×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [68]
资源植物与生物技术... [48]
昆明植物所硕博研究... [46]
中国科学院东亚植物... [21]
中国西南野生生物种质... [9]
植物化学与西部植物资... [3]
More...
Authors
张石宝 [27]
胡虹 [16]
Yang Yong... [11]
杨云强 [10]
黄伟 [9]
Li X [9]
More...
Document Type
Journal ... [148]
Thesis [46]
Book [24]
Academic p... [1]
Conference... [1]
Date Issued
2021 [5]
2020 [17]
2019 [14]
2018 [13]
2017 [15]
2016 [12]
More...
Language
英语 [123]
中文 [40]
Source Publication
植物分类与资源学报 [10]
PLOS ONE [8]
FRONTIERS ... [7]
Functional... [7]
BioScience [5]
INTERNATIO... [4]
More...
Funding Project
6 could use lots of photosynthates, but contributed little to the accumulation of biomass. 4. Photosynthetic rate of P. armeniacum decreased a little at the noon, and the highest photosynthetic rate was observed at 10:00h in the greenhouse. The variation of photosynthetic rate was in the same trend as stomatal conductance. Higher relative humidity seemed to be the key for higher photosynthetic rate in P. armeniacum. 5. The photosynthetic capacity of C. flavum was statistically larger than that of P. armeniacum. The lower leaf photosynthetic capacity of P. armeniacum was related to its lower leaf nitrogen concentration,leaf phosphorus concentration and enzyme activities. Meanwhile, the extremely lower stomatal conductance and internal mesophyll conductance might greatly limit the photosynthetic capacity of P. armeniacum. The lower stomatal conductance and photosynthetic rate of Paphiopedilum might partially caused by the lack of chloroplasts in the guard cell of Paphiopedilum. Compared with C. flavum, P. armeniacum was more fond of shade environment.6. The short longevity leaf of Cypripedium had bigger photosynthetic capacity and greater potential for fast growth. But the longer LL of Paphiopedilum enhanced nutrient conservation which could compensate its lower photosynthetic capacity. The short longevity leaf of Cypripedium usually had higher photosynthetic rate per unit leaf mass and dark respiration rate, and photosynthetic capacity decreased fast with leaf age. However, for Paphiopedilum, the situation was the opposite. 7. Compared with Cypripedium, Paphiopedilum had higher water use efficiency and lower photosynthetic nitrogen use efficiency. 8. The leaf of Paphiopedilum had higher leaf construction cost and longer repayment time than that of Cypripedium. The leaf structures and physiological functions of Paphiopedilum and Cypripedium reflected the adaptation to their habitats. The leaf morphological and physiological evolution of Paphiopedilum was related to water and resource-conserving traits in the karst habitat. The leaf traits of Cypripedium were the adaptation to the environment rich in water and nutrients but easy to change with seasons.Our results provided evidence of divergent evolution of congeneric orchids under natural selection.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Photosynthetic%2Bnitrogen%2Buse%2Befficiency&order=desc&&fq=dc.project.title_filter%3APaphiopedilum%5C+and%5C+Cypripedium%5C+are%5C+close%5C+relatives%5C+belonging%5C+to%5C+the%5C+subfamily%5C+Cypripedioideae.%5C+However%2C%5C+they%5C+undergo%5C+considerable%5C+divergence%5C+in%5C+the%5C+aspects%5C+of%5C+life%5C+forms%2C%5C+leaf%5C+traits%5C+and%5C+habitats.%5C+In%5C+present%5C+study%2C%5C+leaf%5C+morphologies%5C+and%5C+anatomical%5C+structures%2C%5C+leaf%5C+lifespans%2C%5C+leaf%5C+mass%5C+per%5C+area%2C%5C+photosynthetic%5C+capacities%2C%5C+nutrient%5C+use%5C+efficiencies%2C%5C+leaf%5C+construction%5C+costs%2C%5C+and%5C+maintenance%5C+costs%5C+were%5C+investigated%5C+to%5C+understand%5C+the%5C+relationship%5C+between%5C+leaf%5C+traits%5C+and%5C+ecophysiological%5C+adaptability%5C+of%5C+the%5C+two%5C+types%5C+of%5C+plants%5C+and%5C+explore%5C+the%5C+related%5C+ecological%5C+and%5C+evolutionary%5C+significances.%5C+The%5C+results%5C+suggest%5C+that%5C%3A1.%5C+Compared%5C+with%5C+Cypripedium%2C%5C+Paphiopedilum%5C+was%5C+characterized%5C+by%5C+drought%5C+tolerance%5C+from%5C+its%5C+leaf%5C+anatomical%5C+structure%5C+including%5C+fleshy%5C+leaf%2C%5C+thicker%5C+surface%5C+cuticle%2C%5C+huge%5C+abaxial%5C+epidermis%5C+cells%2C%5C+differentiation%5C+of%5C+palisade%5C+and%5C+spongy%5C+mesophyll%5C+layers%2C%5C+the%5C+prominent%5C+of%5C+mucilaginous%5C+substances%2C%5C+supportable%5C+leaf%5C+main%5C+vein%2C%5C+lower%5C+total%5C+stoma%5C+area%5C+%5C%28%25%5C%29%2C%5C+sunken%5C+stomata%5C+and%5C+special%5C+stoma%5C+structure.