×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植物... [16]
共享文献 [11]
昆明植物所硕博研究生... [9]
资源植物与生物技术所... [4]
中国西南野生生物种质... [3]
植物分类与资源学报 [1]
More...
Authors
Yang Yongp... [8]
Sun Hang [5]
彭华 [3]
李德铢 [2]
孙卫邦 [2]
段元文 [2]
More...
Document Type
Journal a... [35]
Thesis [9]
Book [3]
Date Issued
2019 [1]
2018 [2]
2017 [2]
2016 [3]
2015 [1]
2014 [4]
More...
Language
英语 [29]
中文 [9]
Source Publication
JOURNAL OF... [4]
BOTANICAL ... [3]
CARYOLOGIA [2]
JOURNAL OF... [2]
TAXON [2]
云南植物研究 [2]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"China Scholarship Council","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council"},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Kunming Institute of Botany, Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3AKunming%5C+Institute%5C+of%5C+Botany%2C%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"National Natural Science Foundation of China[31400196]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31400196%5C%5D"},{"jsname":"National Natural Science Foundation of China[31628002]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31628002%5C%5D"},{"jsname":"Pilot Work of the fourth National survey on Chinese Materia Medica Resources[2017-2019]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3APilot%5C+Work%5C+of%5C+the%5C+fourth%5C+National%5C+survey%5C+on%5C+Chinese%5C+Materia%5C+Medica%5C+Resources%5C%5B2017%5C-2019%5C%5D"},{"jsname":"Polyploidy appears to be the most significant mode of sympatric speciation, it is a prevalent phenomenon in species. In this research to investigate the distribution pattern we analysed 27 populations over 500 individuals’ karyotypes and compared morphological characters between different populations to investigate the morphological polymorphism of different ploidy. Parsimony analysis within 2 non-coding loci from chloroplast genome and rDNA ITS, combined the karyotype and morphological results to disscussed the way and the frequency of tetraploids origin. The major results are shown as follows:1. Karyotypes of different populations in A. mairei,27 populations were studied, 13 diploid and 14 tetraploid populations have been detected. No populations have both ploidy coexist. Three karyotype formulas in diploid: 2n=16m,2n=14m+2sm and 2n=12m+4sm; Four karyotype formulas in tetraploid: 2n=30m+2sm,2n=28m+4sm,2n=26m+6sm,2n=28m+2sm+2st. The karyotypes of all populations showed great similarity. Most chromosomes types are “m” and“sm”,only one “st”found in Songming population. The As.K.% ranged from 54.70% to 57.96% .All karyotype found showed original with type 1A or 2A. Based on the evolutionary trend of karyotype is symmetry to asymmetry, A. mairei is very original in karyotype even compared with other species in the genus Allium.2 .The distribution pattern of populations with different ploidy,Both cytotypes occur across a wide range in the distribution area. But the diploid cytotype was rarely found in the east of Yunnan province, and diploid cytotype prefer higher altitude. The tetraploid is extremely common in the east of Yunnan but rarely