×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [271]
资源植物与生物技... [145]
昆明植物所硕博研... [142]
植物化学与西部植... [120]
共享文献 [54]
中国西南野生生物种... [42]
More...
Authors
许建初 [62]
李德铢 [50]
Sun Hang [48]
周浙昆 [38]
Yang Yong... [33]
杨祝良 [30]
More...
Document Type
Journal ... [756]
Thesis [142]
Book [7]
Other [5]
Conference... [4]
Academic p... [2]
More...
Date Issued
2020 [51]
2019 [68]
2018 [61]
2017 [55]
2016 [74]
2015 [70]
More...
Language
英语 [557]
中文 [200]
Source Publication
FUNGAL DI... [29]
植物分类与资源学报 [22]
PLOS ONE [21]
云南植物研究 [21]
JOURNAL O... [20]
JOURNAL O... [20]
More...
Funding Project
0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Northwest%2BYunnan&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"Cyatheaceae species, usually called tree ferns, are considered as relicts of a time when dinosaurs were common. In recent several decades, the number of Cyatheaceae plants decreases dramatically. In order to find the reasons and provide directions for protecting these endangered plants, the biological characteristics of Cyatheaceae were surveyed. Using AFLP and cpDNA sequence variations, the genetic diversity and phylogeography of Sphaeropteris brunoniana were also analyzed. Based on these findings, implications for conservation strategies were discussed for this relict tree fern. Main results of the dissertation were summarized as follows, (1) Cyatheaceae plants have extensive distribution in Yunnan, China, and most of them distribute in southeast of Yunnan. In southeast, they usually inhabit margins of evergreen broad-leaved forests or secondary coniferous forests; however, the population update is very different and the age structure is unscientific. The spore of Cyatheaceae is trilete, radially symmetrical, and perinous. The spores of Alsophila species feature a ridged perine and a granular, verrucate or smooth exine. The spores of S. brunoniana are characterized by an incipient granular outermost layer and a verrucate exine. The metaphase chromosome numbers of gametophytes in the three examined species, viz. A. podophylla, A. gigantea and A. austro-yunnanensis, are 69, indicating that they are diploid and do not display variety in chromosome number. The chemical constituents of S. brunoniana are main simple and familiar compounds, such as saccharides, fatty acids and alcohols, and stigmasterols. (2) An unexpectedly high level of nDNA genetic diversity and low cpDNA diversity were detected in S. brunoniana. (3) This study showed that the genetic differentiation among populations within regions was low and between regions was significant. (4) There were several refugia of S. brunoniana in Yunnan during glacial periods. The Hainan populations were likely new colonizations and originated from Southeast Asia. (5) To retain existing genetic diversity, whether in situ or ex situ conservation or collection of germplasm is used, the populations of the two regions should be considered equally. Furthermore, ex situ conservation of this species should be preferably conducted on large populations.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Northwest%2BYunnan&order=desc&&fq=dc.project.title_filter%3ACyatheaceae%5C+species%2C%5C+usually%5C+called%5C+tree%5C+ferns%2C%5C+are%5C+considered%5C+as%5C+relicts%5C+of%5C+a%5C+time%5C+when%5C+dinosaurs%5C+were%5C+common.