombinated in F1 hybrid.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal-rna%2BSequences&order=desc&&fq=dc.project.title_filter%3ACytology%5C+study%5C+can%5C+reveal%5C+important%5C+biological%5C+features%5C+of%5C+plants%5C+and%5C+answers%5C+to%5C+a%5C+certain%5C+degree%5C+in%5C+phylogeny%5C+and%5C+distribution%5C+of%5C+genetic%5C+materials%5C+and%5C+so%5C+forth.%5C+By%5C+hard%5C+working%5C+of%5C+cytologists%2C%5C+chromosome%5C+data%5C+of%5C+plants%5C+have%5C+been%5C+increased%5C+to%5C+a%5C+great%5C+abundance%2C%5C+but%5C+yet%5C+disorderly%5C+distributed%5C+in%5C+different%5C+magazines%2C%5C+which%5C+made%5C+researches%5C+based%5C+on%5C+the%5C+whole%5C+chromosome%5C+data%5C+of%5C+one%5C+taxon%5C+rarely%5C+launched.%5C+Scientific%5C+databases%5C+have%5C+become%5C+increasingly%5C+indispensable%5C+as%5C+researching%5C+data%5C+growing%5C+daily.%5C+As%5C+Cytological%5C+studies%5C+are%5C+booming%5C+in%5C+China%2C%5C+in%5C+order%5C+to%5C+fill%5C+the%5C+absence%5C+of%5C+digital%5C+and%5C+statistical%5C+data%5C+of%5C+plant%5C+chromosome%5C+researches%5C+and%5C+chromosome%5C+atlas%2C%5C+we%5C+started%5C+to%5C+develop%5C+a%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%2C%5C+aiming%5C+to%5C+construct%5C+a%5C+database%5C+and%5C+start%5C+to%5C+record%5C+published%5C+chromosome%5C+data%5C+of%5C+Chinese%5C+seed%5C+plants.%5C+Based%5C+on%5C+this%5C+database%2C%5C+we%5C+chose%5C+the%5C+part%5C+of%5C+gymnosperms%5C+and%5C+gave%5C+a%5C+discussion%5C+to%5C+the%5C+features%5C+of%5C+its%5C+chromosomes%E2%80%99%5C+evolution%5C+and%5C+variation.%5C+Cytological%5C+experiments%5C+have%5C+been%5C+applied%5C+to%5C+some%5C+important%5C+phyto%5C-groups%5C+for%5C+phylogeny%5C+research%5C+and%5C+germplasm%5C+identification.Part%5C+I%5C%3A%5C+The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%5C+and%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8C1%5C+%C2%A0The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%EF%BC%8CThe%5C+frame%5C+of%5C+database%5C+was%5C+constructed%5C+by%5C+Microsoft%5C+Access%5C+2003.%5C+19%5C+items%5C+of%5C+data%5C+were%5C+included%5C+in%2C%5C+they%5C+are%5C%3A%5C+Chinese%5C+and%5C+Latin%5C+names%5C+of%5C+family%2C%5C+genus%5C+and%5C+species%5C%3B%5C+plant%5C+pictures%2C%5C+mitosis%5C+metaphase%5C+and%5C+karyotype%5C+figures%5C%3B%5C+morphological%5C+characteristics%5C+and%5C+distributions%5C+of%5C+the%5C+plant%5C%3B%5C+chromosome%5C+numbers%5C+and%5C+basic%5C+numbers%5C%3B%5C+karyotype%5C+formula%5C%3B%5C+karyotype%5C+description%5C%3B%5C+origin%5C+of%5C+the%5C+plant%5C+material%5C%3B%5C+literature%5C+and%5C+the%5C+source%5C+of%5C+photos.%5C+In%5C+this%5C+database%2C%5C+data%5C+can%5C+be%5C+checked%5C+and%5C+shared%5C+easily%5C+by%5C+extracted%5C+out%5C+in%5C+species%5C+sorted%5C+interface%5C+or%5C+family%5C+sorted%5C+interface.%5C+120%5C+species%5C+in%5C+29%5C+genera%5C+and%5C+10%5C+families%5C+of%5C+Gymnospers%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.