found in the west, and tetraploid prefer lower altitudes. No correlation found between the distribution patterns and the karyotype asymmetry. Bisides few populations, the karyotype asymmetry in most tetraploid population are similar with diploid, and the smallest karyotype asymmetry found in tetraploid. So based on the karyotype couldn’t found the evolution trend between two poloidy in A. maimei. This result may implied the multiple origins of the tetraploid in A. maimei, some progenitors of tetraploid were distinct, caused no correlation found between two ploidy. Another possibility is the tetraploid spread very quickly after origins, so the change of the karyotype is not obvious. 3. Morphological Polymorphism of different ploidy,The analysis of variation and multiple comparisons with a result of all characters significantly different among /in populations.Characters using numerical taxonomic method Q cluster reveals that ploidy level has little correlation with the morphological variation. The morphological variations in A. mairei are more correlate with Climte and environment. Because the diploids in west Yunnan have more morphological variations. No obvious morphological differentiation between diploid and tetraploid,the tetraploids in A. maimei are autopolyploid from the sight of morphology.4. Autopolyploid and multiple origins of tetraploids in A. mairei,The parsimony analyses of ITS sequence based on the sampling strategy of A. mairei populations with different species of Allium. The strict consensus tree show the diploids and tetraploids of A. mairei to be monophyletic (100% bootstrap). No hybridization between A. mairei and relatives. The result indicates independent polyploidization processes in A. mairei, and support tetraploids in A. mairei are autopolyploid. Based on 27 haplotypes derived form two cpDNA fragments (rpl32-trnL and psbD-trhT), the network analyses showed tetraploids in A.mairei have arisen at least three times. Phylogenetic analyses based on ITS variation types showed the reproductive isolation between diploid and teraploid may not exist.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3APolyploidy%5C+appears%5C+to%5C+be%5C+the%5C+most%5C+significant%5C+mode%5C+of%5C+sympatric%5C+speciation%2C%5C+it%5C+is%5C+a%5C+prevalent%5C+phenomenon%5C+in%5C+species.%5C+In%5C+this%5C+research%5C+to%5C+investigate%5C+the%5C+distribution%5C+pattern%5C+we%5C+analysed%5C+27%5C+populations%5C+over%5C+500%5C+individuals%E2%80%99%5C+karyotypes%5C+and%5C+compared%5C+morphological%5C+characters%5C+between%5C+different%5C+populations%5C+to%5C+investigate%5C+the%5C+morphological%5C+polymorphism%5C+of%5C+different%5C+ploidy.%5C+Parsimony%5C+analysis%5C+within%5C+2%5C+non%5C-coding%5C+loci%5C+from%5C+chloroplast%5C+genome%5C+and%5C+rDNA%5C+ITS%2C%5C+combined%5C+the%5C+karyotype%5C+and%5C+morphological%5C+results%5C+to%5C+disscussed%5C+the%5C+way%5C+and%5C+the%5C+frequency%5C+of%5C+tetraploids%5C+origin.%5C+The%5C+major%5C+results%5C+are%5C+shown%5C+as%5C+follows%5C%3A1.%5C+Karyotypes%5C+of%5C+different%5C+populations%5C+in%5C+A.