×
验证码:
换一张
忘记密码?
记住我
×
登录
中文版
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
登录
注册
ALL
ORCID
题名
作者
学科领域
关键词
资助项目
文献类型
出处
收录类别
出版者
发表日期
存缴日期
学科门类
学习讨论厅
图片搜索
粘贴图片网址
首页
研究单元&专题
作者
文献类型
学科分类
知识图谱
新闻&公告
在结果中检索
研究单元&专题
共享文献 [315]
中国科学院东亚植... [207]
昆明植物所硕博研... [145]
资源植物与生物技术... [99]
中国西南野生生物种... [92]
植物化学与西部植物... [65]
更多...
作者
李德铢 [89]
孙航 [62]
许建初 [56]
高立志 [34]
王红 [32]
杨永平 [26]
更多...
文献类型
期刊论文 [964]
学位论文 [145]
专著 [64]
会议论文 [3]
其他 [3]
会议录 [1]
更多...
发表日期
2023 [28]
2021 [83]
2020 [143]
2019 [109]
2018 [58]
2017 [89]
更多...
语种
英语 [672]
中文 [78]
出处
PLOS ONE [38]
FUNGAL DI... [29]
nature [27]
MOLECULAR... [24]
FRONTIERS... [23]
SCIENTIFI... [23]
更多...
资助项目
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Czech Science Foundation[15-23242S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%5C%5B15%5C-23242S%5C%5D"},{"jsname":"Czech Science Foundation[16-26369S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%5C%5B16%5C-26369S%5C%5D"},{"jsname":"Fundamental Research Funds for the Central Universities[17l-gzd24]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AFundamental%5C+Research%5C+Funds%5C+for%5C+the%5C+Central%5C+Universities%5C%5B17l%5C-gzd24%5C%5D"},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Hong Kong Research Grants Council[CRCG 10205773]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AHong%5C+Kong%5C+Research%5C+Grants%5C+Council%5C%5BCRCG%5C+10205773%5C%5D"},{"jsname":"Hong Kong Research Grants Council[HKU 7322/04 M]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AHong%5C+Kong%5C+Research%5C+Grants%5C+Council%5C%5BHKU%5C+7322%5C%2F04%5C+M%5C%5D"},{"jsname":"ITC Research Fund from the Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AITC%5C+Research%5C+Fund%5C+from%5C+the%5C+Faculty%5C+of%5C+Geo%5C-Information%5C+Science%5C+and%5C+Earth%5C+Observation%5C+%5C%28ITC%5C%29%2C%5C+University%5C+of%5C+Twente%2C%5C+the%5C+Netherlands"},{"jsname":"Interdisciplinary Research Project of Kunming Institute of Botany[KIB2017003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AInterdisciplinary%5C+Research%5C+Project%5C+of%5C+Kunming%5C+Institute%5C+of%5C+Botany%5C%5BKIB2017003%5C%5D"},{"jsname":"Joint Fund of National Natural Science Foundation of China-Yunnan Province[U1502261]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PROVIDES%2BINSIGHTS&order=desc&&fq=dc.project.title_filter%3AJoint%5C+Fund%5C+of%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C-Yunnan%5C+Province%5C%5BU1502261%5C%5D"},{"jsname":"lastIndexed","jscount":"2025-06-04"}],"资助项目","dc.project.title_filter")'>
National K... [2]
Science Re... [2]
Science an... [2]
CAS Key La... [1]
CAS Pionee... [1]
CAS Presid... [1]
更多...
收录类别
SCI [521]
CSCD [11]
SSCI [11]
IC [2]
BSCI [1]
ISTP [1]
更多...
资助机构
National K... [9]
National N... [8]
Chinese Ac... [6]
CAS/SAFEA ... [5]
Chinese Ac... [5]
Chinese Ac... [4]
更多...