%5C+In%5C+Angiosperms%2C%5C+61%5C+species%5C+in%5C+10%5C+genera%5C+of%5C+family%5C+Magnoliaceae%5C+and%5C+80%5C+species%5C+in%5C+3%5C+genera%5C+of%5C+family%5C+Theaceae%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.2%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+evolution%5C+and%5C+variation%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8CBy%5C+data%5C+collection%5C+of%5C+the%5C+database%2C%5C+we%5C+analyzed%5C+chromosome%5C+features%5C+of%5C+the%5C+group%5C+Gymnosperm.%5C+Plants%5C+of%5C+Gymnosperm%5C+had%5C+been%5C+through%5C+a%5C+long%5C+historical%5C+evolution%5C+on%5C+earth%2C%5C+fossil%5C+records%5C+of%5C+which%5C+originated%5C+from%5C+the%5C+late%5C+Devonian%5C+period.%5C+Once%5C+an%5C+authoritative%5C+and%5C+major%5C+classification%5C+level%5C+in%5C+the%5C+plant%5C+kingdom%2C%5C+most%5C+Gymnosperms%5C+have%5C+been%5C+extinct%5C+unless%5C+conifers%2C%5C+cycads%2C%5C+Ginkgo%5C+and%5C+Getales.%5C+Three%5C+main%5C+features%5C+of%5C+Gymnosperm%5C+chromosomes%5C+are%5C%3A%5C+relatively%5C+large%5C+chromosome%2C%5C+which%5C+can%5C+be%5C+recognized%5C+from%5C+figures%5C+in%5C+the%5C+database%5C%3B%5C+constant%5C+chromosome%5C+numbers%2C%5C+in%5C+most%5C+families%5C+of%5C+Gymnosperm%5C+the%5C+basic%5C+chromosome%5C+number%5C+keeps%5C+a%5C+certain%5C+value%5C%3B%5C+comparatively%5C+low%5C+variation%2C%5C+karyotype%5C+under%5C+family%5C+level%5C+differs%5C+a%5C+little.%5C+The%5C+variation%5C+of%5C+chromosomes%5C+in%5C+Gymnosperm%5C+is%5C+dominated%5C+by%5C+Robertsonian%5C+changes.%5C+Contrary%5C+to%5C+common%5C+variation%5C+type%5C+in%5C+Angiosperms%2C%5C+the%5C+variation%5C+from%5C+high%5C+unsymmetric%5C+karyotype%5C+to%5C+low%5C+unsymmetric%5C+karyotype%5C+was%5C+found%5C+in%5C+existence%5C+in%5C+Gymnosperm.Part%5C+II%5C%3A%5C+cytology%5C+research%5C+on%5C+some%5C+important%5C+phyto%5C-groups%EF%BC%8C3%5C+Karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+the%5C+order%5C+Huerteales%5C+and%5C+their%5C+phylogenetic%5C+implications%EF%BC%8CThe%5C+karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+Dipentodon%5C+%5C%28Dipentodontaceae%5C%29%2C%5C+Perrottetia%5C+%5C%28Celastraceae%5C%29%2C%5C+and%5C+Tapiscia%5C+%5C%28Tapisciaceae%5C%29%2C%5C+namely%5C+Dipentodon%5C+sinicus%2C%5C+Perrottetia%5C+racemosa%2C%5C+and%5C+Tapiscia%5C+sinensis%2C%5C+was%5C+investigated%5C+in%5C+the%5C+study.%5C+Recent%5C+molecular%5C+research%5C+has%5C+discovered%5C+close%5C+relationships%5C+among%5C+these%5C+three%5C+genera%2C%5C+which%5C+has%5C+led%5C+to%5C+the%5C+establishment%5C+of%5C+the%5C+order%5C+Huerteales%5C+with%5C+Perrottetia%5C+being%5C+placed%5C+in%5C+Dipentodontaceae.%5C+Herein%5C+we%5C+report%5C+the%5C+chromosome%5C+numbers%5C+of%5C+D.%5C+sinicus%5C+and%5C+P.%5C+racemosa%5C+for%5C+the%5C+first%5C+time%2C%5C+and%5C+present%5C+their%5C+karyotype%5C+formulas%5C+as%5C+2n%5C+%3D%5C+34%5C+%3D%5C+22sm%5C+%5C%2B%5C+12st%5C+%5C%28D.