%5C+mairei%EF%BC%8C27%5C+populations%5C+were%5C+studied%2C%5C+13%5C+diploid%5C+and%5C+14%5C+tetraploid%5C+populations%5C+have%5C+been%5C+detected.%5C+No%5C+populations%5C+have%5C+both%5C+ploidy%5C+coexist.%5C+Three%5C+karyotype%5C+formulas%5C+in%5C+diploid%5C%3A%5C+2n%3D16m%EF%BC%8C2n%3D14m%5C%2B2sm%5C+and%5C+2n%3D12m%5C%2B4sm%5C%3B%5C+Four%5C+karyotype%5C+formulas%5C+in%5C+tetraploid%5C%3A%5C+2n%3D30m%5C%2B2sm%EF%BC%8C2n%3D28m%5C%2B4sm%EF%BC%8C2n%3D26m%5C%2B6sm%EF%BC%8C2n%3D28m%5C%2B2sm%5C%2B2st.%5C+The%5C+karyotypes%5C+of%5C+all%5C+populations%5C+showed%5C+great%5C+similarity.%5C+Most%5C+chromosomes%5C+types%5C+are%5C+%E2%80%9Cm%E2%80%9D%5C+and%E2%80%9Csm%E2%80%9D%2Conly%5C+one%5C+%E2%80%9Cst%E2%80%9Dfound%5C+in%5C+Songming%5C+population.%5C+The%5C+As.K.%25%5C+ranged%5C+from%5C+54.70%25%5C+to%5C+57.96%25%5C+.All%5C+karyotype%5C+found%5C+showed%5C+original%5C+with%5C+type%5C+1A%5C+or%5C+2A.%5C+Based%5C+on%5C+the%5C+evolutionary%5C+trend%5C+of%5C+karyotype%5C+is%5C+symmetry%5C+to%5C+asymmetry%2C%5C+A.%5C+mairei%5C+is%5C+very%5C+original%5C+in%5C+karyotype%5C+even%5C+compared%5C+with%5C+other%5C+species%5C+in%5C+the%5C+genus%5C+Allium.2%5C+.The%5C+distribution%5C+pattern%5C+of%5C+populations%5C+with%5C+different%5C+ploidy%EF%BC%8CBoth%5C+cytotypes%5C+occur%5C+across%5C+a%5C+wide%5C+range%5C+in%5C+the%5C+distribution%5C+area.%5C+But%5C+the%5C+diploid%5C+cytotype%5C+was%5C+rarely%5C+found%5C+in%5C+the%5C+east%5C+of%5C+Yunnan%5C+province%2C%5C+and%5C+diploid%5C+cytotype%5C+prefer%5C+higher%5C+altitude.%5C+The%5C+tetraploid%5C+is%5C+extremely%5C+common%5C+in%5C+the%5C+east%5C+of%5C+Yunnan%5C+but%5C+rarely%5C+found%5C+in%5C+the%5C+west%2C%5C+and%5C+tetraploid%5C+prefer%5C+lower%5C+altitudes.%5C+No%5C+correlation%5C+found%5C+between%5C+the%5C+distribution%5C+patterns%5C+and%5C+the%5C+karyotype%5C+asymmetry.%5C+Bisides%5C+few%5C+populations%2C%5C+the%5C+karyotype%5C+asymmetry%5C+in%5C+most%5C+tetraploid%5C+population%5C+are%5C+similar%5C+with%5C+diploid%2C%5C+and%5C+the%5C+smallest%5C+karyotype%5C+asymmetry%5C+found%5C+in%5C+tetraploid.%5C+So%5C+based%5C+on%5C+the%5C+karyotype%5C+couldn%E2%80%99t%5C+found%5C+the%5C+evolution%5C+trend%5C+between%5C+two%5C+poloidy%5C+in%5C+A.%5C+maimei.%5C+This%5C+result%5C+may%5C+implied%5C+the%5C+multiple%5C+origins%5C+of%5C+the%5C+tetraploid%5C+in%5C+A.%5C+maimei%2C%5C+some%5C+progenitors%5C+of%5C+tetraploid%5C+were%5C+distinct%2C%5C+caused%5C+no%5C+correlation%5C+found%5C+between%5C+two%5C+ploidy.%5C+Another%5C+possibility%5C+is%5C+the%5C+tetraploid%5C+spread%5C+very%5C+quickly%5C+after%5C+origins%2C%5C+so%5C+the%5C+change%5C+of%5C+the%5C+karyotype%5C+is%5C+not%5C+obvious.%5C+3.%5C+Morphological%5C+Polymorphism%5C+of%5C+different%5C+ploidy%EF%BC%8CThe%5C+analysis%5C+of%5C+variation%5C+and%5C+multiple%5C+comparisons%5C+with%5C+a%5C+result%5C+of%5C+all%5C+characters%5C+significantly%5C+different%5C+among%5C+%5C%2Fin%5C+populations.Characters%5C+using%5C+numerical%5C+taxonomic%5C+method%5C+Q%5C+cluster%5C+reveals%5C+that%5C+ploidy%5C+level%5C+has%5C+little%5C+correlation%5C+with%5C+the%5C+morphological%5C+variation.