×
知识图谱
KIB OpenIR
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
QQ客服
官方微博
反馈留言
浏览/检索结果:
共1180条,第1-10条
帮助
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
WOS被引频次升序
WOS被引频次降序
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
期刊影响因子升序
期刊影响因子降序
Systematics and Biogeography of Aralia L. (Araliaceae):Revision of Aralia Sects. Aralia, Humiles, Nanae, andSciadodendron
期刊论文
出版物, 3111, 卷号: 57, 期号: 0, 页码: 1-172
作者:
Jun Wen
Adobe PDF(7233Kb)
  |  
收藏
  |  
浏览/下载:472/8
  |  
提交时间:2017/07/24
Aralia
Aralia Sect. Aralia
Aralia Sect. Dimorphanthus
Aralia Sect. Humiles
Aralia Sect. Nanae
Aralia Sect. pentapanax
Aralia Sect. Sciadodendron
Biogeography
Araliaceae
Systematics
A Global Indicator for Biological Invasion
期刊论文
Conservation Biology, 3111, 卷号: 20, 页码: 1635–1646
作者:
Eugene M McCarthy
;
Jingdong Liu
;
Gao Lizhi
;
John F McDonald
Adobe PDF(233Kb)
  |  
收藏
  |  
浏览/下载:361/4
  |  
提交时间:2017/07/19
Effects of CO-RM2 on LPS-induced vascular cell adhesion molecule-1 expression and leukocyte adhesion in human rheumatoid synovial fibroblasts
期刊论文
出版物, 3111, 期号: 0, 页码: 1-44
作者:
Pei-Ling Chi
;
Yu-Chen Chuang
;
Yu-Wen Chen
;
Chih-Chung Lin
;
Li-Der Hsiao
;
Chuen-Mao Yang
Adobe PDF(1319Kb)
  |  
收藏
  |  
浏览/下载:320/1
  |  
提交时间:2017/07/24
Carbon Monoxide
Lipopolysaccharide
Vcam-1
Leukocyte Adhesion
The pharmacokinetics of anthocyanins and their metabolites in humans
期刊论文
出版物, 3111, 期号: 0, 页码: 1-37
作者:
R M de Ferrars
;
C Czank
;
Q Zhang
;
N P Botting
;
P A Kroon
;
A Cassidy
;
C D Kay
Adobe PDF(1873Kb)
  |  
收藏
  |  
浏览/下载:299/1
  |  
提交时间:2017/07/24
Anthocyanins
Metabolites
Hippuric Acid
Ferulic Acid
Vanillic Acid
A fifty-locus phylogenetic analysis provides deep insights into the phylogeny of Tricholoma (Tricholomataceae, Agaricales)
期刊论文
PERSOONIA, 2023, 卷号: 50, 页码: 1-26
作者:
Ding,X. X.
;
Xu,X.
;
Kost,G.
;
Cui,Y. Y.
;
Wang,P. M.
;
Yang,Z. L.
浏览
  |  
Adobe PDF(891Kb)
  |  
收藏
  |  
浏览/下载:160/30
  |  
提交时间:2024/07/17
ectomycorrhizal fungi
new sections
new subgenus
systematics
taxonomy
SECT. GENUINA AGARICALES
ECTOMYCORRHIZAL FUNGI
MONOTROPOIDEAE ERICACEAE
SPECIES DELIMITATION
MOLECULAR PHYLOGENY
GENETIC DIVERSITY
MATSUTAKE
SPECIFICITY
SEQUENCES
INFERENCE
Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness
期刊论文
PLANT SCIENCE, 2023, 卷号: 337
作者:
Chang,Ermei
;
Guo,Wei
;
Chen,Jiahui
;
Zhang,Jin
;
Jia,Zirui
;
Tschaplinski,Timothy J.
;
Yang,Xiaohan
;
Jiang,Zeping
;
Liu,Jianfeng
浏览
  |  
Adobe PDF(7107Kb)
  |  
收藏
  |  
浏览/下载:187/58
  |  
提交时间:2024/07/17
Quercus variabilis
Chromosome-level genome
Cork thickness
Suberin biosynthesis
SUBERIN BIOSYNTHESIS
GENE
PROGRAM
TRANSCRIPTOME
ACCURATE
ENCODES
TOOL
WAX
Exploring ascomycete diversity in Yunnan, China I: resolving ambiguous taxa in Phaeothecoidiellaceae and investigating conservation implications of fungi
期刊论文
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 卷号: 13, 页码: 1252387
作者:
Hongsanan,Sinang
;
Phookamsak,Rungtiwa
;
Bhat,Darbhe Jayarama
;
Wanasinghe,Dhanushka N.
