×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [164]
昆明植物所硕博研... [124]
共享文献 [66]
资源植物与生物技术... [41]
中国西南野生生物种... [40]
植物化学与西部植物... [19]
More...
Authors
Sun Hang [75]
李德铢 [43]
龚洵 [41]
邓涛 [22]
Gao Lian-... [21]
杨祝良 [17]
More...
Document Type
Journal ... [422]
Thesis [124]
Book [8]
Other [6]
Conference... [2]
Academic p... [1]
More...
Date Issued
2021 [31]
2020 [34]
2019 [49]
2018 [28]
2017 [47]
2016 [44]
More...
Language
英语 [298]
中文 [122]
Source Publication
JOURNAL O... [28]
MOLECULAR... [23]
PLOS ONE [17]
植物分类与资源学报 [16]
SCIENTIFI... [14]
TAXON [13]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"China Scholarship Council","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council"},{"jsname":"China Scholarship Council[201504910423]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council%5C%5B201504910423%5C%5D"},{"jsname":"Cyatheaceae species, usually called tree ferns, are considered as relicts of a time when dinosaurs were common. In recent several decades, the number of Cyatheaceae plants decreases dramatically. In order to find the reasons and provide directions for protecting these endangered plants, the biological characteristics of Cyatheaceae were surveyed. Using AFLP and cpDNA sequence variations, the genetic diversity and phylogeography of Sphaeropteris brunoniana were also analyzed. Based on these findings, implications for conservation strategies were discussed for this relict tree fern. Main results of the dissertation were summarized as follows, (1) Cyatheaceae plants have extensive distribution in Yunnan, China, and most of them distribute in southeast of Yunnan. In southeast, they usually inhabit margins of evergreen broad-leaved forests or secondary coniferous forests; however, the population update is very different and the age structure is unscientific. The spore of Cyatheaceae is trilete, radially symmetrical, and perinous. The spores of Alsophila species feature a ridged perine and a granular, verrucate or smooth exine. The spores of S. brunoniana are characterized by an incipient granular outermost layer and a verrucate exine. The metaphase chromosome numbers of gametophytes in the three examined species, viz. A. podophylla, A. gigantea and A. austro-yunnanensis, are 69, indicating that they are diploid and do not display variety in chromosome number. The chemical constituents of S. brunoniana are main simple and familiar compounds, such as saccharides, fatty acids and alcohols, and stigmasterols. (2) An unexpectedly high level of nDNA genetic diversity and low cpDNA diversity were detected in S. brunoniana. (3) This study showed that the genetic differentiation among populations within regions was low and between regions was significant. (4) There were several refugia of S. brunoniana in Yunnan during glacial periods. The Hainan populations were likely new colonizations and originated from Southeast Asia. (5) To retain existing genetic diversity, whether in situ or ex situ conservation or collection of germplasm is used, the populations of the two regions should be considered equally. Furthermore, ex situ conservation of this species should be preferably conducted on large populations.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ACyatheaceae%5C+species%2C%5C+usually%5C+called%5C+tree%5C+ferns%2C%5C+are%5C+considered%5C+as%5C+relicts%5C+of%5C+a%5C+time%5C+when%5C+dinosaurs%5C+were%5C+common.%5C+In%5C+recent%5C+several%5C+decades%2C%5C+the%5C+number%5C+of%5C+Cyatheaceae%5C+plants%5C+decreases%5C+dramatically.%5C+In%5C+order%5C+to%5C+find%5C+the%5C+reasons%5C+and%5C+provide%5C+directions%5C+for%5C+protecting%5C+these%5C+endangered%5C+plants%2C%5C+the%5C+biological%5C+characteristics%5C+of%5C+Cyatheaceae%5C+were%5C+surveyed.%5C+Using%5C+AFLP%5C+and%5C+cpDNA%5C+sequence%5C+variations%2C%5C+the%5C+genetic%5C+diversity%5C+and%5C+phylogeography%5C+of%5C+Sphaeropteris%5C+brunoniana%5C+were%5C+also%5C+analyzed.%5C+Based%5C+on%5C+these%5C+findings%2C%5C+implications%5C+for%5C+conservation%5C+strategies%5C+were%5C+discussed%5C+for%5C+this%5C+relict%5C+tree%5C+fern.%5C+Main%5C+results%5C+of%5C+the%5C+dissertation%5C+were%5C+summarized%5C+as%5C+follows%2C%5C+%5C%281%5C%29%5C+Cyatheaceae%5C+plants%5C+have%5C+extensive%5C+distribution%5C+in%5C+Yunnan%2C%5C+China%2C%5C+and%5C+most%5C+of%5C+them%5C+distribute%5C+in%5C+southeast%5C+of%5C+Yunnan.