%5C+The%5C+morphological%5C+variations%5C+in%5C+A.%5C+mairei%5C+are%5C+more%5C+correlate%5C+with%5C+Climte%5C+and%5C+environment.%5C+Because%5C+the%5C+diploids%5C+in%5C+west%5C+Yunnan%5C+have%5C+more%5C+morphological%5C+variations.%5C+No%5C+obvious%5C+morphological%5C+differentiation%5C+between%5C+diploid%5C+and%5C+tetraploid%EF%BC%8Cthe%5C+tetraploids%5C+in%5C+A.%5C+maimei%5C+are%5C+autopolyploid%5C+from%5C+the%5C+sight%5C+of%5C+morphology.4.%5C+Autopolyploid%5C+and%5C+multiple%5C+origins%5C+of%5C+tetraploids%5C+in%5C+A.%5C+mairei%EF%BC%8CThe%5C+parsimony%5C+analyses%5C+of%5C+ITS%5C+sequence%5C+based%5C+on%5C+the%5C+sampling%5C+strategy%5C+of%5C+A.%5C+mairei%5C+populations%5C+with%5C+different%5C+species%5C+of%5C+Allium.%5C+The%5C+strict%5C+consensus%5C+tree%5C+show%5C+the%5C+diploids%5C+and%5C+tetraploids%5C+of%5C+A.%5C+mairei%5C+to%5C+be%5C+monophyletic%5C+%5C%28100%25%5C+bootstrap%5C%29.%5C+No%5C+hybridization%5C+between%5C+A.%5C+mairei%5C+and%5C+relatives.%5C+The%5C+result%5C+indicates%5C+independent%5C+polyploidization%5C+processes%5C+in%5C+A.%5C+mairei%2C%5C+and%5C+support%5C+tetraploids%5C+in%5C+A.%5C+mairei%5C+are%5C+autopolyploid.%5C+Based%5C+on%5C+27%5C+haplotypes%5C+derived%5C+form%5C+two%5C+cpDNA%5C+fragments%5C+%5C%28rpl32%5C-trnL%5C+and%5C+psbD%5C-trhT%5C%29%2C%5C+the%5C+network%5C+analyses%5C+showed%5C+tetraploids%5C+in%5C+A.mairei%5C+have%5C+arisen%5C+at%5C+least%5C+three%5C+times.%5C+Phylogenetic%5C+analyses%5C+based%5C+on%5C+ITS%5C+variation%5C+types%5C+showed%5C+the%5C+reproductive%5C+isolation%5C+between%5C+diploid%5C+and%5C+teraploid%5C+may%5C+not%5C+exist."},{"jsname":"Polyploidy, the presence of three or more genomes in an organism, has occurred extensively in plants, and plays a major role in the evolution and speciation of angiosperm. Despite extensive study of the cytotypes distribution and origin of polyploidy, few studies have been reported in China, especially in southwest region. Allium wallichii Kunth (Alliaceae) is a perennial herb, distributed in southwest China, northen India, Nepal, Sikkim and Bhutan. The multiple ploidy levels and rapid differentiation has made A. wallichii a good candidate for studying polyploidy. The cytotypes distribution and origin of A. wallichii polyploidy has been studied in Yunnan-Guizhou Plateu, a main distribution area of this plant. Root-tip squashes were used to identify the ploidy level and karyotypes of 412 plants from 17 populations sampled from Yunnan-Guizhou Plateau. Based on nuclear ITS DNA sequences in 83 individuals from 17 populations, phylogentic analysis were performed to investigate types of A. wallichii polyloids, and determine if the reproductive isolation has been established between diploids and tetraploids. Based on two chloroplast DNA (cpDNA) fragments (petL-psbE, trnQ-rps16), haplotypes were identified , and the origination of tetraploids were analyzed. The main results and conclusions are as follows: 1. Distribution of cytotypes, Cytotype distribution was analyzed based on 412 newly studied plants from seventeen populations