×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
昆明植物所硕博研究... [98]
中国科学院东亚植物... [68]
共享文献 [45]
资源植物与生物技术... [27]
中国西南野生生物种... [18]
植物分类与资源学报 [8]
More...
Authors
李德铢 [25]
周浙昆 [14]
Sun Hang [11]
Gao Lian-M... [8]
李洪涛 [7]
贾林波 [7]
More...
Document Type
Journal ... [201]
Thesis [98]
Book [11]
Other [2]
Presentati... [2]
Patent [1]
More...
Date Issued
2020 [25]
2019 [18]
2018 [25]
2017 [19]
2016 [20]
2015 [18]
More...
Language
英语 [120]
中文 [110]
Source Publication
植物分类与资源学报 [13]
FUNGAL DI... [12]
云南植物研究 [9]
JOURNAL OF... [7]
JOURNAL OF... [6]
JOURNAL OF... [6]
More...
Funding Project
0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"Cycas micholitzii complex is composed of 5 species: C. micholitzii Dyer, C. bifida (Dyer) K. D. Hill,C. longipetiolula D. Y. Wang, C. debaoensis Y. C. Zhong et C J. Chen, C. multipinnata C J. Chen et S. Y. Yang,and distributed from southwest China to central Vietnam and eastern Laos. Based on sequence data from two maternally inherited cpDNA and one biparentally nuclear DNA fragments, our study revealed the population genetic structure of C. micholitzii complex and explored the potential causes. The evolutionary and demographic histories were investigated. The genetic relationship among species in the complex was also clarified.The results were summarized as follows: 1. Phylogeographic analysis based on chloroplast sequences,We examined chloroplast sequence variation of the atpB-rbcLand psbA-trnHintergenic spacers in 27 populations of C. micholitzii complex, recovering 26 haplotypes. The average within-population diversity (HS = 0.140) was low while total diversity (HT = 0.911) was high. Population differentiation was also high(GST = 0.846, NST = 0.919), indicating significant phylogeographical structure (NST > GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Germplasm Bank of Wild Species in Southwest China","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AGermplasm%5C+Bank%5C+of%5C+Wild%5C+Species%5C+in%5C+Southwest%5C+China"},{"jsname":"Interdisciplinary Research Project of Kunming Institute of Botany[KIB2017003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AInterdisciplinary%5C+Research%5C+Project%5C+of%5C+Kunming%5C+Institute%5C+of%5C+Botany%5C%5BKIB2017003%5C%5D"},{"jsname":"Key Laboratory of Ethnomedicine (Minzu University of China) of Ministry of Education of China[KLEM-ZZ201806]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AKey%5C+Laboratory%5C+of%5C+Ethnomedicine%5C+%5C%28Minzu%5C+University%5C+of%5C+China%5C%29%5C+of%5C+Ministry%5C+of%5C+Education%5C+of%5C+China%5C%5BKLEM%5C-ZZ201806%5C%5D"},{"jsname":"Large-scale Scientific Facilities of the Chinese Academy of Sciences[2017-LSFGBOWS-01]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3ALarge%5C-scale%5C+Scientific%5C+Facilities%5C+of%5C+the%5C+Chinese%5C+Academy%5C+of%5C+Sciences%5C%5B2017%5C-LSFGBOWS%5C-01%5C%5D"},{"jsname":"Major International Joint Research Project of National Natural Science Foundation of China[31320103919]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AMajor%5C+International%5C+Joint%5C+Research%5C+Project%5C+of%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31320103919%5C%5D"},{"jsname":"Major State Basic Research Development Program[2010CB951704]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AMajor%5C+State%5C+Basic%5C+Research%5C+Development%5C+Program%5C%5B2010CB951704%5C%5D"},{"jsname":"Ministry of Education of China","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AMinistry%5C+of%5C+Education%5C+of%5C+China"},{"jsname":"Ministry of Science and Technology, Taiwan[106-2311-B-001-005]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AMinistry%5C+of%5C+Science%5C+and%5C+Technology%2C%5C+Taiwan%5C%5B106%5C-2311%5C-B%5C-001%5C-005%5C%5D"},{"jsname":"Minzu University of China[2015MDTD16C]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=MALVACEAE&order=desc&&fq=dc.project.title_filter%3AMinzu%5C+University%5C+of%5C+China%5C%5B2015MDTD16C%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-02-03"}],"Funding Project","dc.project.title_filter")'>
973 Progra... [1]
Aconitum c... [1]
Bambusoide... [1]
CAS Light ... [1]
CAS Presid... [1]
China Coun... [1]
More...