%5C+In%5C+recent%5C+several%5C+decades%2C%5C+the%5C+number%5C+of%5C+Cyatheaceae%5C+plants%5C+decreases%5C+dramatically.%5C+In%5C+order%5C+to%5C+find%5C+the%5C+reasons%5C+and%5C+provide%5C+directions%5C+for%5C+protecting%5C+these%5C+endangered%5C+plants%2C%5C+the%5C+biological%5C+characteristics%5C+of%5C+Cyatheaceae%5C+were%5C+surveyed.%5C+Using%5C+AFLP%5C+and%5C+cpDNA%5C+sequence%5C+variations%2C%5C+the%5C+genetic%5C+diversity%5C+and%5C+phylogeography%5C+of%5C+Sphaeropteris%5C+brunoniana%5C+were%5C+also%5C+analyzed.%5C+Based%5C+on%5C+these%5C+findings%2C%5C+implications%5C+for%5C+conservation%5C+strategies%5C+were%5C+discussed%5C+for%5C+this%5C+relict%5C+tree%5C+fern.%5C+Main%5C+results%5C+of%5C+the%5C+dissertation%5C+were%5C+summarized%5C+as%5C+follows%2C%5C+%5C%281%5C%29%5C+Cyatheaceae%5C+plants%5C+have%5C+extensive%5C+distribution%5C+in%5C+Yunnan%2C%5C+China%2C%5C+and%5C+most%5C+of%5C+them%5C+distribute%5C+in%5C+southeast%5C+of%5C+Yunnan.%5C+In%5C+southeast%2C%5C+they%5C+usually%5C+inhabit%5C+margins%5C+of%5C+evergreen%5C+broad%5C-leaved%5C+forests%5C+or%5C+secondary%5C+coniferous%5C+forests%5C%3B%5C+however%2C%5C+the%5C+population%5C+update%5C+is%5C+very%5C+different%5C+and%5C+the%5C+age%5C+structure%5C+is%5C+unscientific.%5C+The%5C+spore%5C+of%5C+Cyatheaceae%5C+is%5C+trilete%2C%5C+radially%5C+symmetrical%2C%5C+and%5C+perinous.%5C+The%5C+spores%5C+of%5C+Alsophila%5C+species%5C+feature%5C+a%5C+ridged%5C+perine%5C+and%5C+a%5C+granular%2C%5C+verrucate%5C+or%5C+smooth%5C+exine.%5C+The%5C+spores%5C+of%5C+S.%5C+brunoniana%5C+are%5C+characterized%5C+by%5C+an%5C+incipient%5C+granular%5C+outermost%5C+layer%5C+and%5C+a%5C+verrucate%5C+exine.%5C+The%5C+metaphase%5C+chromosome%5C+numbers%5C+of%5C+gametophytes%5C+in%5C+the%5C+three%5C+examined%5C+species%2C%5C+viz.%5C+A.%5C+podophylla%2C%5C+A.%5C+gigantea%5C+and%5C+A.%5C+austro%5C-yunnanensis%2C%5C+are%5C+69%2C%5C+indicating%5C+that%5C+they%5C+are%5C+diploid%5C+and%5C+do%5C+not%5C+display%5C+variety%5C+in%5C+chromosome%5C+number.%5C+The%5C+chemical%5C+constituents%5C+of%5C+S.%5C+brunoniana%5C+are%5C+main%5C+simple%5C+and%5C+familiar%5C+compounds%2C%5C+such%5C+as%5C+saccharides%2C%5C+fatty%5C+acids%5C+and%5C+alcohols%2C%5C+and%5C+stigmasterols.%5C+%5C%282%5C%29%5C+An%5C+unexpectedly%5C+high%5C+level%5C+of%5C+nDNA%5C+genetic%5C+diversity%5C+and%5C+low%5C+cpDNA%5C+diversity%5C+were%5C+detected%5C+in%5C+S.%5C+brunoniana.%5C+%5C%283%5C%29%5C+This%5C+study%5C+showed%5C+that%5C+the%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+within%5C+regions%5C+was%5C+low%5C+and%5C+between%5C+regions%5C+was%5C+significant.%5C+%5C%284%5C%29%5C+There%5C+were%5C+several%5C+refugia%5C+of%5C+S.%5C+brunoniana%5C+in%5C+Yunnan%5C+during%5C+glacial%5C+periods.%5C+The%5C+Hainan%5C+populations%5C+were%5C+likely%5C+new%5C+colonizations%5C+and%5C+originated%5C+from%5C+Southeast%5C+Asia.%5C+%5C%285%5C%29%5C+To%5C+retain%5C+existing%5C+genetic%5C+diversity%2C%5C+whether%5C+in%5C+situ%5C+or%5C+ex%5C+situ%5C+conservation%5C+or%5C+collection%5C+of%5C+germplasm%5C+is%5C+used%2C%5C+the%5C+populations%5C+of%5C+the%5C+two%5C+regions%5C+should%5C+be%5C+considered%5C+equally.