and published literatures. Nine diploid populations, six diploid-tetraploid mixed populations occur in central to northwest Yunnan, while twelve tetraploid populations occur in the Yunnan-Guizhou Plateau. Furthermore, tetraploids has a wider altitude range (1400-3726 m) than diploids (2100-3638 m), which suggests the adaptative ability of tetraploid is much stronger than its diploid pregnancies. Tetraploid populations distributed in northwest Yunnan have much lower karyotype asymmetry with the asymmetry indexes (AI) ranges from 1.83 to 2.87 compared to other populations of other areas (AI, 2.03-3.02). This suggests tetraploid in northwest Yunnan is likely to have an earlier derivation. 2. Autoploidization origin of the tetraploids, Diploids are all 2A type except that Zhongdian D and Baoshan populations are 3A type, and tetraploids are all 2A type but Huize and Hezhang populations are 2B type. It shows high similarity of karyotypes of diploid and tetraploids. In addition, the undistinguishable morphology of A. wallichii with different ploidy levels in northwest Yunnan and the monophyly of A. wallichii in ITS strict consensus tree all suggest autopolyploid origins of tetraploids A. wallichii. 3. Multiple origins of tetraploids, Based on two cpDNA fragments (petL-psbE, trnQ-rps16) in 85 individuals from 17 populations across the Yunnan-Guizhou Plateau, a total of 17 haplotypes were identified, among them, 3 in diploids only, 11 in tetraploids only, and 3 found in both cytotypes. This, plus network analyses, indicated that tetraploids have arisen independently from diploids at least three times. 4. Productive isolation between diploids and teraploids, ITS phylogenetic analyses between diploid and tetraploid A. wallichii shows that diploids and tetraploids are both monophyly, with bootstrap value 100% and 88% respectively, indicating that the reproductive isolation has been established between them. Based on cpDNA haplotypes and ITS variation types analyses, extensive hybridization and gene introgression may have occurred among tetraploids.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3APolyploidy%2C%5C+the%5C+presence%5C+of%5C+three%5C+or%5C+more%5C+genomes%5C+in%5C+an%5C+organism%2C%5C+has%5C+occurred%5C+extensively%5C+in%5C+plants%2C%5C+and%5C+plays%5C+a%5C+major%5C+role%5C+in%5C+the%5C+evolution%5C+and%5C+speciation%5C+of%5C+angiosperm.%5C+Despite%5C+extensive%5C+study%5C+of%5C+the%5C+cytotypes%5C+distribution%5C+and%5C+origin%5C+of%5C+polyploidy%2C%5C+few%5C+studies%5C+have%5C+been%5C+reported%5C+in%5C+China%2C%5C+especially%5C+in%5C+southwest%5C+region.%5C+Allium%5C+wallichii%5C+Kunth%5C+%5C%28Alliaceae%5C%29%5C+is%5C+a%5C+perennial%5C+herb%2C%5C+distributed%5C+in%5C+southwest%5C+China%2C%5C+northen%5C+India%2C%5C+Nepal%2C%5C+Sikkim%5C+and%5C+Bhutan.%5C+The%5C+multiple%5C+ploidy%5C+levels%5C+and%5C+rapid%5C+differentiation%5C+has%5C+made%5C+A.%5C+wallichii%5C+a%5C+good%5C+candidate%5C+for%5C+studying%5C+polyploidy.%5C+The%5C+cytotypes%5C+distribution%5C+and%5C+origin%5C+of%5C+A.