%5C+In%5C+southeast%2C%5C+they%5C+usually%5C+inhabit%5C+margins%5C+of%5C+evergreen%5C+broad%5C-leaved%5C+forests%5C+or%5C+secondary%5C+coniferous%5C+forests%5C%3B%5C+however%2C%5C+the%5C+population%5C+update%5C+is%5C+very%5C+different%5C+and%5C+the%5C+age%5C+structure%5C+is%5C+unscientific.%5C+The%5C+spore%5C+of%5C+Cyatheaceae%5C+is%5C+trilete%2C%5C+radially%5C+symmetrical%2C%5C+and%5C+perinous.%5C+The%5C+spores%5C+of%5C+Alsophila%5C+species%5C+feature%5C+a%5C+ridged%5C+perine%5C+and%5C+a%5C+granular%2C%5C+verrucate%5C+or%5C+smooth%5C+exine.%5C+The%5C+spores%5C+of%5C+S.%5C+brunoniana%5C+are%5C+characterized%5C+by%5C+an%5C+incipient%5C+granular%5C+outermost%5C+layer%5C+and%5C+a%5C+verrucate%5C+exine.%5C+The%5C+metaphase%5C+chromosome%5C+numbers%5C+of%5C+gametophytes%5C+in%5C+the%5C+three%5C+examined%5C+species%2C%5C+viz.%5C+A.%5C+podophylla%2C%5C+A.%5C+gigantea%5C+and%5C+A.%5C+austro%5C-yunnanensis%2C%5C+are%5C+69%2C%5C+indicating%5C+that%5C+they%5C+are%5C+diploid%5C+and%5C+do%5C+not%5C+display%5C+variety%5C+in%5C+chromosome%5C+number.%5C+The%5C+chemical%5C+constituents%5C+of%5C+S.%5C+brunoniana%5C+are%5C+main%5C+simple%5C+and%5C+familiar%5C+compounds%2C%5C+such%5C+as%5C+saccharides%2C%5C+fatty%5C+acids%5C+and%5C+alcohols%2C%5C+and%5C+stigmasterols.%5C+%5C%282%5C%29%5C+An%5C+unexpectedly%5C+high%5C+level%5C+of%5C+nDNA%5C+genetic%5C+diversity%5C+and%5C+low%5C+cpDNA%5C+diversity%5C+were%5C+detected%5C+in%5C+S.%5C+brunoniana.%5C+%5C%283%5C%29%5C+This%5C+study%5C+showed%5C+that%5C+the%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+within%5C+regions%5C+was%5C+low%5C+and%5C+between%5C+regions%5C+was%5C+significant.%5C+%5C%284%5C%29%5C+There%5C+were%5C+several%5C+refugia%5C+of%5C+S.%5C+brunoniana%5C+in%5C+Yunnan%5C+during%5C+glacial%5C+periods.%5C+The%5C+Hainan%5C+populations%5C+were%5C+likely%5C+new%5C+colonizations%5C+and%5C+originated%5C+from%5C+Southeast%5C+Asia.%5C+%5C%285%5C%29%5C+To%5C+retain%5C+existing%5C+genetic%5C+diversity%2C%5C+whether%5C+in%5C+situ%5C+or%5C+ex%5C+situ%5C+conservation%5C+or%5C+collection%5C+of%5C+germplasm%5C+is%5C+used%2C%5C+the%5C+populations%5C+of%5C+the%5C+two%5C+regions%5C+should%5C+be%5C+considered%5C+equally.%5C+Furthermore%2C%5C+ex%5C+situ%5C+conservation%5C+of%5C+this%5C+species%5C+should%5C+be%5C+preferably%5C+conducted%5C+on%5C+large%5C+populations."},{"jsname":"Cycas micholitzii complex is composed of 5 species: C. micholitzii Dyer, C. bifida (Dyer) K. D. Hill,C. longipetiolula D. Y. Wang, C. debaoensis Y. C. Zhong et C J. Chen, C. multipinnata C J. Chen et S. Y. Yang,and distributed from southwest China to central Vietnam and eastern Laos. Based on sequence data from two maternally inherited cpDNA and one biparentally nuclear DNA fragments, our study revealed the population genetic structure of C. micholitzii complex and explored the potential causes. The evolutionary and demographic histories were investigated. The genetic relationship among species in the complex was also clarified.The results were summarized as follows: 1. Phylogeographic analysis based on chloroplast sequences,We examined chloroplast sequence variation of the atpB-rbcLand psbA-trnHintergenic spacers in 27 populations of C. micholitzii complex, recovering 26 haplotypes. The average within-population diversity (HS = 0.140) was low while total diversity (HT = 0.911) was high. Population differentiation was also high(GST = 0.846, NST = 0.919), indicating significant phylogeographical structure (NST > GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Czech Science Foundation[15-23242S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%5C%5B15%5C-23242S%5C%5D"},{"jsname":"Czech Science Foundation[16-26369S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%5C%5B16%5C-26369S%5C%5D"},{"jsname":"During a field trip at a brule in Shangri-La, a mixed population of Ligularia Cass. was found, which including L. subspicata (Bur. et Franch.) Hand.-Mazz., L. nelumbifolia (Bur. et Franch.) Hand.-Mazz., L. tongolensis (Franch.) Hand.-Mazz., L. cymbulifera (W.W.Smith) Hand.