%5C+Furthermore%2C%5C+ex%5C+situ%5C+conservation%5C+of%5C+this%5C+species%5C+should%5C+be%5C+preferably%5C+conducted%5C+on%5C+large%5C+populations."},{"jsname":"Dr. Plant RD Center[Y65J8322C1]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Northwest%2BYunnan&order=desc&&fq=dc.project.title_filter%3ADr.%5C+Plant%5C+RD%5C+Center%5C%5BY65J8322C1%5C%5D"},{"jsname":"Environmental stresses could limit plant growth, development and propagation. Abiotic stress refers to the negative impact factors to the plants, such as extreme temperature, drought, flood, salinity, irradiation, chemicals and so on. To understand the mechanism of abiotic stress is very important.Membrane is the most sensitive organs in the cell that response to environmental changes. Cells respond and transduct environmental signals by changing content of membrane lipids and membrane proteins. The activity change of membrane phospholipase D (PLD) and the composition and content of membrane lipid molecules is one of the most anti-stress methods for the plants. It was reported that plants responded to some abiotic stresses such as freezing, thawing, seed aging and dehydration through changing lipid molecules especially the messenger phosphatidic acid (PA) and mutants of PLD were more tolerant to those stresses. It is important to investigate the characteristics and variation of membrane lipids and membrane proteins to understand the streee in plants.Three different kinds of stresses, including alpine scree temperature stress, allelopathy and Gamma irradiation stress, were studied in the present dissertation. And try to understand how plants response to those stresses by changing membrane system and the function of PLD in resistant to those stresses, lipidomic methods were used to profiling the changing of 11 lipids classes (160 lipids molecules) under thoses stresses. Moreover, PLD mutants were also used to study the role of PLD under those stresses. The mechanisms of plants response to stresses were very complicated; PLD and lipid molecules were not the only factors that response to stresses, the metabolism and phytohormones of tested plants under these stresses were also studied.In alpine scree of northwest Yunnan, the temperature was various from 33 °C during the midday to 4 °C at night, and the highest temperature could reach to 35 to 40 °C. Saussurea medusa and Solms-Laubachia linearifolia, which live in this environment, were chosen as studied model. The results showed that membrane lipid of these two plants significantly fluctuated with the temperature, while the double bond index (DBI) that had close relationship to temperature did not change. Furthermore, the the lysolipids which rise significantly under stresses did not change too much either. Laboratory mimic experiments also confermed the characteristics of lipids change to temperature in alpine scree plants. The results suggested that the plants living in such temperature changeable environment had already adapted to this situation and their membrane responded to the temperature was a kind of adaptation instead of stress response.Since the first introduction in Yunnan province of China in 1940s, E. adenophorum has spread very rapidly especially in southwestern China. Without understanding