%5C+wallichii%5C+polyploidy%5C+has%5C+been%5C+studied%5C+in%5C+Yunnan%5C-Guizhou%5C+Plateu%2C%5C+a%5C+main%5C+distribution%5C+area%5C+of%5C+this%5C+plant.%5C+Root%5C-tip%5C+squashes%5C+were%5C+used%5C+to%5C+identify%5C+the%5C+ploidy%5C+level%5C+and%5C+karyotypes%5C+of%5C+412%5C+plants%5C+from%5C+17%5C+populations%5C+sampled%5C+from%5C+Yunnan%5C-Guizhou%5C+Plateau.%5C+Based%5C+on%5C+nuclear%5C+ITS%5C+DNA%5C+sequences%5C+in%5C+83%5C+individuals%5C+from%5C+17%5C+populations%2C%5C+phylogentic%5C+analysis%5C+were%5C+performed%5C+to%5C+investigate%5C+types%5C+of%5C+A.%5C+wallichii%5C+polyloids%2C%5C+and%5C+determine%5C+if%5C+the%5C+reproductive%5C+isolation%5C+has%5C+been%5C+established%5C+between%5C+diploids%5C+and%5C+tetraploids.%5C+Based%5C+on%5C+two%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+fragments%5C+%5C%28petL%5C-psbE%2C%5C+trnQ%5C-rps16%5C%29%2C%5C+haplotypes%5C+were%5C+identified%5C+%2C%5C+and%5C+the%5C+origination%5C+of%5C+tetraploids%5C+were%5C+analyzed.%5C+The%5C+main%5C+results%5C+and%5C+conclusions%5C+are%5C+as%5C+follows%5C%3A%5C+1.%5C+Distribution%5C+of%5C+cytotypes%2C%5C+Cytotype%5C+distribution%5C+was%5C+analyzed%5C+based%5C+on%5C+412%5C+newly%5C+studied%5C+plants%5C+from%5C+seventeen%5C+populations%5C+and%5C+published%5C+literatures.%5C+Nine%5C+diploid%5C+populations%2C%5C+six%5C+diploid%5C-tetraploid%5C+mixed%5C+populations%5C+occur%5C+in%5C+central%5C+to%5C+northwest%5C+Yunnan%2C%5C+while%5C+twelve%5C+tetraploid%5C+populations%5C+occur%5C+in%5C+the%5C+Yunnan%5C-Guizhou%5C+Plateau.%5C+Furthermore%2C%5C+tetraploids%5C+has%5C+a%5C+wider%5C+altitude%5C+range%5C+%5C%281400%5C-3726%5C+m%5C%29%5C+than%5C+diploids%5C+%5C%282100%5C-3638%5C+m%5C%29%2C%5C+which%5C+suggests%5C+the%5C+adaptative%5C+ability%5C+of%5C+tetraploid%5C+is%5C+much%5C+stronger%5C+than%5C+its%5C+diploid%5C+pregnancies.%5C+Tetraploid%5C+populations%5C+distributed%5C+in%5C+northwest%5C+Yunnan%5C+have%5C+much%5C+lower%5C+karyotype%5C+asymmetry%5C+with%5C+the%5C+asymmetry%5C+indexes%5C+%5C%28AI%5C%29%5C+ranges%5C+from%5C+1.83%5C+to%5C+2.87%5C+compared%5C+to%5C+other%5C+populations%5C+of%5C+other%5C+areas%5C+%5C%28AI%2C%5C+2.03%5C-3.02%5C%29.%5C+This%5C+suggests%5C+tetraploid%5C+in%5C+northwest%5C+Yunnan%5C+is%5C+likely%5C+to%5C+have%5C+an%5C+earlier%5C+derivation.%5C+2.%5C+Autoploidization%5C+origin%5C+of%5C+the%5C+tetraploids%2C%5C+Diploids%5C+are%5C+all%5C+2A%5C+type%5C+except%5C+that%5C+Zhongdian%5C+D%5C+and%5C+Baoshan%5C+populations%5C+are%5C+3A%5C+type%2C%5C+and%5C+tetraploids%5C+are%5C+all%5C+2A%5C+type%5C+but%5C+Huize%5C+and%5C+Hezhang%5C+populations%5C+are%5C+2B%5C+type.%5C+It%5C+shows%5C+high%5C+similarity%5C+of%5C+karyotypes%5C+of%5C+diploid%5C+and%5C+tetraploids.%5C+In%5C+addition%2C%5C+the%5C+undistinguishable%5C+morphology%5C+of%5C+A.%5C+wallichii%5C+with%5C+different%5C+ploidy%5C+levels%5C+in%5C+northwest%5C+Yunnan%5C+and%5C+the%5C+monophyly%5C+of%5C+A.%5C+wallichii%5C+in%5C+ITS%5C+strict%5C+consensus%5C+tree%5C+all%5C+suggest%5C+autopolyploid%5C+origins%5C+of%5C+tetraploids%5C+A.%5C+wallichii.%5C+3.