-Mazz., L. lingiana S.W.Liu, and also some individuals morphologically intermediate between L. subspicata and L. nelumbifolia. Hence, these intermediate individuals were preliminarily assumed as natural hybrids of the two Ligularia. According to their morphology, they’re assumed to form hybrids A and B. Through careful comparison of specimens in herbarium and those we collected, the inflorescence of putative hybrid A is close to L. nelumbifolia, but the shape of laminae are intergradation of L. subspicata and L. nelumbifolia; overall morphology of putative hybrids B is similar to L. nelumbifolia, but inflorescence color is as same as L. subspicata. Compared to L. nelumbifolia (39%) and L. subspicata (36.8%), the germination rate of putative hybrid B (45.7%) slightly higher than the two; but that of hybrid A is extraordinarily low (0.3%). One possible interpretation of the low rate is hybridization. 60 individuals were collected, including putative parents, other 4 species of Ligularia nearby, putative hybrid A and B. They were all direct sequenced of four cpDNA fragments, and direct sequenced or cloning sequenced of nrDNA ITS4-5. The results support that L. nelumbifolia and L. subspicata are parents of putative hybrid A, and the majority female parent is L. subspicata, L. vellerea may also be involved in the hybridization in some degree; the nuclear sequences of putative hybrid B have no superposition, and its chloroplast DNA sequences are identical with L. nelumbifolia, so putative hybrid B could not be hybrid; and there are backcross individuals exist among the putative parent L. subspicata. NewHybrids analysis of ISSR markers indicated that, the individuals of putative hybrid A are almost L. nelumbifolia and L. subspicata F1 hybrid generation (10/11), only 1/11 possibly backcross or other forms; all individuals of hybrid B are L. nelumbifolia; except one individual of L. subspicata as backcrossed, the other parent individuals are 100% reliable. This study focused on molecular evidence, complemented by ecological, reproductive and other characteristics, we demonstrated that the morphologically intermediate individuals’ origin, and the probability of belonging to each parental or hybrid class. And concluded that L. nelumbifolia and L. subspicata are the parents of putative hybrid A, L. vellerea may also be involved in the hybridization in some degree, hybrids mainly are the first generation, a few individuals may be involved in backcross, and most probably backcross with L. subspicata according to the anthesis, while the assumption of hybrid B is not supported.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3ADuring%5C+a%5C+field%5C+trip%5C+at%5C+a%5C+brule%5C+in%5C+Shangri%5C-La%2C%5C+a%5C+mixed%5C+population%5C+of%5C+Ligularia%5C+Cass.%5C+was%5C+found%2C%5C+which%5C+including%5C+L.%5C+subspicata%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+nelumbifolia%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+tongolensis%5C+%5C%28Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+cymbulifera%5C+%5C%28W.W.Smith%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+lingiana%5C+S.W.Liu%2C%5C+and%5C+also%5C+some%5C+individuals%5C+morphologically%5C+intermediate%5C+between%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia.%5C+Hence%2C%5C+these%5C+intermediate%5C+individuals%5C+were%5C+preliminarily%5C+assumed%5C+as%5C+natural%5C+hybrids%5C+of%5C+the%5C+two%5C+Ligularia.%5C+According%5C+to%5C+their%5C+morphology%2C%5C+they%E2%80%99re%5C+assumed%5C+to%5C+form%5C+hybrids%5C+A%5C+and%5C+B.%5C+Through%5C+careful%5C+comparison%5C+of%5C+specimens%5C+in%5C+herbarium%5C+and%5C+those%5C+we%5C+collected%2C%5C+the%5C+inflorescence%5C+of%5C+putative%5C+hybrid%5C+A%5C+is%5C+close%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+the%5C+shape%5C+of%5C+laminae%5C+are%5C+intergradation%C2%A0of%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia%5C%3B%5C+overall%5C+morphology%5C+of%5C+putative%5C+hybrids%5C+B%5C+is%5C+similar%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+inflorescence%5C+color%5C+is%5C+as%5C+same%5C+as%5C+L.%5C+subspicata.%5C+Compared%5C+to%5C+L.%5C+nelumbifolia%5C+%5C%2839%25%5C%29%5C+and%5C+L.%5C+subspicata%5C+%5C%2836.8%25%5C%29%2C%5C+the%5C+germination%5C+rate%5C+of%5C+putative%5C+hybrid%5C+B%5C+%5C%2845.7%25%5C%29%5C+slightly%5C+higher%5C+than%5C+the%5C+two%5C%3B%5C+but%5C+that%5C+of%5C+hybrid%5C+A%5C+is%5C+extraordinarily%5C+low%5C+%5C%280.3%25%5C%29.%5C+One%5C+possible%5C+interpretation%5C+of%5C+the%5C+low%5C+rate%5C+is%5C+hybridization.%5C+60%5C+individuals%5C+were%5C+collected%2C%5C+including%5C+putative%5C+parents%2C%5C+other%5C+4%5C+species%5C+of%5C+Ligularia%5C+nearby%2C%5C+putative%5C+hybrid%5C+A%5C+and%5C+B.