its invasive mechanism, it is impossible to control it. o-Hydroxycinnamic acid (o-HCA), an allelochmeical isolated from leachates of aerial parts of E. adenophorum were studied. o-HCA was abundant in aerial parts of E. adenophorum (1g/10kg fresh weight). The data showed that o-HCA not only had strong allelopathic effect on Arabidopsis seeds germination, but also inhibited seedling growth, and even induced root death of Arabidopsis seedlings. It could be proposed that o-HCA affected seedlings indirectly, through inducing root cell death, and it disturbed the water and ion absorption of plants and finally induced seedling to die. Interestingly, o-HCA could also inhibit E. adenophorum seed germination, while it showed no effect on its seedling growth. E. adenophorum can produce thousands of seeds and has the ability to vegetative reproduction, with which may alleviate the harmful effect of o-HCA on E. adenophorum. Unlike E. adenophorum, its neighbors’ population was inhibited, under this situation, E. adenophorum coule have better condition to live and invade successfully.Arabidopsis were irradiated with gamma rays, and 50-100 Gy gamma irradiation could inhibit seedling growth, and with the dosage above 200 Gy it could inhibit seedling flowering. Treated Arabidopsis wild types and their PLD a and d mutant with gamma ray showed no significant differences among them. The lipid molecules changes of seedlings under stress of gamma ray were also tested, and found that Gamama ray induced lipids degradation, among which, MGDG and DGDG degraded dramatically, while the average carbons in lipids did not changed. The lipids content (nmol per mg dry weight) decreased significantly, while the mol% content (mol% of total) changed slightly. Gamma irradiation also leaded to dramatically change of Arabidopsis seedling metabolomics and the phytohormones (ABA,ZR,JA,IAA).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Northwest%2BYunnan&order=desc&&fq=dc.project.title_filter%3AEnvironmental%5C+stresses%5C+could%5C+limit%5C+plant%5C+growth%2C%5C+development%5C+and%5C+propagation.%5C+Abiotic%5C+stress%5C+refers%5C+to%5C+the%5C+negative%5C+impact%5C+factors%5C+to%5C+the%5C+plants%2C%5C+such%5C+as%5C+extreme%5C+temperature%2C%5C+drought%2C%5C+flood%2C%5C+salinity%2C%5C+irradiation%2C%5C+chemicals%5C+and%5C+so%5C+on.%5C+To%5C+understand%5C+the%5C+mechanism%5C+of%5C+abiotic%5C+stress%5C+is%5C+very%5C+important.Membrane%5C+is%5C+the%5C+most%5C+sensitive%5C+organs%5C+in%5C+the%5C+cell%5C+that%5C+response%5C+to%5C+environmental%5C+changes.%5C+Cells%5C+respond%5C+and%5C+transduct%5C+environmental%5C+signals%5C+by%5C+changing%5C+content%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins.%5C+The%5C+activity%5C+change%5C+of%5C+membrane%5C+phospholipase%5C+D%5C+%5C%28PLD%5C%29%5C+and%5C+the%5C+composition%5C+and%5C+content%5C+of%5C+membrane%5C+lipid%5C+molecules%5C+is%5C+one%5C+of%5C+the%5C+most%5C+anti%5C-stress%5C+methods%5C+for%5C+the%5C+plants.%5C+It%5C+was%5C+reported%5C+that%5C+plants%5C+responded%5C+to%5C+some%5C+abiotic%5C+stresses%5C+such%5C+as%5C+freezing%2C%5C+thawing%2C%5C+seed%5C+aging%5C+and%5C+dehydration%5C+through%5C+changing%5C+lipid%5C+molecules%5C+especially%5C+the%5C+messenger%5C+phosphatidic%5C+acid%5C+%5C%28PA%5C%29%5C+and%5C+mutants%5C+of%5C+PLD%5C+were%5C+more%5C+tolerant%5C+to%5C+those%5C+stresses.