%5C+sinicus%5C%29%2C%5C+2n%5C+%3D%5C+20%5C+%3D%5C+11m%5C+%5C%2B%5C+9sm%5C+%5C%28P.%5C+racemosa%5C%29%2C%5C+and%5C+2n%5C+%3D%5C+30%5C+%3D%5C+22m%5C%282SAT%5C%29%5C+%5C%2B%5C+8sm%5C+%5C%28T.%5C+sinensis%5C%29.%5C+Asymmetry%5C+of%5C+their%5C+karyotypes%5C+is%5C+categorized%5C+to%5C+be%5C+Type%5C+3B%5C+in%5C+D.%5C+sinicus%2C%5C+Type%5C+2A%5C+in%5C+P.%5C+racemosa%2C%5C+and%5C+Type%5C+2A%5C+in%5C+T.%5C+sinensis.%5C+Each%5C+of%5C+the%5C+species%5C+shows%5C+special%5C+cytological%5C+features.%5C+Compared%5C+with%5C+Perrottetia%2C%5C+Dipentodon%5C+has%5C+a%5C+different%5C+basic%5C+chromosome%5C+number%2C%5C+a%5C+higher%5C+karyotype%5C+asymmetry%2C%5C+and%5C+different%5C+karyomorphology%5C+of%5C+its%5C+interphase%5C+nuclei%2C%5C+mitotic%5C+prophase%2C%5C+and%5C+metaphase.%5C+Thus%2C%5C+on%5C+the%5C+basis%5C+of%5C+these%5C+results%2C%5C+we%5C+have%5C+reservations%5C+regarding%5C+the%5C+suggestion%5C+of%5C+placing%5C+Dipentodon%5C+and%5C+Perrottetia%5C+together%5C+in%5C+the%5C+family%5C+Dipentodontaceae.4%5C+Genomic%5C+analyses%5C+of%5C+intergeneric%5C+hybrids%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%5C+by%5C+GISH%EF%BC%8CGenomic%5C+in%5C+situ%5C+hybridization%5C+%5C%28GISH%5C%29%5C+is%5C+becoming%5C+the%5C+method%5C+of%5C+choice%5C+for%5C+identifying%5C+parental%5C+chromosomes%5C+in%5C+interspecific%5C+hybrids.%5C+Interspecific%5C+F1%5C+hybrid%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%2C%5C+tow%5C+highly%5C+ornamental%5C+species%5C+in%5C+Michelia%5C+of%5C+Magnolicaceae%2C%5C+has%5C+been%5C+analized%5C+by%5C+double%5C-colored%5C+GISH%5C+with%5C+its%5C+parents%E2%80%99%5C+genome%5C+as%5C+the%5C+probe.%5C+Research%5C+gave%5C+the%5C+results%5C+that%5C+the%5C+chromosome%5C+number%5C+of%5C+the%5C+F1%5C+hybrid%5C+is%5C+2n%3D38%5C+as%5C+the%5C+same%5C+of%5C+species%5C+in%5C+Michelia%5C+and%5C+other%5C+genera%5C+in%5C+Magnoliaceae%2C%5C+the%5C+basic%5C+chromosome%5C+is%5C+x%3D19%2C%5C+the%5C+karyotype%5C+formula%5C+is%5C+2n%3D38%3D32m%5C%2B6sm%2C%5C+and%5C+the%5C+asymmetry%5C+of%5C+karyotype%5C+is%5C+1B%5C+type.%5C+Based%5C+on%5C+chromosome%5C+data%5C+of%5C+Michelia%5C+in%5C+our%5C+database%2C%5C+the%5C+karyotype%5C+of%5C+this%5C+genus%5C+is%5C+featured%5C+mostly%5C+by%5C+metacentric%5C+chromosomes%5C+and%5C+submetacentric%5C+chromosomes.%5C+In%5C+Mechelia%2C%5C+the%5C+variation%5C+range%5C+of%5C+submetacentric%5C+chromosomes%5C+is%5C+4%5C+to%5C+18%5C+and%5C+of%5C+the%5C+karyotype%5C+asymmetry%5C+is%5C+1A%5C+to%5C+2B%5C+type.%5C+Both%5C+the%5C+karyotype%5C+and%5C+karyotype%5C+asymmetry%5C+type%5C+of%5C+F1%5C+hybrid%5C+is%5C+among%5C+the%5C+variation%5C+range%5C+of%5C+Michelia.%5C+The%5C+figure%5C+of%5C+GISH%5C+showed%5C+that%5C+all%5C+the%5C+38%5C+chromosomes%5C+of%5C+F1%5C+hybrid%5C+have%5C+crossing%5C+parental%5C+signals%2C%5C+and%5C+signal%5C+on%5C+the%5C+no.1%5C+and%5C+no.7%5C+chromosome%5C+showed%5C+differences%2C%5C+which%5C+proved%5C+that%5C+both%5C+the%5C+parental%5C+genome%5C+have%5C+been%5C+transmitted%5C+to%5C+and%5C+recombinated%5C+in%5C+F1%5C+hybrid."