%5C+Leaf%5C+morphologies%5C+and%5C+structures%5C+of%5C+Cypripedium%5C+were%5C+to%5C+the%5C+contrary%5C+of%5C+Paphiopedilum.%5C+Leaf%5C+morphologies%5C+and%5C+structures%5C+embodied%5C+the%5C+adaptation%5C+to%5C+the%5C+environment%5C+in%5C+both%5C+Paphiopedilum%5C+and%5C+Cypripedium.%5C+Our%5C+results%5C+also%5C+confirmed%5C+the%5C+previous%5C+observation%5C+that%5C+Paphiopedilum%5C+was%5C+the%5C+only%5C+genus%5C+that%5C+did%5C+not%5C+possess%5C+guard%5C+cell%5C+chloroplasts.2.%5C+The%5C+photosynthetic%5C+capacities%5C+of%5C+P.%5C+armeniacum%5C+leaves%5C+were%5C+different%5C+with%5C+different%5C+leaf%5C+ages.%5C+The%5C+highest%5C+photosynthetic%5C+capacity%5C+occurred%5C+in%5C+leaf%5C+age%5C+1%5C-2%5C+years%2C%5C+followed%5C+by%5C+1%5C+year%5C+and%5C+2%5C-4%5C+years.%5C+The%5C+highest%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+flavum%5C+occurred%5C+in%5C+leaf%5C+age%5C+60%5C+days%2C%5C+followed%5C+by%5C+30%5C+days%2C%5C+90%5C+days%5C+and%5C+120%5C+days.%5C+3.%5C+Photosynthetic%5C+capacities%5C+of%5C+different%5C+leaf%5C+positions%5C+were%5C+mainly%5C+affected%5C+by%5C+leaf%5C+ages%5C+in%5C+P.%5C+armeniacum.%5C+The%5C+four%5C+leaves%5C+lying%5C+on%5C+the%5C+top%5C+did%5C+the%5C+most%5C+accumulation%5C+of%5C+the%5C+assimilation%5C+products%5C+in%5C+the%5C+whole%5C+plant.%5C+The%5C+leaves%5C+of%5C+sequence%5C+number%5C+%3E%5C+6%5C+could%5C+use%5C+lots%5C+of%5C+photosynthates%2C%5C+but%5C+contributed%5C+little%5C+to%5C+the%5C+accumulation%5C+of%5C+biomass.%5C+4.%5C+Photosynthetic%5C+rate%5C+of%5C+P.%5C+armeniacum%5C+decreased%5C+a%5C+little%5C+at%5C+the%5C+noon%2C%5C+and%5C+the%5C+highest%5C+photosynthetic%5C+rate%5C+was%5C+observed%5C+at%5C+10%5C%3A00h%5C+in%5C+the%5C+greenhouse.%5C+The%5C+variation%5C+of%5C+photosynthetic%5C+rate%5C+was%5C+in%5C+the%5C+same%5C+trend%5C+as%5C+stomatal%5C+conductance.%5C+Higher%5C+relative%5C+humidity%5C+seemed%5C+to%5C+be%5C+the%5C+key%5C+for%5C+higher%5C+photosynthetic%5C+rate%5C+in%5C+P.%5C+armeniacum.%5C+5.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+flavum%5C+was%5C+statistically%5C+larger%5C+than%5C+that%5C+of%5C+P.%5C+armeniacum.%5C+The%5C+lower%5C+leaf%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum%5C+was%5C+related%5C+to%5C+its%5C+lower%5C+leaf%5C+nitrogen%5C+concentration%2Cleaf%5C+phosphorus%5C+concentration%5C+and%5C+enzyme%5C+activities.%5C+Meanwhile%2C%5C+the%5C+extremely%5C+lower%5C+stomatal%5C+conductance%5C+and%5C+internal%5C+mesophyll%5C+conductance%5C+might%5C+greatly%5C+limit%5C+the%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum.%5C+The%5C+lower%5C+stomatal%5C+conductance%5C+and%5C+photosynthetic%5C+rate%5C+of%5C+Paphiopedilum%5C+might%5C+partially%5C+caused%5C+by%5C+the%5C+lack%5C+of%5C+chloroplasts%5C+in%5C+the%5C+guard%5C+cell%5C+of%5C+Paphiopedilum.%5C+Compared%5C+with%5C+C.%5C+flavum%2C%5C+P.%5C+armeniacum%5C+was%5C+more%5C+fond%5C+of%5C+shade%5C+environment.6.%5C+The%5C+short%5C+longevity%5C+leaf%5C+of%5C+Cypripedium%5C+had%5C+bigger%5C+photosynthetic%5C+capacity%5C+and%5C+greater%5C+potential%5C+for%5C+fast%5C+growth.%5C+But%5C+the%5C+longer%5C+LL%5C+of%5C+Paphiopedilum%5C+enhanced%5C+nutrient%5C+conservation%5C+which%5C+could%5C+compensate%5C+its%5C+lower%5C+photosynthetic%5C+capacity.%5C+The%5C+short%5C+longevity%5C+leaf%5C+of%5C+Cypripedium%5C+usually%5C+had%5C+higher%5C+photosynthetic%5C+rate%5C+per%5C+unit%5C+leaf%5C+mass%5C+and%5C+dark%5C+respiration%5C+rate%2C%5C+and%5C+photosynthetic%5C+capacity%5C+decreased%5C+fast%5C+with%5C+leaf%5C+age.%5C+However%2C%5C+for%5C+Paphiopedilum%2C%5C+the%5C+situation%5C+was%5C+the%5C+opposite.%5C+7.%5C+Compared%5C+with%5C+Cypripedium%2C%5C+Paphiopedilum%5C+had%5C+higher%5C+water%5C+use%5C+efficiency%5C+and%5C+lower%5C+photosynthetic%5C+nitrogen%5C+use%5C+efficiency.%5C+8.%5C+The%5C+leaf%5C+of%5C+Paphiopedilum%5C+had%5C+higher%5C+leaf%5C+construction%5C+cost%5C+and%5C+longer%5C+repayment%5C+time%5C+than%5C+that%5C+of%5C+Cypripedium.%5C+The%5C+leaf%5C+structures%5C+and%5C+physiological%5C+functions%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+reflected%5C+the%5C+adaptation%5C+to%5C+their%5C+habitats.%5C+The%5C+leaf%5C+morphological%5C+and%5C+physiological%5C+evolution%5C+of%5C+Paphiopedilum%5C+was%5C+related%5C+to%5C+water%5C+and%5C+resource%5C-conserving%5C+traits%5C+in%5C+the%5C+karst%5C+habitat.