%5C+It%5C+is%5C+important%5C+to%5C+investigate%5C+the%5C+characteristics%5C+and%5C+variation%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins%5C+to%5C+understand%5C+the%5C+streee%5C+in%5C+plants.Three%5C+different%5C+kinds%5C+of%5C+stresses%2C%5C+including%5C+alpine%5C+scree%5C+temperature%5C+stress%2C%5C+allelopathy%5C+and%5C+Gamma%5C+irradiation%5C+stress%2C%5C+were%5C+studied%5C+in%5C+the%5C+present%5C+dissertation.%5C+And%5C+try%5C+to%5C+understand%5C+how%5C+plants%5C+response%5C+to%5C+those%5C+stresses%5C+by%5C+changing%5C+membrane%5C+system%5C+and%5C+the%5C+function%5C+of%5C+PLD%5C+in%5C+resistant%5C+to%5C+those%5C+stresses%2C%5C+lipidomic%5C+methods%5C+were%5C+used%5C+to%5C+profiling%5C+the%5C+changing%5C+of%5C+11%5C+lipids%5C+classes%5C+%5C%28160%5C+lipids%5C+molecules%5C%29%5C+under%5C+thoses%5C+stresses.%5C+Moreover%2C%5C+PLD%5C+mutants%5C+were%5C+also%5C+used%5C+to%5C+study%5C+the%5C+role%5C+of%5C+PLD%5C+under%5C+those%5C+stresses.%5C+The%5C+mechanisms%5C+of%5C+plants%5C+response%5C+to%5C+stresses%5C+were%5C+very%5C+complicated%5C%3B%5C+PLD%5C+and%5C+lipid%5C+molecules%5C+were%5C+not%5C+the%5C+only%5C+factors%5C+that%5C+response%5C+to%5C+stresses%2C%5C+the%5C+metabolism%5C+and%5C+phytohormones%5C+of%5C+tested%5C+plants%5C+under%5C+these%5C+stresses%5C+were%5C+also%5C+studied.In%5C+alpine%5C+scree%5C+of%5C+northwest%5C+Yunnan%2C%5C+the%5C+temperature%5C+was%5C+various%5C+from%5C+33%5C+%C2%B0C%5C+during%5C+the%5C+midday%5C+to%5C+4%5C+%C2%B0C%5C+at%5C+night%2C%5C+and%5C+the%5C+highest%5C+temperature%5C+could%5C+reach%5C+to%5C+35%5C+to%5C+40%5C+%C2%B0C.%5C+Saussurea%5C+medusa%5C+and%5C+Solms%5C-Laubachia%5C+linearifolia%2C%5C+which%5C+live%5C+in%5C+this%5C+environment%2C%5C+were%5C+chosen%5C+as%5C+studied%5C+model.%5C+The%5C+results%5C+showed%5C+that%5C+membrane%5C+lipid%5C+of%5C+these%5C+two%5C+plants%5C+significantly%5C+fluctuated%5C+with%5C+the%5C+temperature%2C%5C+while%5C+the%5C+double%5C+bond%5C+index%5C+%5C%28DBI%5C%29%5C+that%5C+had%5C+close%5C+relationship%5C+to%5C+temperature%5C+did%5C+not%5C+change.%5C+Furthermore%2C%5C+the%5C+the%5C+lysolipids%5C+which%5C+rise%5C+significantly%5C+under%5C+stresses%5C+did%5C+not%5C+change%5C+too%5C+much%5C+either.%5C+Laboratory%5C+mimic%5C+experiments%5C+also%5C+confermed%5C+the%5C+characteristics%5C+of%5C+lipids%5C+change%5C+to%5C+temperature%5C+in%5C+alpine%5C+scree%5C+plants.%5C+The%5C+results%5C+suggested%5C+that%5C+the%5C+plants%5C+living%5C+in%5C+such%5C+temperature%5C+changeable%5C+environment%5C+had%5C+already%5C+adapted%5C+to%5C+this%5C+situation%5C+and%5C+their%5C+membrane%5C+responded%5C+to%5C+the%5C+temperature%5C+was%5C+a%5C+kind%5C+of%5C+adaptation%5C+instead%5C+of%5C+stress%5C+response.Since%5C+the%5C+first%5C+introduction%5C+in%5C+Yunnan%5C+province%5C+of%5C+China%5C+in%5C+1940s%2C%5C+E.%5C+adenophorum%5C+has%5C+spread%5C+very%5C+rapidly%5C+especially%5C+in%5C+southwestern%5C+China.%5C+Without%5C+understanding%5C+its%5C+invasive%5C+mechanism%2C%5C+it%5C+is%5C+impossible%5C+to%5C+control%5C+it.%5C+o%5C-Hydroxycinnamic%5C+acid%5C+%5C%28o%5C-HCA%5C%29%2C%5C+an%5C+allelochmeical%5C+isolated%5C+from%5C+leachates%5C+of%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+were%5C+studied.