},{"jsname":"Czech Science Foundation, GAR[P506/14/13541S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal-rna%2BSequences&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%2C%5C+GAR%5C%5BP506%5C%2F14%5C%2F13541S%5C%5D"},{"jsname":"During a field trip at a brule in Shangri-La, a mixed population of Ligularia Cass. was found, which including L. subspicata (Bur. et Franch.) Hand.-Mazz., L. nelumbifolia (Bur. et Franch.) Hand.-Mazz., L. tongolensis (Franch.) Hand.-Mazz., L. cymbulifera (W.W.Smith) Hand.-Mazz., L. lingiana S.W.Liu, and also some individuals morphologically intermediate between L. subspicata and L. nelumbifolia. Hence, these intermediate individuals were preliminarily assumed as natural hybrids of the two Ligularia. According to their morphology, they’re assumed to form hybrids A and B. Through careful comparison of specimens in herbarium and those we collected, the inflorescence of putative hybrid A is close to L. nelumbifolia, but the shape of laminae are intergradation of L. subspicata and L. nelumbifolia; overall morphology of putative hybrids B is similar to L. nelumbifolia, but inflorescence color is as same as L. subspicata. Compared to L. nelumbifolia (39%) and L. subspicata (36.8%), the germination rate of putative hybrid B (45.7%) slightly higher than the two; but that of hybrid A is extraordinarily low (0.3%). One possible interpretation of the low rate is hybridization. 60 individuals were collected, including putative parents, other 4 species of Ligularia nearby, putative hybrid A and B. They were all direct sequenced of four cpDNA fragments, and direct sequenced or cloning sequenced of nrDNA ITS4-5. The results support that L. nelumbifolia and L. subspicata are parents of putative hybrid A, and the majority female parent is L. subspicata, L. vellerea may also be involved in the hybridization in some degree; the nuclear sequences of putative hybrid B have no superposition, and its chloroplast DNA sequences are identical with L. nelumbifolia, so putative hybrid B could not be hybrid; and there are backcross individuals exist among the putative parent L. subspicata. NewHybrids analysis of ISSR markers indicated that, the individuals of putative hybrid A are almost L. nelumbifolia and L. subspicata F1 hybrid generation (10/11), only 1/11 possibly backcross or other forms; all individuals of hybrid B are L. nelumbifolia; except one individual of L. subspicata as backcrossed, the other parent individuals are 100% reliable. This study focused on molecular evidence, complemented by ecological, reproductive and other characteristics, we demonstrated that the morphologically intermediate individuals’ origin, and the probability of belonging to each parental or hybrid class. And concluded that L. nelumbifolia and L. subspicata are the parents of putative hybrid A, L. vellerea may also be involved in the hybridization in some degree, hybrids mainly are the first generation, a few individuals may be involved in backcross, and most probably backcross with L. subspicata according to the anthesis, while the assumption of hybrid B is not supported.