%5C+The%5C+leaf%5C+traits%5C+of%5C+Cypripedium%5C+were%5C+the%5C+adaptation%5C+to%5C+the%5C+environment%5C+rich%5C+in%5C+water%5C+and%5C+nutrients%5C+but%5C+easy%5C+to%5C+change%5C+with%5C+seasons.Our%5C+results%5C+provided%5C+evidence%5C+of%5C+divergent%5C+evolution%5C+of%5C+congeneric%5C+orchids%5C+under%5C+natural%5C+selection."},{"jsname":"Paphiopedilum and Cypripedium,known as slipper orchids in horticulture, belong to the subfamily Cypripedioideae of the Orchidaceae. Although they are closely related phylogenetically, there are significant differences in leaf traits and geographical distributions between two genera. This dissertation includes the following sections: (1) the leaf functional traits were compared in six species of the two genera; (2) the physiological responses of P. armeniacum to different water regimes, light regimes and low temperature; (3) the leaf phenotypic plastics of C. flavum in response to the different light condition and the photosynthetic characteristics of three Cypripedium species during sexual reproduction. The aims are to understand the convergent and divergent evolution between the two genera in leaf traits and their adaptive significances, and the leaf plastic responses to different levels of resources. Such information could provide scientific basis for conservation and domestication of Paphiopedilum and Cypripedium. The results are given below:1. Compared with Paphiopedilum, Cypripedium showed significantly higher photosynthetic rate (Pmax), leaf nitrogen content (Na), photosynthetic nitrogen utilization (PNUE), the fractions of leaf nitrogen partitioning in carboxylation (PC) and bioenergetics (PB), specific leaf area (SLA), ratio of leaf chlorophyll a and b (Chla/b), but significantly lower leaf construction cost (CC) and the ratio of leaf carbon content to leaf nitrogen (C/N). These leaf traits of Cypripedium are considered as the adaptation to short growing period and rich soil nutrients in the alpine habitats. Conversely, the long life span, low Pmax and mesophyll conductance (gm) but high SLA, CC and C/N in Paphiopedilum indicated that the adaptation to low-light, limited-nutrient habitat in the limestone area. As a sympatric species of Paphiopedilum, C. lentiginosum not only kept phylogenetically leaf traits of Cypripedium, suchas stomatal conductance (gs), Pmax, PNUE and dormant in winter, but also possessed many leaf traits which is similar to that in Paphiopedilum, such as relative stomatal limitations (RSL), gm, the ratio of leaf chlorophyll a and b (Chl a/b), fraction of leaf nitrogen allocated to light-harvesting components (PL). These results indicated the convergent and divergent evolution of Paphiopedilum and Cypripedium in leaf traits.2. Paphiopedilum. armeniacum exhibited a high plasticity of leaf photosynthetic function in response to different light regimes, but the responses changes with the time. Due to grow under low light habitat, P. armeniacum grown under 50% shade (HL) had the significantly lowest Pmax than the plants grown under 75% shade (ML) and 95% shade (LL) after six months. However, after twelve months, the Pmax of the plants grown under HL increased significantly and then became the highest one among three levels of light. It is also found that leaf dry mass per unit area (LMA), leaf stomatal conductance (gS), internal mesophyll conductance (gm), the fraction of leaf nitrogen partitioning in photosynthetic carboxylation (PC), bioeneretics (PB) were greatly influenced by irradiance. The plants grown under HL increased gS, gm, PC, PB to increase Pmax. In addition, the plants grown under HL had the highest ratio of total chlorophyll content to total Carotenoid content (Car/Chl) while the plants grown under LL had the lowest ratio of leaf chlorophyll a and b (Chl a/b). As a result, plasticity of leaf photosynthetic physiology of P. armeniacum in response to different light regimes depended largely on leaf nitrogen partitioning and leaf structure. As for the numbers of flowering and fruiting, ML was the best light level.3. The responses of P. armeniacum to different water regimes were not significantly different. But the Pmax and the maximum photochemical efficiency of PSⅡ (Fv/Fm) decreased with the increased frequency of watering. The reasons were that the plants have high respiration rate (Rd) and make more use of light energy to oxidation cycle. The plants watered every eight days (MW) and every twenty days (LW) had higher Pmax than the plant watered every four days (HW) mainly because of the higher PC and