%5C+They%5C+were%5C+all%5C+direct%5C+sequenced%5C+of%5C+four%5C+cpDNA%5C+fragments%2C%5C+and%5C+direct%5C+sequenced%5C+or%5C+cloning%5C+sequenced%5C+of%5C+nrDNA%5C+ITS4%5C-5.%5C+The%5C+results%5C+support%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+and%5C+the%5C+majority%5C+female%5C+parent%5C+is%5C+L.%5C+subspicata%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%5C%3B%5C+the%5C+nuclear%5C+sequences%5C+of%5C+putative%5C+hybrid%5C+B%5C+have%5C+no%5C+superposition%2C%5C+and%5C+its%5C+chloroplast%5C+DNA%5C+sequences%5C+are%5C+identical%5C+with%5C+L.%5C+nelumbifolia%2C%5C+so%5C+putative%5C+hybrid%5C+B%5C+could%5C+not%5C+be%5C+hybrid%5C%3B%5C+and%5C+there%5C+are%5C+backcross%5C+individuals%5C+exist%5C+among%5C+the%5C+putative%5C+parent%5C+L.%5C+subspicata.%5C+NewHybrids%5C+analysis%5C+of%5C+ISSR%5C+markers%5C+indicated%5C+that%2C%5C+the%5C+individuals%5C+of%5C+putative%5C+hybrid%5C+A%5C+are%5C+almost%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+F1%5C+hybrid%5C+generation%5C+%5C%2810%5C%2F11%5C%29%2C%5C+only%5C+1%5C%2F11%5C+possibly%5C+backcross%5C+or%5C+other%5C+forms%5C%3B%5C+all%5C+individuals%5C+of%5C+hybrid%5C+B%5C+are%5C+L.%5C+nelumbifolia%5C%3B%5C+except%5C+one%5C+individual%5C+of%5C+L.%5C+subspicata%5C+as%5C+backcrossed%2C%5C+the%5C+other%5C+parent%5C+individuals%5C+are%5C+100%25%5C+reliable.%5C+This%5C+study%5C+focused%5C+on%5C+molecular%5C+evidence%2C%5C+complemented%5C+by%5C+ecological%2C%5C+reproductive%5C+and%5C+other%5C+characteristics%2C%5C+we%5C+demonstrated%5C+that%5C+the%5C+morphologically%5C+intermediate%5C+individuals%E2%80%99%5C+origin%2C%5C+and%5C+the%5C+probability%5C+of%5C+belonging%5C+to%5C+each%5C+parental%5C+or%5C+hybrid%5C+class.%5C+And%5C+concluded%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+the%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%2C%5C+hybrids%5C+mainly%5C+are%5C+the%5C+first%5C+generation%2C%5C+a%5C+few%5C+individuals%5C+may%5C+be%5C+involved%5C+in%5C+backcross%2C%5C+and%5C+most%5C+probably%5C+backcross%5C+with%5C+L.%5C+subspicata%5C+according%5C+to%5C+the%5C+anthesis%2C%5C+while%5C+the%5C+assumption%5C+of%5C+hybrid%5C+B%5C+is%5C+not%5C+supported."},{"jsname":"Flower scent is a very important character in rose breeding. However, many of 25,000 rose cultivars have no scent or weak scent. The tea scent of modern roses mainly originated from Rosa odorata (Andrews) Sweet, which is one of the most important ancestors of modern cultivated roses and the very important rose breeding resource. Due to the land expanding, habitat fragmentation and so on, R. odorata has been listed as an endangered species in ‘Chinese Plant Red Data Book—Rare and Endangered Plants’ and as the third-category endangered species in ‘Chinese Rare and Endangered Protective Plants List’. Therefore, it is urgent to protect this species and studying the conservation genetics of R. odorata is essentially important to work out a strategy of conservation.R. odorata comprises three double-petaled varieties (R. odorata var. odorata, R. odorata var. erubescens, and R. odorata var. pseudindica) and one single-petaled variety (R. odorata var. gigantea). The taxonomy of the three double-petaled varieties of R. odorata has been disputed for a long time. They have been treated as intraspecific taxa of R. odorata var. gigantea or R. chinensis by different botanist. According to the morphological analyses, Hurst (1941) inferred that R. odorata var. odorata was the hybrid between R. odorata var. gigantea and R. chinensis. Therefore, in order to clarify the right protective units, two single-copy nuclear genes (GAPDH and ncpGS), together with two plastid loci (trnL-F and psbA-trnH) were applied to study the hybrid origin of the three double-petaled varieties and to identify their possible parents. Our data suggested the hybrid origin of the three double-petaled varieties. We inferred that R. odorata var. gigantea could be the maternal parent and R. chinensis cultivars be the paternal parent. It is strongly suggested that the conservation of R. odorata is the conservation of its wild type, R. odorata var. gigantea. We first applied seven microsatellite loci (SSR) coupled with a single-copy nuclear gene GAPDH to study the genetic diversity and genetic structure