Indexed By
SCI [119]
CSCD [18]
IC [1]
Funding Organization
National N... [4]
National K... [3]
Chinese Ac... [2]
Chinese Ac... [2]
Hundred Ta... [2]
Ministry o... [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 316
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:86/1
  |  
Submit date:2017/07/19
Systema Angiospermarum
期刊论文
出版物, 3111, 页码: 1—21
Authors:
Zuo Z(作者)
Adobe PDF(146Kb)
  |  
Favorite
  |  
View/Download:204/2
  |  
Submit date:2017/07/19
Fossil fruits of Firmiana and Tilia from the middle Miocene of South Korea and the efficacy of the Bering land bridge for the migration of mesothermal plants
期刊论文
PLANT DIVERSITY, 2021, 卷号: 43, 期号: 6, 页码: 480-491
Authors:
Jia,Lin-Bo
;
Nam,Gi-Soo
;
Su,Tao
;
Stull,Gregory W.
;
Li,Shu-Feng
;
Huang,Yong-Jiang
;
Zhou,Zhe-Kun
Favorite
  |  
View/Download:3/0
  |  
Submit date:2022/04/02
8 December 2020
Asia
Bering land bridge
Biogeography
Middle Miocene
Malvaceae
NORTH-AMERICA
EASTERN ASIA
CLIMATE
PATTERNS
GRADIENTS
EVOLUTION
MALVACEAE
EURASIA
BRACTS
EUROPE
Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data
期刊论文
BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020
Authors:
Wang, Wencai
;
Chen, Siyun
;
Guo, Wei
;
Li, Yongquan
;
Zhang, Xianzhi
View
  |  
Adobe PDF(2598Kb)
  |  
Favorite
  |  
View/Download:22/5
  |  
Submit date:2021/01/05
Hoya longicalyx, a new species of Hoya (Apocynaceae: Asclepiadoideae) from Yunnan, China
期刊论文
TAIWANIA, 2020
Authors:
Huang, Er-Feng
;
Yang, Lei-Lei
;
Xi, Wang
;
Liu, Yi-Ye
;
Wang, Hui
View
  |  
Adobe PDF(1814Kb)
  |  
Favorite
  |  
View/Download:25/6
  |  
Submit date:2021/01/05
Plant diversity in Yunnan: Current status and future directions
期刊论文
PLANT DIVERSITY, 2020
Authors:
Qian, Li-Shen
;
Chen, Jia-Hui
;
Deng, Tao
;
Sun, Hang
View
  |  
Adobe PDF(3196Kb)
  |  
Favorite
  |  
View/Download:52/14
  |  
Submit date:2021/01/05
Involucre fossils of Carpinus, a northern temperate element, from the Miocene of China and the evolution of its species diversity in East Asia
期刊论文
PLANT DIVERSITY, 2020
Authors:
Xue, Li
;
Jia, Linbo
;
Nam, Gi-soo
;
Huang, Yongjiang
;
Zhang, Shitao
;
Wang, Yuqing
;
Zhou, Zhuo
;
Chen, Yongsheng
View
  |  
Adobe PDF(6801Kb)
  |  
Favorite
  |  
View/Download:39/5
  |  
Submit date:2021/01/05
Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae
期刊论文
MYCOKEYS, 2020
Authors:
Tennakoon, Danushka S.
;
Thambugala, Kasun M.
;
Wanasinghe, Dhanushka N.
;
Gentekaki, Eleni
;
Promputtha, Itthayakorn
;
Kuo, Chang-Hsin
;
Hyde, Kevin D.
View
  |  
Adobe PDF(7415Kb)
  |  
Favorite
  |  
View/Download:45/7
  |  
Submit date:2021/01/05
Firmiana daweishanensis sp. nov. (Malvaceae) from Southeast Yunnan, China
期刊论文
PHYTOTAXA, 2020
Authors:
Zhang, Guiliang
;
Cai, Lei
;
Duan, Jieqiu
;
Wang, Ting
;
Xiang, Jianying
View
  |  
Adobe PDF(1265Kb)
  |  
Favorite
  |  
View/Download:30/3
  |  
Submit date:2021/01/05
Evolutionary relationships of the ancient fern lineage the adder's tongues (Ophioglossaceae) with description of Sahashia gen. nov
期刊论文
CLADISTICS, 2020
Authors:
Zhang, Liang
;
Fan, Xue-Ping
;
Petchsri, Sahanat
;
Zhou, Lin
;
Pollawatn, Rossarin
;
Zhang, Xin
;
Zhou, Xin-Mao
;
Ngan Thi Lu
;
Knapp, Ralf
;
Chantanaorrapint, Sahut
;
Limpanasittichai, Ponpipat
;
Sun, Hang
;
Gao, Xin-Fen
;
Zhang, Li-Bing
View
  |  
Adobe PDF(395Kb)
  |  
Favorite
  |  
View/Download:43/4
  |  
Submit date:2021/01/05