PB. Besides, the leaves of P. armeniacum had excellent property for holding water also contributed to the high photosynthetic capacity.4. Paphiopedilum. armeniacum was very sensitive to the low temperature. The plants significantly decreased photosynthetic capacity after grown under 4℃ for three days and the photosynthetic machinery was destroyed after fifteen days. The photosynthetic capacity of P. armeniacum exhibited no change at 10℃ and 15℃.5. Cypripedium flavum of four habitats (DB, XRD, XZD and TSQ) with different light intensity exhibited different photosynthetic characteristics after transplanted to the same environment in Kunming. Among the habitats, the light intensity of DB was the highest while XRD was the lowest. The light intensity of XZD and TSQ were not significantly difference. Among all the plants in Kunming, the plants of DB had the significantly highest Pmax but the plants of XRD had the lowest Pmax. The light saturation point (LSP) and photosynthetic nitrogen use efficiency (PNUE) agreed well with the light intensity of four habitats and contributed to the high Pmax of DB. The LMA, Chl and leaf nitrogen content were not different among all the plants. C. flavum exhibited sensitively response to the change of light in leaf construction while kept the plasticity of leaf photosynthetic characteristics which developed from its own habitat.6. The photosynthetic capacity of C. tibeticum and C. flavum were significantly increased at the flowering stage. For these two species, the significantly increased Amax were closely related to the maximum carboxylation rate by ribulose-1, 5-bisphosphate carboxylase/oxygenase (Vcmax), photon saturated rate of electron transport (Jmax), the rate of triose phosphate utilization (TPU) and actual quantum efficiency of the photosystem II photochemistry (ΦPSII) respectively. However, flowering almost did not affect the photosynthetic capacity of C. guttatum. C. guttatum had the smallest plant size, the leaf area, the volume of labellum and the volume of fruit, but the biggest fruit volume per leaf area among three species. These results indicated that for C. flavum and C. tibeticum there were a physiological mechanism in photosynthesis to compensate the cost of flowering as well as increased resource acquisitions, which would be beneficial to the survival or future flowering of the plant. C. gutattum could keep a steady photosynthetic capacity during life history. This kind of pattern could decrease the effect of the reproductive costs as much as possible. In contrast to C. flavum and C. tibeticum, C. gutattum possessed a more economical and effective reproductive pattern which maybe related to its wider distribution.In conclusion, Paphiopedilum and Cypripedium have significantly different leaf traits which agree well with their habitats and there is a divergent and convergent evolution between the two genera. P. armeniacum is much tolerant and responsive to varying water and light availability but very sensitivity to the low temperature. Confronting the suddenly change of light environment, C. flavum can respond sensitively to the change of light in leaf construction but the plasticity of leaf photosynthetic characteristics which developed from its own habitat can hold for the next growing season. In contrast to C. flavum and C. tibeticum, C. gutattum possesses a more economical and effective reproductive pattern which maybe related to its wider distribution. The study of the relationship between the two genera, the response and tolerance to the environmental factors of the two genera are important for understanding the adaptation and evolution of the Cypripedioideae.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Photosynthetic%2Bnitrogen%2Buse%2Befficiency&order=desc&&fq=dc.project.title_filter%3APaphiopedilum%5C+and%5C+Cypripedium%EF%BC%8Cknown%5C+as%5C+slipper%5C+orchids%5C+in%5C+horticulture%2C%5C+belong%5C+to%5C+the%5C+subfamily%5C+Cypripedioideae%5C+of%5C+the%5C+Orchidaceae.%5C+Although%5C+they%5C+are%5C+closely%5C+related%5C+phylogenetically%2C%5C+there%5C+are%5C+significant%5C+differences%5C+in%5C+leaf%5C+traits%5C+and%5C+geographical%5C+distributions%5C+between%5C+two%5C+genera.%5C+This%5C+dissertation%5C+includes%5C+the%5C+following%5C+sections%5C%3A%5C+%5C%281%5C%29%5C+the%5C+leaf%5C+functional%5C+traits%5C+were%5C+compared%5C+in%5C+six%5C+species%5C+of%5C+the%5C+two%5C+genera%5C%3B%5C+%5C%282%5C%29%5C+the%5C+physiological%5C+responses%5C+of%5C+P.