of R. odorata var. gigantea. The main results are shown as follows:1. Genetic diversity:R. odorata var. gigantea maintains high degree of genetic diversity within and among populations (SSR: HT = 0.738, HS = 0.569, AR = 5.583, PPB = 97.35%, I = 1.703; GAPDH: HT = 0.739, HS = 0.540). We inferred that, outcrossing, long-lived tree species, clonal reproduction and general intraspecies hybridization between individuals, have contributed to the high degree of genetic diversity in R. odorata var. gigantea.2. Genetic differentiation and genetic structure:There was some degree of genetic differentiation among populations (SSR: GST = 0.229, FST = 0.240; GAPDH: GST = 0.269). The geographic isolation limited the dispersal of pollen or seeds, which resulted in the limitation of gene flow (Nm = 0.792). Then, the limited gene flow should be accounted for the genetic differentiation. Both the results of SSR data and haplotype analysis of GAPDH indicated that, the studied populations were divided into two distinct groups by Honghe River. These two groups showed significant genetic differentiation and represented two separate evolutionary lineages, which should be recognized as two evolutionary significant units (ESUs) for conservation concerns.3. Conservation of R. odorata:R. odorata var. gigantea has been listed in the ‘National Key Protective Wild Species List (II)’. Therefore, the conservation of this species is urgent. We inferred that, the main endangered reasons should be the habitat fragmentation and the reduction of populations and individuals per population resulted from environmental damage and human activities. We proposed that the strategy of in-situ conservation combining with ex-situ conservation should be carried out.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AFlower%5C+scent%5C+is%5C+a%5C+very%5C+important%5C+character%5C+in%5C+rose%5C+breeding.%5C+However%2C%5C+many%5C+of%5C+25%2C000%5C+rose%5C+cultivars%5C+have%5C+no%5C+scent%5C+or%5C+weak%5C+scent.%5C+The%5C+tea%5C+scent%5C+of%5C+modern%5C+roses%5C+mainly%5C+originated%5C+from%5C+Rosa%5C+odorata%5C+%5C%28Andrews%5C%29%5C+Sweet%2C%5C+which%5C+is%5C+one%5C+of%5C+the%5C+most%5C+important%5C+ancestors%5C+of%5C+modern%5C+cultivated%5C+roses%5C+and%5C+the%5C+very%5C+important%5C+rose%5C+breeding%5C+resource.%5C+Due%5C+to%5C+the%5C+land%5C+expanding%2C%5C+habitat%5C+fragmentation%5C+and%5C+so%5C+on%2C%5C+R.%5C+odorata%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Plant%5C+Red%5C+Data%5C+Book%E2%80%94Rare%5C+and%5C+Endangered%5C+Plants%E2%80%99%5C+and%5C+as%5C+the%5C+third%5C-category%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Rare%5C+and%5C+Endangered%5C+Protective%5C+Plants%5C+List%E2%80%99.%5C+Therefore%2C%5C+it%5C+is%5C+urgent%5C+to%5C+protect%5C+this%5C+species%5C+and%5C+studying%5C+the%5C+conservation%5C+genetics%5C+of%5C+R.%5C+odorata%5C+is%5C+essentially%5C+important%5C+to%5C+work%5C+out%5C+a%5C+strategy%5C+of%5C+conservation.R.%5C+odorata%5C+comprises%5C+three%5C+double%5C-petaled%5C+varieties%5C+%5C%28R.%5C+odorata%5C+var.%5C+odorata%2C%5C+R.%5C+odorata%5C+var.%5C+erubescens%2C%5C+and%5C+R.%5C+odorata%5C+var.%5C+pseudindica%5C%29%5C+and%5C+one%5C+single%5C-petaled%5C+variety%5C+%5C%28R.%5C+odorata%5C+var.%5C+gigantea%5C%29.%5C+The%5C+taxonomy%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+of%5C+R.%5C+odorata%5C+has%5C+been%5C+disputed%5C+for%5C+a%5C+long%5C+time.%5C+They%5C+have%5C+been%5C+treated%5C+as%5C+intraspecific%5C+taxa%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+or%5C+R.%5C+chinensis%5C+by%5C+different%5C+botanist.%5C+According%5C+to%5C+the%5C+morphological%5C+analyses%2C%5C+Hurst%5C+%5C%281941%5C%29%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+odorata%5C+was%5C+the%5C+hybrid%5C+between%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+and%5C+R.%5C+chinensis.%5C+Therefore%2C%5C+in%5C+order%5C+to%5C+clarify%5C+the%5C+right%5C+protective%5C+units%2C%5C+two%5C+single%5C-copy%5C+nuclear%5C+genes%5C+%5C%28GAPDH%5C+and%5C+ncpGS%5C%29%2C%5C+together%5C+with%5C+two%5C+plastid%5C+loci%5C+%5C%28trnL%5C-F%5C+and%5C+psbA%5C-trnH%5C%29%5C+were%5C+applied%5C+to%5C+study%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+and%5C+to%5C+identify%5C+their%5C+possible%5C+parents.%5C+Our%5C+data%5C+suggested%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties.%5C+We%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+could%5C+be%5C+the%5C+maternal%5C+parent%5C+and%5C+R.%5C+chinensis%5C+cultivars%5C+be%5C+the%5C+paternal%5C+parent.%5C+It%5C+is%5C+strongly%5C+suggested%5C+that%5C+the%5C+conservation%5C+of%5C+R.%5C+odorata%5C+is%5C+the%5C+conservation%5C+of%5C+its%5C+wild%5C+type%2C%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+We%5C+first%5C+applied%5C+seven%5C+microsatellite%5C+loci%5C+%5C%28SSR%5C%29%5C+coupled%5C+with%5C+a%5C+single%5C-copy%5C+nuclear%5C+gene%5C+GAPDH%5C+to%5C+study%5C+the%5C+genetic%5C+diversity%5C+and%5C+genetic%5C+structure%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+The%5C+main%5C+results%5C+are%5C+shown%5C+as%5C+follows%5C%3A1.%5C+Genetic%5C+diversity%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+maintains%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+within%5C+and%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+HT%5C+%3D%5C+0.738%2C%5C+HS%5C+%3D%5C+0.569%2C%5C+AR%5C+%3D%5C+5.583%2C%5C+PPB%5C+%3D%5C+97.35%25%2C%5C+I%5C+%3D%5C+1.703%5C%3B%5C+GAPDH%5C%3A%5C+HT%5C+%3D%5C+0.739%2C%5C+HS%5C+%3D%5C+0.540%5C%29.%5C+We%5C+inferred%5C+that%2C%5C+outcrossing%2C%5C+long%5C-lived%5C+tree%5C+species%2C%5C+clonal%5C+reproduction%5C+and%5C+general%5C+intraspecies%5C+hybridization%5C+between%5C+individuals%2C%5C+have%5C+contributed%5C+to%5C+the%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+in%5C+R.%5C+odorata%5C+var.%5C+gigantea.2.%5C+Genetic%5C+differentiation%5C+and%5C+genetic%5C+structure%EF%BC%9AThere%5C+was%5C+some%5C+degree%5C+of%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+GST%5C+%3D%5C+0.229%2C%5C+FST%5C+%3D%5C+0.240%5C%3B%5C+GAPDH%5C%3A%5C+GST%5C+%3D%5C+0.269%5C%29.%5C+The%5C+geographic%5C+isolation%5C+limited%5C+the%5C+dispersal%5C+of%5C+pollen%5C+or%5C+seeds%2C%5C+which%5C+resulted%5C+in%5C+the%5C+limitation%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.792%5C%29.%5C+Then%2C%5C+the%5C+limited%5C+gene%5C+flow%5C+should%5C+be%5C+accounted%5C+for%5C+the%5C+genetic%5C+differentiation.%5C+Both%5C+the%5C+results%5C+of%5C+SSR%5C+data%5C+and%5C+haplotype%5C+analysis%5C+of%5C+GAPDH%5C+indicated%5C+that%2C%5C+the%5C+studied%5C+populations%5C+were%5C+divided%5C+into%5C+two%5C+distinct%5C+groups%5C+by%5C+Honghe%5C+River.%5C+These%5C+two%5C+groups%5C+showed%5C+significant%5C+genetic%5C+differentiation%5C+and%5C+represented%5C+two%5C+separate%5C+evolutionary%5C+lineages%2C%5C+which%5C+should%5C+be%5C+recognized%5C+as%5C+two%5C+evolutionary%5C+significant%5C+units%5C+%5C%28ESUs%5C%29%5C+for%5C+conservation%5C+concerns.3.%5C+Conservation%5C+of%5C+R.%5C+odorata%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+has%5C+been%5C+listed%5C+in%5C+the%5C+%E2%80%98National%5C+Key%5C+Protective%5C+Wild%5C+Species%5C+List%5C+%5C%28II%5C%29%E2%80%99.%5C+Therefore%2C%5C+the%5C+conservation%5C+of%5C+this%5C+species%5C+is%5C+urgent.%5C+We%5C+inferred%5C+that%2C%5C+the%5C+main%5C+endangered%5C+reasons%5C+should%5C+be%5C+the%5C+habitat%5C+fragmentation%5C+and%5C+the%5C+reduction%5C+of%5C+populations%5C+and%5C+individuals%5C+per%5C+population%5C+resulted%5C+from%5C+environmental%5C+damage%5C+and%5C+human%5C+activities.%5C+We%5C+proposed%5C+that%5C+the%5C+strategy%5C+of%5C+in%5C-situ%5C+conservation%5C+combining%5C+with%5C+ex%5C-situ%5C+conservation%5C+should%5C+be%5C+carried%5C+out."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"Fundamental Research Funds for the Central Universities[17l-gzd24]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AFundamental%5C+Research%5C+Funds%5C+for%5C+the%5C+Central%5C+Universities%5C%5B17l%5C-gzd24%5C%5D"},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Interdisciplinary Research Project of Kunming Institute of Botany[KIB2017003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AInterdisciplinary%5C+Research%5C+Project%5C+of%5C+Kunming%5C+Institute%5C+of%5C+Botany%5C%5BKIB2017003%5C%5D"},{"jsname":"Kunming Institute of Botany, Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=PHYLOGEOGRAPHY&order=desc&&fq=dc.project.title_filter%3AKunming%5C+Institute%5C+of%5C+Botany%2C%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"lastIndexed","jscount":"2023-09-22"}],"Funding Project","dc.project.title_filter")'>
National N... [2]
National N... [2]
Aconitum c... [1]
Astilbe Bu... [1]
Basic Work... [1]
CAS-TWAS P... [1]
More...