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal-rna%2BSequences&order=desc&&fq=dc.project.title_filter%3ADuring%5C+a%5C+field%5C+trip%5C+at%5C+a%5C+brule%5C+in%5C+Shangri%5C-La%2C%5C+a%5C+mixed%5C+population%5C+of%5C+Ligularia%5C+Cass.%5C+was%5C+found%2C%5C+which%5C+including%5C+L.%5C+subspicata%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+nelumbifolia%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+tongolensis%5C+%5C%28Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+cymbulifera%5C+%5C%28W.W.Smith%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+lingiana%5C+S.W.Liu%2C%5C+and%5C+also%5C+some%5C+individuals%5C+morphologically%5C+intermediate%5C+between%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia.%5C+Hence%2C%5C+these%5C+intermediate%5C+individuals%5C+were%5C+preliminarily%5C+assumed%5C+as%5C+natural%5C+hybrids%5C+of%5C+the%5C+two%5C+Ligularia.%5C+According%5C+to%5C+their%5C+morphology%2C%5C+they%E2%80%99re%5C+assumed%5C+to%5C+form%5C+hybrids%5C+A%5C+and%5C+B.%5C+Through%5C+careful%5C+comparison%5C+of%5C+specimens%5C+in%5C+herbarium%5C+and%5C+those%5C+we%5C+collected%2C%5C+the%5C+inflorescence%5C+of%5C+putative%5C+hybrid%5C+A%5C+is%5C+close%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+the%5C+shape%5C+of%5C+laminae%5C+are%5C+intergradation%C2%A0of%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia%5C%3B%5C+overall%5C+morphology%5C+of%5C+putative%5C+hybrids%5C+B%5C+is%5C+similar%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+inflorescence%5C+color%5C+is%5C+as%5C+same%5C+as%5C+L.%5C+subspicata.%5C+Compared%5C+to%5C+L.%5C+nelumbifolia%5C+%5C%2839%25%5C%29%5C+and%5C+L.%5C+subspicata%5C+%5C%2836.8%25%5C%29%2C%5C+the%5C+germination%5C+rate%5C+of%5C+putative%5C+hybrid%5C+B%5C+%5C%2845.7%25%5C%29%5C+slightly%5C+higher%5C+than%5C+the%5C+two%5C%3B%5C+but%5C+that%5C+of%5C+hybrid%5C+A%5C+is%5C+extraordinarily%5C+low%5C+%5C%280.3%25%5C%29.%5C+One%5C+possible%5C+interpretation%5C+of%5C+the%5C+low%5C+rate%5C+is%5C+hybridization.%5C+60%5C+individuals%5C+were%5C+collected%2C%5C+including%5C+putative%5C+parents%2C%5C+other%5C+4%5C+species%5C+of%5C+Ligularia%5C+nearby%2C%5C+putative%5C+hybrid%5C+A%5C+and%5C+B.%5C+They%5C+were%5C+all%5C+direct%5C+sequenced%5C+of%5C+four%5C+cpDNA%5C+fragments%2C%5C+and%5C+direct%5C+sequenced%5C+or%5C+cloning%5C+sequenced%5C+of%5C+nrDNA%5C+ITS4%5C-5.%5C+The%5C+results%5C+support%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+and%5C+the%5C+majority%5C+female%5C+parent%5C+is%5C+L.%5C+subspicata%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%5C%3B%5C+the%5C+nuclear%5C+sequences%5C+of%5C+putative%5C+hybrid%5C+B%5C+have%5C+no%5C+superposition%2C%5C+and%5C+its%5C+chloroplast%5C+DNA%5C+sequences%5C+are%5C+identical%5C+with%5C+L.