%5C+armeniacum%5C+to%5C+different%5C+water%5C+regimes%2C%5C+light%5C+regimes%5C+and%5C+low%5C+temperature%5C%3B%5C+%5C%283%5C%29%5C+the%5C+leaf%5C+phenotypic%5C+plastics%5C+of%5C+C.%5C+flavum%5C+in%5C+response%5C+to%5C+the%5C+different%5C+light%5C+condition%5C+and%5C+the%5C+photosynthetic%5C+characteristics%5C+of%5C+three%5C+Cypripedium%5C+species%5C+during%5C+sexual%5C+reproduction.%5C+The%5C+aims%5C+are%5C+to%5C+understand%5C+the%5C+convergent%5C+and%5C+divergent%5C+evolution%5C+between%5C+the%5C+two%5C+genera%5C+in%5C+leaf%5C+traits%5C+and%5C+their%5C+adaptive%5C+significances%2C%5C+and%5C+the%5C+leaf%5C+plastic%5C+responses%5C+to%5C+different%5C+levels%5C+of%5C+resources.%5C+Such%5C+information%5C+could%5C+provide%5C+scientific%5C+basis%5C+for%5C+conservation%5C+and%5C+domestication%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium.%5C+The%5C+results%5C+are%5C+given%5C+below%5C%3A1.%5C+Compared%5C+with%5C+Paphiopedilum%2C%5C+Cypripedium%5C+showed%5C+significantly%5C+higher%5C+photosynthetic%5C+rate%5C+%5C%28Pmax%5C%29%2C%5C+leaf%5C+nitrogen%5C+content%5C+%5C%28Na%5C%29%2C%5C+photosynthetic%5C+nitrogen%5C+utilization%5C+%5C%28PNUE%5C%29%2C%5C+the%5C+fractions%5C+of%5C+leaf%5C+nitrogen%5C+partitioning%5C+in%5C+carboxylation%5C+%5C%28PC%5C%29%5C+and%5C+bioenergetics%5C+%5C%28PB%5C%29%2C%5C+specific%5C+leaf%5C+area%5C+%5C%28SLA%5C%29%2C%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chla%5C%2Fb%5C%29%2C%5C+but%5C+significantly%5C+lower%5C+leaf%5C+construction%5C+cost%5C+%5C%28CC%5C%29%5C+and%5C+the%5C+ratio%5C+of%5C+leaf%5C+carbon%5C+content%5C+to%5C+leaf%5C+nitrogen%5C+%5C%28C%5C%2FN%5C%29.%5C+These%5C+leaf%5C+traits%5C+of%5C+Cypripedium%5C+are%5C+considered%5C+as%5C+the%5C+adaptation%5C+to%5C+short%5C+growing%5C+period%5C+and%5C+rich%5C+soil%5C+nutrients%5C+in%5C+the%5C+alpine%5C+habitats.%5C+Conversely%2C%5C+the%5C+long%5C+life%5C+span%2C%5C+low%5C+Pmax%5C+and%5C+mesophyll%5C+conductance%5C+%5C%28gm%5C%29%5C+but%5C+high%5C+SLA%2C%5C+CC%5C+and%5C+C%5C%2FN%5C+in%5C+Paphiopedilum%5C+indicated%5C+that%5C+the%5C+adaptation%5C+to%5C+low%5C-light%2C%5C+limited%5C-nutrient%5C+habitat%5C+in%5C+the%5C+limestone%5C+area.%5C+As%5C+a%5C+sympatric%5C+species%5C+of%5C+Paphiopedilum%2C%5C+C.%5C+lentiginosum%5C+not%5C+only%5C+kept%5C+phylogenetically%5C+leaf%5C+traits%5C+of%5C+Cypripedium%2C%5C+suchas%5C+stomatal%5C+conductance%5C+%5C%28gs%5C%29%2C%5C+Pmax%2C%5C+PNUE%5C+and%5C+dormant%5C+in%5C+winter%2C%5C+but%5C+also%5C+possessed%5C+many%5C+leaf%5C+traits%5C+which%5C+is%5C+similar%5C+to%5C+that%5C+in%5C+Paphiopedilum%2C%5C+such%5C+as%5C+relative%5C+stomatal%5C+limitations%5C+%5C%28RSL%5C%29%2C%5C+gm%2C%5C+the%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chl%5C+a%5C%2Fb%5C%29%2C%5C+fraction%5C+of%5C+leaf%5C+nitrogen%5C+allocated%5C+to%5C+light%5C-harvesting%5C+components%5C+%5C%28PL%5C%29.%5C+These%5C+results%5C+indicated%5C+the%5C+convergent%5C+and%5C+divergent%5C+evolution%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+in%5C+leaf%5C+traits.2.%5C+Paphiopedilum.%5C+armeniacum%5C+exhibited%5C+a%5C+high%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+function%5C+in%5C+response%5C+to%5C+different%5C+light%5C+regimes%2C%5C+but%5C+the%5C+responses%5C+changes%5C+with%5C+the%5C+time.%5C+Due%5C+to%5C+grow%5C+under%5C+low%5C+light%5C+habitat%2C%5C+P.%5C+armeniacum%5C+grown%5C+under%5C+50%25%5C+shade%5C+%5C%28HL%5C%29%5C+had%5C+the%5C+significantly%5C+lowest%5C+Pmax%5C+than%5C+the%5C+plants%5C+grown%5C+under%5C+75%25%5C+shade%5C+%5C%28ML%5C%29%5C+and%5C+95%25%5C+shade%5C+%5C%28LL%5C%29%5C+after%5C+six%5C+months.%5C+However%2C%5C+after%5C+twelve%5C+months%2C%5C+the%5C+Pmax%5C+of%5C+the%5C+plants%5C+grown%5C+under%5C+HL%5C+increased%5C+significantly%5C+and%5C+then%5C+became%5C+the%5C+highest%5C+one%5C+among%5C+three%5C+levels%5C+of%5C+light.%5C+It%5C+is%5C+also%5C+found%5C+that%5C+leaf%5C+dry%5C+mass%5C+per%5C+unit%5C+area%5C+%5C%28LMA%5C%29%2C%5C+leaf%5C+stomatal%5C+conductance%5C+%5C%28gS%5C%29%2C%5C+internal%5C+mesophyll%5C+conductance%5C+%5C%28gm%5C%29%2C%5C+the%5C+fraction%5C+of%5C+leaf%5C+nitrogen%5C+partitioning%5C+in%5C+photosynthetic%5C+carboxylation%5C+%5C%28PC%5C%29%2C%5C+bioeneretics%5C+%5C%28PB%5C%29%5C+were%5C+greatly%5C+influenced%5C+by%5C+irradiance.%5C+The%5C+plants%5C+grown%5C+under%5C+HL%5C+increased%5C+gS%2C%5C+gm%2C%5C+PC%2C%5C+PB%5C+to%5C+increase%5C+Pmax.