%5C+o%5C-HCA%5C+was%5C+abundant%5C+in%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+%5C%281g%5C%2F10kg%5C+fresh%5C+weight%5C%29.%5C+The%5C+data%5C+showed%5C+that%5C+o%5C-HCA%5C+not%5C+only%5C+had%5C+strong%5C+allelopathic%5C+effect%5C+on%5C+Arabidopsis%5C+seeds%5C+germination%2C%5C+but%5C+also%5C+inhibited%5C+seedling%5C+growth%2C%5C+and%5C+even%5C+induced%5C+root%5C+death%5C+of%5C+Arabidopsis%5C+seedlings.%5C+It%5C+could%5C+be%5C+proposed%5C+that%5C+o%5C-HCA%5C+affected%5C+seedlings%5C+indirectly%2C%5C+through%5C+inducing%5C+root%5C+cell%5C+death%2C%5C+and%5C+it%5C+disturbed%5C+the%5C+water%5C+and%5C+ion%5C+absorption%5C+of%5C+plants%5C+and%5C+finally%5C+induced%5C+seedling%5C+to%5C+die.%5C+Interestingly%2C%5C+o%5C-HCA%5C+could%5C+also%5C+inhibit%5C+E.%5C+adenophorum%5C+seed%5C+germination%2C%5C+while%5C+it%5C+showed%5C+no%5C+effect%5C+on%5C+its%5C+seedling%5C+growth.%5C+E.%5C+adenophorum%5C+can%5C+produce%5C+thousands%5C+of%5C+seeds%5C+and%5C+has%5C+the%5C+ability%5C+to%5C+vegetative%5C+reproduction%2C%5C+with%5C+which%5C+may%5C+alleviate%5C+the%5C+harmful%5C+effect%5C+of%5C+o%5C-HCA%5C+on%5C+E.%5C+adenophorum.%5C+Unlike%5C+E.%5C+adenophorum%2C%5C+its%5C+neighbors%E2%80%99%5C+population%5C+was%5C+inhibited%2C%5C+under%5C+this%5C+situation%2C%5C+E.%5C+adenophorum%5C+coule%5C+have%5C+better%5C+condition%5C+to%5C+live%5C+and%5C+invade%5C+successfully.Arabidopsis%5C+were%5C+irradiated%5C+with%5C+gamma%5C+rays%2C%5C+and%5C+50%5C-100%5C+Gy%5C+gamma%5C+irradiation%5C+could%5C+inhibit%5C+seedling%5C+growth%2C%5C+and%5C+with%5C+the%5C+dosage%5C+above%5C+200%5C+Gy%5C+it%5C+could%5C+inhibit%5C+seedling%5C+flowering.%5C+Treated%5C+Arabidopsis%5C+wild%5C+types%5C+and%5C+their%5C+PLD%5C+a%5C+and%5C+d%5C+mutant%5C+with%5C+gamma%5C+ray%5C+showed%5C+no%5C+significant%5C+differences%5C+among%5C+them.%5C+The%5C+lipid%5C+molecules%5C+changes%5C+of%5C+seedlings%5C+under%5C+stress%5C+of%5C+gamma%5C+ray%5C+were%5C+also%5C+tested%2C%5C+and%5C+found%5C+that%5C+Gamama%5C+ray%5C+induced%5C+lipids%5C+degradation%2C%5C+among%5C+which%2C%5C+MGDG%5C+and%5C+DGDG%5C+degraded%5C+dramatically%2C%5C+while%5C+the%5C+average%5C+carbons%5C+in%5C+lipids%5C+did%5C+not%5C+changed.%5C+The%5C+lipids%5C+content%5C+%5C%28nmol%5C+per%5C+mg%5C+dry%5C+weight%5C%29%5C+decreased%5C+significantly%2C%5C+while%5C+the%5C+mol%25%5C+content%5C+%5C%28mol%25%5C+of%5C+total%5C%29%5C+changed%5C+slightly.%5C+Gamma%5C+irradiation%5C+also%5C+leaded%5C+to%5C+dramatically%5C+change%5C+of%5C+Arabidopsis%5C+seedling%5C+metabolomics%5C+and%5C+the%5C+phytohormones%5C+%5C%28ABA%EF%BC%8CZR%EF%BC%8CJA%EF%BC%8CIAA%5C%29."},{"jsname":"Excellent Doctor Fund of Zhongkai University of Agriculture and Engineering[KA180581235]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Northwest%2BYunnan&order=desc&&fq=dc.project.title_filter%3AExcellent%5C+Doctor%5C+Fund%5C+of%5C+Zhongkai%5C+University%5C+of%5C+Agriculture%5C+and%5C+Engineering%5C%5BKA180581235%5C%5D"},{"jsname":"lastIndexed","jscount":"2022-08-06"}],"Funding Project","dc.project.title_filter")'>
Chinese Ac... [3]
National K... [3]
13th Five-... [2]
National N... [2]
Thailand R... [2]
973 Progra... [1]
More...