Indexed By
SCI [257]
CSCD [19]
IC [1]
Funding Organization
National N... [8]
CAS/SAFEA ... [6]
John D. an... [5]
NSFC [5]
Yunnan Nat... [5]
Chinese Ac... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 564
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Effects of drainage reorganization on phytogeographic pattern in Sino-Himalaya
期刊论文
ALPINE BOTANY, 2022, 卷号: 132, 期号: 1, 页码: 141-151
Authors:
Sun,Hang
;
Li,Zhimin
;
Landis,Jacob B.
;
Qian,Lishen
;
Zhang,Ticao
;
Deng,Tao
Favorite
  |  
View/Download:44/0
  |  
Submit date:2022/04/02
Sino-Himalaya
Paleo Red River
Valley plants
Drainage reorganization
Biogeographic evolution
TERMINALIA-FRANCHETII COMBRETACEAE
MEKONG-SALWEEN DIVIDE
TANAKA-KAIYONG LINE
RIVER-CAPTURE
HENGDUAN MOUNTAINS
GENETIC-STRUCTURE
SOUTHWEST CHINA
CYTOCHROME-B
PHYLOGEOGRAPHY
EVOLUTION
Biogeographical divides delineated by the three-step landforms of China and the East China Sea: Insights from the phylogeography of Kerria japonica
期刊论文
JOURNAL OF BIOGEOGRAPHY, 2021, 卷号: 48, 期号: 2, 页码: 372-385
Authors:
Luo,Dong
;
Xu,Bo
;
Li,Zhi-Min
;
Sun,Hang
Favorite
  |  
View/Download:15/0
  |  
Submit date:2022/04/02
biogeographical divides
East Asia
East China Sea
floristic regionalization
Kerria japonica
three‐
step landforms of China
TIBETAN PLATEAU
MOLECULAR PHYLOGEOGRAPHY
QUATERNARY CLIMATE
ASIA
DNA
CHLOROPLAST
ENDEMISM
HISTORY
PLANTS
DIVERSIFICATION
Insights Into the Significance of the Chinense Loess Plateau for Preserving Biodiversity From the Phylogeography of Speranskia tuberculata (Euphorbiaceae)
期刊论文
FRONTIERS IN PLANT SCIENCE, 2021, 卷号: 12, 页码: 604251
Authors:
Ye,Jun-Wei
;
Wu,Hai-Yang
;
Fu,Meng-Jiao
;
Zhang,Pei
;
Tian,Bin
Favorite
  |  
View/Download:16/0
  |  
Submit date:2022/04/02
Chinese Loess Plateau
refugia
nuclear microsatellites
Quaternary
Speranskia tuberculata
MOLECULAR PHYLOGEOGRAPHY
GENETIC CONSEQUENCES
DIVERSITY
FOREST
CHINA
PALAEOVEGETATION
INFERENCE
SOFTWARE
CLIMATE
PLANTS
Evolutionary history of a desert perennial Arnebia szechenyi (Boraginaceae): Intraspecific divergence, regional expansion and asymmetric gene flow
期刊论文
PLANT DIVERSITY, 2021, 卷号: 43, 期号: 6, 页码: 462-471
Authors:
Fu,Meng-Jiao
;
Wu,Hai-Yang
;
Jia,Dong-Rui
;
Tian,Bin
Favorite
  |  
View/Download:7/0
  |  
Submit date:2022/04/02
Asymmetric gene flow
Cytonuclear discordance
Desert growth
Intraspecific divergence
MITOCHONDRIAL-DNA
ENVIRONMENTAL-CHANGE
POPULATION-GENETICS
STATISTICAL TESTS
DRILL CORE
PHYLOGEOGRAPHY
CHLOROPLAST
QUATERNARY
CHINA
CONSEQUENCES
Geoclimatic factors influence the population genetic connectivity of Incarvillea arguta (Bignoniaceae) in the Himalaya-Hengduan Mountains biodiversity hotspot
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 卷号: 59, 期号: 1, 页码: 151-168
Authors:
Rana,Santosh Kumar
;
Luo,Dong
;
Rana,Hum Kala
;
O'Neill,Alexander Robert
;
Sun,Hang
Favorite
  |  
View/Download:14/0
  |  
Submit date:2022/04/02
geoclimatic factors
Himalaya-Hengduan Mountains
Incarvillea arguta
phylogeography
population genetic connectivity
species distribution modelling
TIBETAN PLATEAU
MOLECULAR PHYLOGENY
CLIMATE-CHANGE
DISTRIBUTION MODELS
QUATERNARY CLIMATE
PHYLOGEOGRAPHY
UPLIFT
GROWTH
EVOLUTION
RISE
Reviewing the world's edible mushroom species: A new evidence-based classification system
期刊论文
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021
Authors:
Li,Huili
;
Tian,Yang
;
Menolli Jr,Nelson
;
Ye,Lei
;
Karunarathna,Samantha C.