%5C+In%5C+addition%2C%5C+the%5C+plants%5C+grown%5C+under%5C+HL%5C+had%5C+the%5C+highest%5C+ratio%5C+of%5C+total%5C+chlorophyll%5C+content%5C+to%5C+total%5C+Carotenoid%5C+content%5C+%5C%28Car%5C%2FChl%5C%29%5C+while%5C+the%5C+plants%5C+grown%5C+under%5C+LL%5C+had%5C+the%5C+lowest%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chl%5C+a%5C%2Fb%5C%29.%5C+As%5C+a%5C+result%2C%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+physiology%5C+of%5C+P.%5C+armeniacum%5C+in%5C+response%5C+to%5C+different%5C+light%5C+regimes%5C+depended%5C+largely%5C+on%5C+leaf%5C+nitrogen%5C+partitioning%5C+and%5C+leaf%5C+structure.%5C+As%5C+for%5C+the%5C+numbers%5C+of%5C+flowering%5C+and%5C+fruiting%2C%5C+ML%5C+was%5C+the%5C+best%5C+light%5C+level.3.%5C+The%5C+responses%5C+of%5C+P.%5C+armeniacum%5C+to%5C+different%5C+water%5C+regimes%5C+were%5C+not%5C+significantly%5C+different.%5C+But%5C+the%5C+Pmax%5C+and%5C+the%5C+maximum%5C+photochemical%5C+efficiency%5C+of%5C+PS%E2%85%A1%5C+%5C%28Fv%5C%2FFm%5C%29%5C+decreased%5C+with%5C+the%5C+increased%5C+frequency%5C+of%5C+watering.%5C+The%5C+reasons%5C+were%5C+that%5C+the%5C+plants%5C+have%5C+high%5C+respiration%5C+rate%5C+%5C%28Rd%5C%29%5C+and%5C+make%5C+more%5C+use%5C+of%5C+light%5C+energy%5C+to%5C+oxidation%5C+cycle.%5C+The%5C+plants%5C+watered%5C+every%5C+eight%5C+days%5C+%5C%28MW%5C%29%5C+and%5C+every%5C+twenty%5C+days%5C+%5C%28LW%5C%29%5C+had%5C+higher%5C+Pmax%5C+than%5C+the%5C+plant%5C+watered%5C+every%5C+four%5C+days%5C+%5C%28HW%5C%29%5C+mainly%5C+because%5C+of%5C+the%5C+higher%5C+PC%5C+and%5C+PB.%5C+Besides%2C%5C+the%5C+leaves%5C+of%5C+P.%5C+armeniacum%5C+had%5C+excellent%5C+property%5C+for%5C+holding%5C+water%5C+also%5C+contributed%5C+to%5C+the%5C+high%5C+photosynthetic%5C+capacity.4.%5C+Paphiopedilum.%5C+armeniacum%5C+was%5C+very%5C+sensitive%5C+to%5C+the%5C+low%5C+temperature.%5C+The%5C+plants%5C+significantly%5C+decreased%5C+photosynthetic%5C+capacity%5C+after%5C+grown%5C+under%5C+4%E2%84%83%5C+for%5C+three%5C+days%5C+and%5C+the%5C+photosynthetic%5C+machinery%5C+was%5C+destroyed%5C+after%5C+fifteen%5C+days.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum%5C+exhibited%5C+no%5C+change%5C+at%5C+10%E2%84%83%5C+and%5C+15%E2%84%83.5.%5C+Cypripedium%5C+flavum%5C+of%5C+four%5C+habitats%5C+%5C%28DB%2C%5C+XRD%2C%5C+XZD%5C+and%5C+TSQ%5C%29%5C+with%5C+different%5C+light%5C+intensity%5C+exhibited%5C+different%5C+photosynthetic%5C+characteristics%5C+after%5C+transplanted%5C+to%5C+the%5C+same%5C+environment%5C+in%5C+Kunming.%5C+Among%5C+the%5C+habitats%2C%5C+the%5C+light%5C+intensity%5C+of%5C+DB%5C+was%5C+the%5C+highest%5C+while%5C+XRD%5C+was%5C+the%5C+lowest.%5C+The%5C+light%5C+intensity%5C+of%5C+XZD%5C+and%5C+TSQ%5C+were%5C+not%5C+significantly%5C+difference.%5C+Among%5C+all%5C+the%5C+plants%5C+in%5C+Kunming%2C%5C+the%5C+plants%5C+of%5C+DB%5C+had%5C+the%5C+significantly%5C+highest%5C+Pmax%5C+but%5C+the%5C+plants%5C+of%5C+XRD%5C+had%5C+the%5C+lowest%5C+Pmax.%5C+The%5C+light%5C+saturation%5C+point%5C+%5C%28LSP%5C%29%5C+and%5C+photosynthetic%5C+nitrogen%5C+use%5C+efficiency%5C+%5C%28PNUE%5C%29%5C+agreed%5C+well%5C+with%5C+the%5C+light%5C+intensity%5C+of%5C+four%5C+habitats%5C+and%5C+contributed%5C+to%5C+the%5C+high%5C+Pmax%5C+of%5C+DB.%5C+The%5C+LMA%2C%5C+Chl%5C+and%5C+leaf%5C+nitrogen%5C+content%5C+were%5C+not%5C+different%5C+among%5C+all%5C+the%5C+plants.%5C+C.%5C+flavum%5C+exhibited%5C+sensitively%5C+response%5C+to%5C+the%5C+change%5C+of%5C+light%5C+in%5C+leaf%5C+construction%5C+while%5C+kept%5C+the%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+characteristics%5C+which%5C+developed%5C+from%5C+its%5C+own%5C+habitat.6.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+tibeticum%5C+and%5C+C.%5C+flavum%5C+were%5C+significantly%5C+increased%5C+at%5C+the%5C+flowering%5C+stage.%5C+For%5C+these%5C+two%5C+species%2C%5C+the%5C+significantly%5C+increased%5C+Amax%5C+were%5C+closely%5C+related%5C+to%5C+the%5C+maximum%5C+carboxylation%5C+rate%5C+by%5C+ribulose%5C-1%2C%5C+5%5C-bisphosphate%5C+carboxylase%5C%2Foxygenase%5C+%5C%28Vcmax%5C%29%2C%5C+photon%5C+saturated%5C+rate%5C+of%5C+electron%5C+transport%5C+%5C%28Jmax%5C%29%2C%5C+the%5C+rate%5C+of%5C+triose%5C+phosphate%5C+utilization%5C+%5C%28TPU%5C%29%5C+and%5C+actual%5C+quantum%5C+efficiency%5C+of%5C+the%5C+photosystem%5C+II%5C+photochemistry%5C+%5C%28%CE%A6PSII%5C%29%5C+respectively.%5C+However%2C%5C+flowering%5C+almost%5C+did%5C+not%5C+affect%5C+the%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+guttatum.%5C+C.