Indexed By
SCI [536]
CSCD [63]
IC [34]
SSCI [15]
ISTP [3]
CCR [1]
More...
Funding Organization
National ... [11]
Chinese Ac... [7]
CAS/SAFEA ... [5]
National K... [5]
West Light... [5]
Chinese Ac... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 917
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Systematics and Biogeography of Aralia L. (Araliaceae):Revision of Aralia Sects. Aralia, Humiles, Nanae, andSciadodendron
期刊论文
出版物, 3111, 卷号: 57, 期号: 0, 页码: 1-172
Authors:
Jun Wen
Adobe PDF(7233Kb)
  |  
Favorite
  |  
View/Download:140/5
  |  
Submit date:2017/07/24
Aralia
Aralia Sect. Aralia
Aralia Sect. Dimorphanthus
Aralia Sect. Humiles
Aralia Sect. Nanae
Aralia Sect. pentapanax
Aralia Sect. Sciadodendron
Biogeography
Araliaceae
Systematics
Boletes clarified
期刊论文
出版物, 3111, 期号: 0, 页码: 1-38
Authors:
David Arora
;
Jonathan L. Frank
Adobe PDF(1003Kb)
  |  
Favorite
  |  
View/Download:156/1
  |  
Submit date:2017/07/24
Appendiculati
Boletaceae
Butter Boletes
Butyriboletus
Molecular phylogenetics
New Genus
New Species
Taxonomy
Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes at multiple spatial scales: The case of northwest Yunnan, China
期刊论文
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 卷号: 304, 页码: 114303
Authors:
Li,Wenqing
;
Wang,Wenli
;
Chen,Jiahui
;
Zhang,Zhiming
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
Afforestation
Natural village participation
Land cover mapping
Multiple levels
Monoculture
LAND CONVERSION PROGRAM
LOESS PLATEAU
ECOSYSTEM SERVICES
GREEN PROGRAM
PROTECTION PROGRAM
SOUTHWEST CHINA
NEURAL-NETWORKS
CLIMATE-CHANGE
LIPING COUNTY
CONSERVATION
Composition of woody plant communities drives macrofungal community composition in three climatic regions
期刊论文
JOURNAL OF VEGETATION SCIENCE, 2021, 卷号: 32, 期号: 2, 页码: e13001
Authors:
Li,Huili
;
Guo,Jiayu
;
Ye,Lei
;
Gui,Heng
;
Hyde,Kevin David
;
Xu,Jianchu
;
Mortimer,Peter Edward
Favorite
  |  
View/Download:4/0
  |  
Submit date:2022/04/02
alpha diversity
beta diversity
climatic factors
community congruence
ecological distribution pattern
epigeous macrofungi
SPECIES RICHNESS
FUNGAL DIVERSITY
VASCULAR PLANTS
ECTOMYCORRHIZAL FUNGI
SITKA SPRUCE
FOREST
BIODIVERSITY
ABUNDANCE
MUSHROOMS
PATTERNS
Antioxidant and tyrosinase inhibitory activities of traditional fermented Rosa from Dali Bai communities, Northwest Yunnan, China
期刊论文
SCIENTIFIC REPORTS, 2021, 卷号: 11, 期号: 1, 页码: 22700
Authors:
Lang,Bayi
;
Zhao,Yanqiang
;
Yang,Rong
;
Liu,Aizhong
;
Ranjitkar,Sailesh
;
Yang,Lixin
Favorite
  |  