%5C+nelumbifolia%2C%5C+so%5C+putative%5C+hybrid%5C+B%5C+could%5C+not%5C+be%5C+hybrid%5C%3B%5C+and%5C+there%5C+are%5C+backcross%5C+individuals%5C+exist%5C+among%5C+the%5C+putative%5C+parent%5C+L.%5C+subspicata.%5C+NewHybrids%5C+analysis%5C+of%5C+ISSR%5C+markers%5C+indicated%5C+that%2C%5C+the%5C+individuals%5C+of%5C+putative%5C+hybrid%5C+A%5C+are%5C+almost%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+F1%5C+hybrid%5C+generation%5C+%5C%2810%5C%2F11%5C%29%2C%5C+only%5C+1%5C%2F11%5C+possibly%5C+backcross%5C+or%5C+other%5C+forms%5C%3B%5C+all%5C+individuals%5C+of%5C+hybrid%5C+B%5C+are%5C+L.%5C+nelumbifolia%5C%3B%5C+except%5C+one%5C+individual%5C+of%5C+L.%5C+subspicata%5C+as%5C+backcrossed%2C%5C+the%5C+other%5C+parent%5C+individuals%5C+are%5C+100%25%5C+reliable.%5C+This%5C+study%5C+focused%5C+on%5C+molecular%5C+evidence%2C%5C+complemented%5C+by%5C+ecological%2C%5C+reproductive%5C+and%5C+other%5C+characteristics%2C%5C+we%5C+demonstrated%5C+that%5C+the%5C+morphologically%5C+intermediate%5C+individuals%E2%80%99%5C+origin%2C%5C+and%5C+the%5C+probability%5C+of%5C+belonging%5C+to%5C+each%5C+parental%5C+or%5C+hybrid%5C+class.%5C+And%5C+concluded%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+the%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%2C%5C+hybrids%5C+mainly%5C+are%5C+the%5C+first%5C+generation%2C%5C+a%5C+few%5C+individuals%5C+may%5C+be%5C+involved%5C+in%5C+backcross%2C%5C+and%5C+most%5C+probably%5C+backcross%5C+with%5C+L.%5C+subspicata%5C+according%5C+to%5C+the%5C+anthesis%2C%5C+while%5C+the%5C+assumption%5C+of%5C+hybrid%5C+B%5C+is%5C+not%5C+supported."},{"jsname":"lastIndexed","jscount":"2025-06-04"}],"资助项目","dc.project.title_filter")'>
Chiang Mai... [3]
Chinese Ac... [3]
Thailand R... [3]
CAS Presid... [2]
Mushroom R... [2]
National K... [2]
更多...
收录类别
SCI [663]
CSCD [12]
IC [8]
资助机构
Chinese A... [43]
CAS/SAFEA... [14]
Deanship ... [11]
National ... [11]
Mushroom R... [8]
Mushroom R... [8]
更多...
×
知识图谱
KIB OpenIR
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
QQ客服
官方微博
反馈留言
浏览/检索结果:
共1284条,第1-10条
帮助
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
WOS被引频次升序
WOS被引频次降序
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
期刊影响因子升序
期刊影响因子降序
The Effects of Topiramate on Ethanol-Cocaine Interactions andDNA Methyltransferase Gene Expression in the Rat Prefrontal Cortex
期刊论文
出版物, 3111, 期号: 0, 页码: 1-39
作者:
V.Echeverry-Alzate
;
E. Gine
;
K. M. Bühler
;
J. Calleja-Conde
;
P. Olmos
;
M. A. Gorriti
;
R. Nadal
;
F. Rodriguez de Fonseca
;
J. A. López-Moreno
Adobe PDF(1199Kb)
  |  
收藏
  |  
浏览/下载:434/1
  |  
提交时间:2017/07/24
Operant Ethanol Self-administration
Dnmt1 Corepressors
Histone deacetylase-2
Dual Dependence
Dna Methyltransferases
Addiction
Gene Expression
Boletes clarified
期刊论文
出版物, 3111, 期号: 0, 页码: 1-38
作者:
David Arora
;
Jonathan L. Frank
Adobe PDF(1003Kb)
  |  
收藏
  |  
浏览/下载:418/1