;
Promputtha,Itthayakorn
;
Suwannarach,Nakarin
;
Sandamali,Diana
;
Lumyong,Saisamorn
;
Xu,Jianchu
;
Xie,Ning
浏览
  |  
Adobe PDF(3492Kb)
  |  
收藏
  |  
浏览/下载:175/13
  |  
提交时间:2024/07/10
Dothideomycetes
fungal taxonomy
Mycosphaerellales
novel taxa
sootyblotch/flyspeck fungi
REFINED FAMILIES
SOOTY BLOTCH
SP-NOV.
REPETOPHRAGMA
GENERA
FLYSPECK
CLASSIFICATION
XISHUANGBANNA
BIODIVERSITY
SPORIDESMIUM
Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis
期刊论文
PLANT JOURNAL, 2023, 卷号: 113, 期号: 6, 页码: 1146-1159
作者:
Zhou,Yanli
;
Fan,Wei
;
Zhang,Haoyue
;
Zhang,Jingling
;
Zhang,Guanghui
;
Wang,Ding
;
Xiang,Guisheng
;
Zhao,Changhong
;
Li,Lianhua
;
He,Simei
;
Lu,Yingchun
;
Zhao,Jiuxia
;
Meng,Zhengui
;
Zhang,Xianmin
;
Meng,Hengling
;
Yin,Xinhua
;
Yang,Shengchao
;
Long,Guangqiang
浏览
  |  
Adobe PDF(2474Kb)
  |  
收藏
  |  
浏览/下载:171/40
  |  
提交时间:2024/07/10
genome assembly
Hi-C
Apocynaceae
Ca2+ adaptation
cell-wall remodeling
Marsdenia tenacissima
CELL
GENES
TRANSCRIPTOME
MECHANISMS
ALIGNMENT
SOIL
Horizontally acquired fungal killer protein genes affect cell development in mosses
期刊论文
PLANT JOURNAL, 2023
作者:
Guan,Yanlong
;
Ma,Lan
;
Wang,Qia
;
Zhao,Jinjie
;
Wang,Shuanghua
;
Wu,Jinsong
;
Liu,Yang
;
Sun,Hang
;
Huang,Jinling
浏览
  |  
Adobe PDF(4933Kb)
  |  
收藏
  |  
浏览/下载:178/34
  |  
提交时间:2024/07/10
horizontal gene transfer
Physcomitrium patens
killer protein 4
plant evolution
cytoplasmic calcium
cell death
PHYSCOMITRELLA-PATENS
CALCIUM-CHANNELS
USTILAGO-MAYDIS
PLANT
LAND
GROWTH
TOXIN
APOPTOSIS
INSIGHTS
GENOMES
Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation
期刊论文
JOURNAL OF CELLULAR PHYSIOLOGY, 2023
作者:
He,Pengjie
;
Cui,Wenyan
;
Munir,Shahzad
;
He,Pengbo
;
Huang,Ruirong
;
Li,Xingyu
;
Wu,Yixin
;
Wang,Yuehu
;
Yang,Jing
;
Tang,Ping
;
He,Yueqiu
;
He,Pengfei
浏览
  |  
Adobe PDF(1321Kb)
  |  
收藏
  |  
浏览/下载:197/43
  |  
提交时间:2024/07/10
Bacillus subtilis
colonization
fengycin
foliar application
Plasmodiophora brassicae Woron
soil-borne disease
PLASMODIOPHORA-BRASSICAE
BACTERIAL WILT
LIPOPEPTIDES
SURFACTIN
ANTIBIOTICS
RESISTANCE
DISEASE
ITURIN