View/Download:5/0
  |  
Submit date:2022/04/02
PHENOLIC-COMPOUNDS
FLAVONOIDS
ACID
SULFORAPHANE
VEGETABLES
BROCCOLI
FOOD
Differential expressions of anthocyanin synthesis genes underlie flower color divergence in a sympatric Rhododendron sanguineum complex
期刊论文
BMC PLANT BIOLOGY, 2021, 卷号: 21, 期号: 1, 页码: 204
Authors:
Ye,Lin-Jiang
;
Moller,Michael
;
Luo,Ya-Huang
;
Zou,Jia-Yun
;
Zheng,Wei
;
Wang,Yue-Hua
;
Liu,Jie
;
Zhu,An-Dan
;
Hu,Jin-Yong
;
Li,De-Zhu
;
Gao,Lian-Ming
Favorite
  |  
View/Download:8/0
  |  
Submit date:2022/04/02
Anthocyanin synthesis
Comparative transcriptomics
Flower coloration
Gene expression
Rhododendron sanguineum complex
Sympatric speciation
RNA-SEQ DATA
TRANSCRIPTOME ANALYSIS
ANALYSIS REVEALS
BIOSYNTHESIS
GENERATION
ALIGNMENT
FLAVONOL
COPIGMENTATION
IDENTIFICATION
ACCUMULATION
Poisonous delicacy: Market-oriented surveys of the consumption of Rhododendron flowers in Yunnan, China
期刊论文
JOURNAL OF ETHNOPHARMACOLOGY, 2021, 卷号: 265, 页码: 113320
Authors:
Shi,Yinxian
;
Zhou,Min
;
Zhang,Yu
;
Fu,Yao
;
Li,Jianwen
;
Yang,Xuefei
Favorite
  |  
View/Download:3/0
  |  
Submit date:2022/04/02
Ethnobotany
Edible flower
Grayanotoxin
Wild food plants
Florivory
EDIBLE FLOWERS
TRADITIONAL KNOWLEDGE
LOCAL PRODUCERS
ARTICLEARE WILD
CONSUMER FOOD
DENMARK SAFE
PLANTS
HONEY
GRAYANOTOXIN
ANTIOXIDANT
Phenolic Amides with Immunomodulatory Activity from the Nonpolysaccharide Fraction of Lycium barbarum Fruits
期刊论文
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020
Authors:
Zhu, Pei-Feng
;
Zhao, Yun-Li
;
Dai, Zhi
;
Qin, Xu-Jie
;
Yuan, Hai-Lian
;
Jin, Qiong
;
Wang, Yi-Fen
;
Liu, Ya-Ping
;
Luo, Xiao-Dong
View
  |  
Adobe PDF(1621Kb)
  |  
Favorite
  |  
View/Download:84/30
  |  
Submit date:2021/01/05
Predicting the climate change impacts on water-carbon coupling cycles for a loess hilly-gully watershed
期刊论文
JOURNAL OF HYDROLOGY, 2020
Authors:
Zhao, Fubo
;
Wu, Yiping
;
Yao, Yingying
;
Sun, Ke
;
Zhang, Xuesong
;
Winowiecki, Leigh
;
Vagen, Tor-G.
;
Xue, Jianchu
;
Qiu, Linjing
;
Sun, Pengcheng
;
Sun, Yuzhu
View
  |  
Adobe PDF(3622Kb)
  |  
Favorite
  |  
View/Download:24/3
  |  
Submit date:2021/01/05
Taxonomic study of Hypotrachyna subg. Everniastrum (Hale ex Sipman) Divakar, A.Crespo, Sipman, Elix & Lumbsch (Ascomycota) from China
期刊论文
CRYPTOGAMIE MYCOLOGIE, 2020
Authors:
Wang, Xin Yu
;
Zhang, Yan Yun
;
Liu, Dong
;
Li, Li Juan
;
Yang, Mei Xia
;
Yin, An Cheng
;
Wang, Li Song
View
  |  
Adobe PDF(4590Kb)
  |  
Favorite
  |  
View/Download:16/5
  |  
Submit date:2021/01/05