%5C+Multiple%5C+origins%5C+of%5C+tetraploids%2C%5C+Based%5C+on%5C+two%5C+cpDNA%5C+fragments%5C+%5C%28petL%5C-psbE%2C%5C+trnQ%5C-rps16%5C%29%5C+in%5C+85%5C+individuals%5C+from%5C+17%5C+populations%5C+across%5C+the%5C+Yunnan%5C-Guizhou%5C+Plateau%2C%5C+a%5C+total%5C+of%5C+17%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+them%2C%5C+3%5C+in%5C+diploids%5C+only%2C%5C+11%5C+in%5C+tetraploids%5C+only%2C%5C+and%5C+3%5C+found%5C+in%5C+both%5C+cytotypes.%5C+This%2C%5C+plus%5C+network%5C+analyses%2C%5C+indicated%5C+that%5C+tetraploids%5C+have%5C+arisen%5C+independently%5C+from%5C+diploids%5C+at%5C+least%5C+three%5C+times.%5C+4.%5C+Productive%5C+isolation%5C+between%5C+diploids%5C+and%5C+teraploids%2C%5C+ITS%5C+phylogenetic%5C+analyses%5C+between%5C+diploid%5C+and%5C+tetraploid%5C+A.%5C+wallichii%5C+shows%5C+that%5C+diploids%5C+and%5C+tetraploids%5C+are%5C+both%5C+monophyly%2C%5C+with%5C+bootstrap%5C+value%5C+100%25%5C+and%5C+88%25%5C+respectively%2C%5C+indicating%5C+that%5C+the%5C+reproductive%5C+isolation%5C+has%5C+been%5C+established%5C+between%5C+them.%5C+Based%5C+on%5C+cpDNA%5C+haplotypes%5C+and%5C+ITS%5C+variation%5C+types%5C+analyses%2C%5C+extensive%5C+hybridization%5C+and%5C+gene%5C+introgression%5C+may%5C+have%5C+occurred%5C+among%5C+tetraploids."},{"jsname":"Transposable elements (TEs) have been found to be a significant fraction of eukaryotic genomes. Moreover, they make great contributions to the structure, function and evolution of genomes as well as genes. However, some questions such as the mechanisms of retainment of TEs in the genome and their adaptive evolution have not been fully elucidated so far. In this study, the distributions of 17 TE-gene associations among Oryza species were investigated. In addition, the nucleotide diversity was analysed and neutral tests for the region flanking the TE insertions were performed. Based on the above-observed patterns, evolutionary relationships between species in the AA genome group were discussed. The main results are as follows: For each TE-gene association, PCR and electrophoresis were conducted for a total of 107 strains, belonging to different Oryza species. The patterns of each TE-gene association in different species were obtained. It is our finding that 2 associations distribute through all Oryza species. By contrast, other 15 associations were only observed in some Oryza species. On basis of the above-mentioned results, it is likely that insertion events under study occurred in their common ancestor, and then they dispersed with subsequent divergence of different AA genome species. Our datas strongly support that O. meridionalis is the most basal lineage of AA genome group, instead of O. longistaminata.For several TE-gene associations fixed in populations of ancestor, the nucleotide diversity was estimated and neutral tests for the region flanking the TE insertions between populations with and without TE insertions were performed. No significant result was obtained. It is possible that the fixation of mutations with TE insetion is a random process; alternatively, this process is attributable to nature selection. Since the fixation has finished, it is difficult to detect the signature at the sequence level.