;
Perez-Moreno,Jesus
;
Rahman,Mohammad Mahmudur
;
Rashid,Md Harunur
;
Phengsintham,Pheng
;
Rizal,Leela
;
Kasuya,Taiga
;
Lim,Young Woon
;
Dutta,Arun Kumar
;
Khalid,Abdul Nasir
;
Le Thanh Huyen
;
Balolong,Marilen Parungao
;
Baruah,Gautam
;
Madawala,Sumedha
;
Thongklang,Naritsada
;
Hyde,Kevin D.
;
Kirk,Paul M.
;
Xu,Jianchu
;
Sheng,Jun
;
Boa,Eric
;
Mortimer,Peter E.
Adobe PDF(1089Kb)
  |  
Favorite
  |  
View/Download:15/0
  |  
Submit date:2023/09/08
Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives
期刊论文
ECOLOGY AND EVOLUTION, 2021, 卷号: 11, 期号: 16, 页码: 10794-10812
Authors:
Wambulwa,Moses C.
;
Milne,Richard
;
Wu,Zeng-Yuan
;
Spicer,Robert A.
;
Provan,Jim
;
Luo,Ya-Huang
;
Zhu,Guang-Fu
;
Wang,Wan-Ting
;
Wang,Hong
;
Gao,Lian-Ming
;
Li,De-Zhu
;
Liu,Jie
View
  |  
Adobe PDF(2089Kb)
  |  
Favorite
  |  
View/Download:29/0
  |  
Submit date:2022/04/02
biodiversity hotspot
climate change
elevational gradient
Himalayan flora
mountain ecosystem
spatiotemporal diversification
SPECIES RICHNESS PATTERNS
QINGHAI-TIBET PLATEAU
SOUTH ASIAN MONSOON
ELEVATIONAL GRADIENT
HENGDUAN MOUNTAINS
CLIMATE-CHANGE
BETA-DIVERSITY
QUATERNARY GLACIATION
GENETIC CONSEQUENCES
ARTIFICIAL DISPERSAL
Grade of Membership models reveal geographical and environmental correlates of floristic structure in a temperate biodiversity hotspot
期刊论文
NEW PHYTOLOGIST, 2021, 卷号: 232, 期号: 3, 页码: 1424-1435
Authors:
Li,Qin
;
Sun,Hang
;
Boufford,David E.
;
Bartholomew,Bruce
;
Fritsch,Peter W.
;
Chen,Jiahui
;
Deng,Tao
;
Ree,Richard H.
Adobe PDF(2227Kb)
  |  
Favorite
  |  
View/Download:29/0
  |  
Submit date:2022/04/02
biogeographical regionalization
biotic turnover
floristic structure
Hengduan Mountains
seed plants
species motif
tropical-temperate divide
HENGDUAN MOUNTAINS
BIOGEOGRAPHICAL REGIONS
TIBETAN PLATEAU
PLANT DIVERSITY
PATTERNS
WORLDS
DIVERSIFICATION
EVOLUTION
GRADIENT
CLIMATE
Speciation along the elevation gradient: Divergence of Roscoea species within the south slope of the Himalayas
期刊论文
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2021, 卷号: 164, 页码: 107292
Authors:
Zhao,Jian-Li
;
Paudel,Babu Ram
;
Yu,Xiang-Qin
;
Zhang,Jie
;
Li,Qing-Jun
Adobe PDF(3604Kb)
  |  
Favorite
  |  
View/Download:22/0
  |  
Submit date:2022/04/02
Climate changes
Elevation gradient
Mountain biodiversity
Speciation
The Himalayas
ASIAN MONSOONS
PLANT
BIODIVERSITY
EVOLUTION
UPLIFT
INTROGRESSION
POPULATIONS
PHYLOGENY
MOUNTAINS
FLY
Polyploidization and sexual dimorphism of floral traits in a subdioecious population of Dasiphora glabra
期刊论文
JOURNAL OF PLANT ECOLOGY, 2021, 卷号: 14, 期号: 2, 页码: 229-240
Authors:
Wang,Lin-Lin
;
Yang,Na-Cai
;
Chen,Min-Yu
;
Yang,Yong-Ping
;
Duan,Yuan-Wen
Adobe PDF(671Kb)
  |  
Favorite
  |  
View/Download:14/1
  |  
Submit date:2022/04/02
natural selection
flower traits
polyploidy
sex separation
sexual dimorphism
GENDER DIMORPHISM
POLLEN LIMITATION
POLLINATOR VISITATION
PLANT REPRODUCTION
ALPINE PLANT
EVOLUTIONARY
STRATEGIES
DISPLAY
SYSTEM
FRUIT