%5C+guttatum%5C+had%5C+the%5C+smallest%5C+plant%5C+size%2C%5C+the%5C+leaf%5C+area%2C%5C+the%5C+volume%5C+of%5C+labellum%5C+and%5C+the%5C+volume%5C+of%5C+fruit%2C%5C+but%5C+the%5C+biggest%5C+fruit%5C+volume%5C+per%5C+leaf%5C+area%5C+among%5C+three%5C+species.%5C+These%5C+results%5C+indicated%5C+that%5C+for%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%5C+there%5C+were%5C+a%5C+physiological%5C+mechanism%5C+in%5C+photosynthesis%5C+to%5C+compensate%5C+the%5C+cost%5C+of%5C+flowering%5C+as%5C+well%5C+as%5C+increased%5C+resource%5C+acquisitions%2C%5C+which%5C+would%5C+be%5C+beneficial%5C+to%5C+the%5C+survival%5C+or%5C+future%5C+flowering%5C+of%5C+the%5C+plant.%5C+C.%5C+gutattum%5C+could%5C+keep%5C+a%5C+steady%5C+photosynthetic%5C+capacity%5C+during%5C+life%5C+history.%5C+This%5C+kind%5C+of%5C+pattern%5C+could%5C+decrease%5C+the%5C+effect%5C+of%5C+the%5C+reproductive%5C+costs%5C+as%5C+much%5C+as%5C+possible.%5C+In%5C+contrast%5C+to%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%2C%5C+C.%5C+gutattum%5C+possessed%5C+a%5C+more%5C+economical%5C+and%5C+effective%5C+reproductive%5C+pattern%5C+which%5C+maybe%5C+related%5C+to%5C+its%5C+wider%5C+distribution.In%5C+conclusion%2C%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+have%5C+significantly%5C+different%5C+leaf%5C+traits%5C+which%5C+agree%5C+well%5C+with%5C+their%5C+habitats%5C+and%5C+there%5C+is%5C+a%5C+divergent%5C+and%5C+convergent%5C+evolution%5C+between%5C+the%5C+two%5C+genera.%5C+P.%5C+armeniacum%5C+is%5C+much%5C+tolerant%5C+and%5C+responsive%5C+to%5C+varying%5C+water%5C+and%5C+light%5C+availability%5C+but%5C+very%5C+sensitivity%5C+to%5C+the%5C+low%5C+temperature.%5C+Confronting%5C+the%5C+suddenly%5C+change%5C+of%5C+light%5C+environment%2C%5C+C.%5C+flavum%5C+can%5C+respond%5C+sensitively%5C+to%5C+the%5C+change%5C+of%5C+light%5C+in%5C+leaf%5C+construction%5C+but%5C+the%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+characteristics%5C+which%5C+developed%5C+from%5C+its%5C+own%5C+habitat%5C+can%5C+hold%5C+for%5C+the%5C+next%5C+growing%5C+season.%5C+In%5C+contrast%5C+to%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%2C%5C+C.%5C+gutattum%5C+possesses%5C+a%5C+more%5C+economical%5C+and%5C+effective%5C+reproductive%5C+pattern%5C+which%5C+maybe%5C+related%5C+to%5C+its%5C+wider%5C+distribution.%5C+The%5C+study%5C+of%5C+the%5C+relationship%5C+between%5C+the%5C+two%5C+genera%2C%5C+the%5C+response%5C+and%5C+tolerance%5C+to%5C+the%5C+environmental%5C+factors%5C+of%5C+the%5C+two%5C+genera%5C+are%5C+important%5C+for%5C+understanding%5C+the%5C+adaptation%5C+and%5C+evolution%5C+of%5C+the%5C+Cypripedioideae."},{"jsname":"Russian Science Foundation[16-14-10208]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Photosynthetic%2Bnitrogen%2Buse%2Befficiency&order=desc&&fq=dc.project.title_filter%3ARussian%5C+Science%5C+Foundation%5C%5B16%5C-14%5C-10208%5C%5D"},{"jsname":"lastIndexed","jscount":"2024-12-02"}],"Funding Project","dc.project.title_filter")'>
''Investis... [1]
1ncarville... [1]
BRIDGE Pro... [1]
CAS Key La... [1]
CAS Pionee... [1]
COILEX[CGL... [1]
More...
Indexed By
SCI [78]
CSCD [8]
Funding Organization
National N... [3]
Natural Sc... [3]
31370362 [2]
31501034) [2]
Major Stat... [2]
NSFC(31401... [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 220
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Boron in plants: deficiency and toxicity
期刊论文
出版物, 3111, 期号: 0, 页码: 1—24
Authors:
Juan J. Camacho-Cristóbal
;
Jesús Rexach
;
Agustín González-Fontes
Adobe PDF(123Kb)
  |  
Favorite
  |  
View/Download:179/1
  |  
Submit date:2017/07/21
Within-branch photosynthetic gradients are more related to the coordinated investments of nitrogen and water than leaf mass per area
期刊论文
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 卷号: 198, 页码: 107681
Authors:
Wang,Xiao-Qian
;
Sun,Hu
;
Zeng,Zhi-Lan
;
Huang,Wei
View
  |  
Adobe PDF(4620Kb)
  |  
Favorite
  |  
View/Download:42/9
  |  
Submit date:2024/07/17
Photosynthesis
Leaf nitrogen content
Stomatal conductance
Mesophyll conductance
Photosynthetic nitrogen use efficiency
Leaf mass per area
MESOPHYLL DIFFUSION CONDUCTANCE
CO2 ASSIMILATION
ANATOMICAL CHARACTERISTICS
TEMPERATURE-DEPENDENCE
STOMATAL CONDUCTANCE
LIGHT-ACCLIMATION
GAS-EXCHANGE
SHADE LEAVES
DRY MASS
CAPACITY
Fungal succession in decomposing woody debris across a tropical forest disturbance gradient
期刊论文
SOIL BIOLOGY & BIOCHEMISTRY, 2021, 卷号: 155, 页码: 108142
Authors:
Dossa,Gbadamassi G. O.