  |  
提交时间:2017/07/24
Appendiculati
Boletaceae
Butter Boletes
Butyriboletus
Molecular phylogenetics
New Genus
New Species
Taxonomy
Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus Fargesia
期刊论文
PLANT DIVERSITY, 2023, 卷号: 45, 期号: 2, 页码: 147-155
作者:
Lv,Shi-Yu
;
Ye,Xia-Ying
;
Li,Zhong-Hu
;
Ma,Peng-Fei
;
Li,De-Zhu
浏览
  |  
Adobe PDF(2234Kb)
  |  
收藏
  |  
浏览/下载:262/59
  |  
提交时间:2024/05/09
Fargesia
Genome-skimming
DNA barcoding
Plastome
Ribosomal DNA
WHOLE CHLOROPLAST GENOMES
RNA-SEQ DATA
ARUNDINARIEAE POACEAE
BAMBUSOIDEAE
TEMPERATE
PLATFORM
桔梗亚科的分子系统发育和生物地理学研究 -兼论细胞器基因组编码区的替代速率模式与机制
学位论文
: 中国科学院大学, 2022
作者:
李春姣
Adobe PDF(2839Kb)
  |  
收藏
  |  
浏览/下载:165/0
  |  
提交时间:2024/05/14
桔梗亚科,浅层测序技术,系统发育基因组学,核糖体 DNA,细胞 器基因组,生物地理学,编码区,替代速率,突变速率
Campanuloideae, genome skimming, phylogenomics, nuclear ribosomal DNA, organelle genome, biogeography, coding region, substitution rate, mutation rate
拟疣柄牛肝菌属(Hemileccinum)分子系统发育与分类研究
学位论文
: 中国科学院大学, 2022
作者:
李梅香
Adobe PDF(5988Kb)
  |  
收藏
  |  
浏览/下载:72/1
  |  
提交时间:2024/05/14
拟疣柄牛肝菌属,形态分类,分子系统发育,物种多样性
Hemileccinum, Morphological classification, Molecular phylogeny, Species diversity
中国具菌褶牛肝菌类的分类及系统发育研究
学位论文
: 中国科学院大学, 2022
作者:
刘利荣
Adobe PDF(16236Kb)
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2024/05/14
小塔氏菌属,桩菇属,褶孔牛肝菌属,新分类单元
Tapinella, Paxillus, Phylloporus, new taxa
Morphological and phylogenetic reassessment of Sclerococcum simplex from China
期刊论文
PHYTOTAXA, 2022, 卷号: 559, 期号: 2, 页码: 167-175
作者:
Thiyagaraja, Vinodhini
;
Ertz, Damien
;
Hyde, Kevin D.
;
Karunarathna, Samantha C.
;
To-Anun, Chaiwat
;
Cheewangkoon, Ratchadawan
浏览
  |  
Adobe PDF(1088Kb)
  |  
收藏
  |  
浏览/下载:144/44
  |  
提交时间:2024/07/16
asexual morph
Dactylosporaceae
lichenicolous
Pertusaria
LICHENICOLOUS FUNGI
CHECKLIST
NOV.
GEN.
Two new species of Steccherinum (Polyporales, Basidiomycota) from southern China based on morphology and DNA sequence data
期刊论文
MYCOSCIENCE, 2022, 卷号: 63, 期号: 2, 页码: 65-72
作者:
Dong, Jun-Hong
;
Wu, Ya-Xing
;
Zhao, Chang-Lin
浏览
  |  
Adobe PDF(31530Kb)
  |  
收藏
  |  
浏览/下载:146/18
  |  
提交时间:2024/04/30
Molecular phylogeny
Steccherinaceae
taxonomy
wood-inhabiting fungi
Yunnan Province
PHYLOGENETIC ANALYSES
NOV.
APHYLLOPHORALES
TAXONOMY
ANTRODIELLA
CHARACTERS
DIVERSITY
GENERA
Comparative Analysis the Complete Chloroplast Genomes of Nine Musa Species: Genomic Features, Comparative Analysis, and Phylogenetic Implications
期刊论文
FRONTIERS IN PLANT SCIENCE, 2022, 卷号: 13, 页码: 832884
作者:
Song, Weicai
;
Ji, Chuxuan
;
Chen, Zimeng
;
Cai, Haohong
;
Wu, Xiaomeng
;
Shi, Chao
;
Wang, Shuo
浏览
  |  
Adobe PDF(7732Kb)
  |  
收藏
  |  
浏览/下载:115/6
  |  
提交时间:2024/08/21
Musa
chloroplast genome
genetic structure
comparative analysis
phylogenetic analysis
interspecific relationships
BANANA
SEQUENCE
GENES
DNA
WASTE
ANGIOSPERMS
ANNOTATION
EVOLUTION
REMOVAL
PLANTS
松球果生伞菌及其次第分解球果的机理研究
学位论文
, 2021
作者:
王攀蒙
Adobe PDF(10459Kb)
  |  
收藏
  |  
浏览/下载:130/1
  |  
提交时间:2024/03/20