;
Yang,Yun-Qiang
;
Hu,Weiming
;
Paudel,Ekananda
;
Schaefer,Douglas
;
Yang,Yong-Ping
;
Cao,Kun-Fang
;
Xu,Jian-Chu
;
Bushley,Kathryn E.
;
Harrison,Rhett D.
View
  |  
Adobe PDF(6343Kb)
  |  
Favorite
  |  
View/Download:165/23
  |  
Submit date:2022/04/02
Carbon cycle
Coarse woody debris
Decomposition
Fungi
Ecosystem function
Landscape
Tropical forest
Wood density
INHABITING FUNGI
DECAY
DIVERSITY
BARK
COMMUNITIES
TERMITES
Elevation-specific responses of phenology in evergreen oaks from their low-dry to their extreme high-cold range limits in the SE Himalaya
期刊论文
ALPINE BOTANY, 2021, 卷号: 131, 期号: 1, 页码: 89-102
Authors:
Wang,Song-Wei
;
He,Xiao-Fang
;
Chen,Jian-Guo
;
Sun,Hang
;
Koerner,Christian
;
Yang,Yang
View
  |  
Adobe PDF(3532Kb)
  |  
Favorite
  |  
View/Download:160/18
  |  
Submit date:2022/04/02
Drought
Low temperature
Leaf traits
Growth
Mountain
Niche boundary
Quercus
BUD-BURST
LOW-TEMPERATURE
TREE PHENOLOGY
LEAF PHENOLOGY
SPRING FROST
SESSILE OAK
GROWTH
QUERCUS
POPULATIONS
DROUGHT
Water relations of trailing-edge evergreen oaks in the semi-arid upper Yangtze region, SE Himalaya
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 卷号: 59, 期号: 6, 页码: 1256-1265
Authors:
He,Xiao-Fang
;
Wang,Song-Wei
;
Sun,Hang
;
Koerner,Christian
;
Yang,Yang
View
  |  
Adobe PDF(917Kb)
  |  
Favorite
  |  
View/Download:169/57
  |  
Submit date:2022/04/02
adaptation
Himalaya
monsoon climate
Quercus
species distribution
water stress
CARBON ISOTOPE DISCRIMINATION
SOUTHERN RANGE-EDGE
QUERCUS-ROBUR
GROWTH DECLINE
USE EFFICIENCY
FOREST TREES
RESPONSES
DROUGHT
PHOTOSYNTHESIS
ILEX
Vegetative anatomy and photosynthetic performance of the only known winter-green Cypripedium species: implications for divergent and convergent evolution of slipper orchids
期刊论文
BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 2021, 卷号: 197, 期号: 4, 页码: 527-540
Authors:
Zhang,Wei
;
Feng,Jing-Qiu
;
Kong,Ji-Jun
;
Sun,Lu
;
Fan,Ze-Xin
;
Jiang,Hong
;
Zhang,Shi-Bao
View
  |  
Adobe PDF(3594Kb)
  |  
Favorite
  |  
View/Download:131/18
  |  
Submit date:2022/04/02
Cypripedioideae
Cypripedium subtropicum
endangered plant
habit shift
leaf trait
Paphiopedilum
physiological diversity
photosynthetic acclimation
DECIDUOUS LEAVES
LEAF ANATOMY
ACCLIMATION
PAPHIOPEDILUM
POPULATIONS
IRRADIANCE
RESPONSES
CHLOROPLAST
MANAGEMENT
CALCEOLUS
Effect of elevation on photosynthesis of young mango (Mangifera indica L.) trees
期刊论文
PHOTOSYNTHETICA, 2021, 卷号: 59, 期号: 4, 页码: 508-516
Authors:
Wubshet,T. T.
;
Wang,Z.
;
Yang,J.
;
Chen,H.
;
Schaefer,D. A.
;
Goldberg,S. D.
;
Mortimer,P. E.
;
Lu,P.
;
Xu,J.
Favorite
  |  
View/Download:79/0
  |  
Submit date:2022/04/02
cultivar
elevation
gas exchange
leaf nitrogen
mango
photosynthesis
WATER-USE EFFICIENCY
GAS-EXCHANGE
CHLOROPHYLL FLUORESCENCE
STOMATAL CONDUCTANCE
QUANTUM YIELDS
LEAF NITROGEN
DIFFERENT ALTITUDES
CO2 UPTAKE
CAPACITY
LEAVES
兰科植物根的功能性状及其对水分变化的适应研究
学位论文
, 2020
Authors:
齐颖
Adobe PDF(5035Kb)
  |  
Favorite
  |  
View/Download:246/0
  |  
Submit date:2023/11/02
拟南芥丝氨酸羧肽酶类蛋白41(Serine Carboxypeptidase-like 41)基因功能研究
学位论文
, 2020
Authors:
陈娟
Adobe PDF(6469Kb)
  |  
Favorite
  |  
View/Download:33/0
  |  
Submit date:2023/11/02
金沙江干热河谷长穗高山栎适应策略及其生态恢复应用初探
学位论文
, 2020
Authors:
何小芳
Adobe PDF(2872Kb)
  |  
Favorite
  |  
View/Download:29/1
  |  
Submit date:2023/11/02