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3ATransposable%5C+elements%5C+%5C%28TEs%5C%29%5C+have%5C+been%5C+found%5C+to%5C+be%5C+a%5C+significant%5C+fraction%5C+of%5C+eukaryotic%5C+genomes.%5C+Moreover%2C%5C+they%5C+make%5C+great%5C+contributions%5C+to%5C+the%5C+structure%2C%5C+function%5C+and%5C+evolution%5C+of%5C+genomes%5C+as%5C+well%5C+as%5C+genes.%5C+However%2C%5C+some%5C+questions%5C+such%5C+as%5C+the%5C+mechanisms%5C+of%5C+retainment%5C+of%5C+TEs%5C+in%5C+the%5C+genome%5C+and%5C+their%5C+adaptive%5C+evolution%5C+have%5C+not%5C+been%5C+fully%5C+elucidated%5C+so%5C+far.%5C+In%5C+this%5C+study%2C%5C+the%5C+distributions%5C+of%5C+17%5C+TE%5C-gene%5C+associations%5C+among%5C+Oryza%5C+species%5C+were%5C+investigated.%5C+In%5C+addition%2C%5C+the%5C+nucleotide%5C+diversity%5C+was%5C+analysed%5C+and%5C+neutral%5C+tests%5C+for%5C+the%5C+region%5C+flanking%5C+the%5C+TE%5C+insertions%5C+were%5C+performed.%5C+Based%5C+on%5C+the%5C+above%5C-observed%5C+patterns%2C%5C+evolutionary%5C+relationships%5C+between%5C+species%5C+in%5C+the%5C+AA%5C+genome%5C+group%5C+were%5C+discussed.%5C+The%5C+main%5C+results%5C+are%5C+as%5C+follows%5C%3A%5C+For%5C+each%5C+TE%5C-gene%5C+association%2C%5C+PCR%5C+and%5C+electrophoresis%5C+were%5C+conducted%5C+for%5C+a%5C+total%5C+of%5C+107%5C+strains%2C%5C+belonging%5C+to%5C+different%5C+Oryza%5C+species.%5C+The%5C+patterns%5C+of%5C+each%5C+TE%5C-gene%5C+association%5C+in%5C+different%5C+species%5C+were%5C+obtained.%5C+It%5C+is%5C+our%5C+finding%5C+that%5C+2%5C+associations%5C+distribute%5C+through%5C+all%5C+Oryza%5C+species.%5C+By%5C+contrast%2C%5C+other%5C+15%5C+associations%5C+were%5C+only%5C+observed%5C+in%5C+some%5C+Oryza%5C+species.%5C+On%5C+basis%5C+of%5C+the%5C+above%5C-mentioned%5C+results%2C%5C+it%5C+is%5C+likely%5C+that%5C+insertion%5C+events%5C+under%5C+study%5C+occurred%5C+in%5C+their%5C+common%5C+ancestor%2C%5C+and%5C+then%5C+they%5C+dispersed%5C+with%5C+subsequent%5C+divergence%5C+of%5C+different%5C+AA%5C+genome%5C+species.%5C+Our%5C+datas%5C+strongly%5C+support%5C+that%5C+O.%5C+meridionalis%5C+is%5C+the%5C+most%5C+basal%5C+lineage%5C+of%5C+AA%5C+genome%5C+group%2C%5C+instead%5C+of%5C+O.%5C+longistaminata.For%5C+several%5C+TE%5C-gene%5C+associations%5C+fixed%5C+in%5C+populations%5C+of%5C+ancestor%2C%5C+the%5C+nucleotide%5C+diversity%5C+was%5C+estimated%5C+and%5C+neutral%5C+tests%5C+for%5C+the%5C+region%5C+flanking%5C+the%5C+TE%5C+insertions%5C+between%5C+populations%5C+with%5C+and%5C+without%5C+TE%5C+insertions%5C+were%5C+performed.%5C+No%5C+significant%5C+result%5C+was%5C+obtained.%5C+It%5C+is%5C+possible%5C+that%5C+the%5C+fixation%5C+of%5C+mutations%5C+with%5C+TE%5C+insetion%5C+is%5C+a%5C+random%5C+process%5C%3B%5C+alternatively%2C%5C+this%5C+process%5C+is%5C+attributable%5C+to%5C+nature%5C+selection.%5C+Since%5C+the%5C+fixation%5C+has%5C+finished%2C%5C+it%5C+is%5C+difficult%5C+to%5C+detect%5C+the%5C+signature%5C+at%5C+the%5C+sequence%5C+level."},{"jsname":"Zhang Hong-Da (Chang Hung-Ta) Science Foundation at Sun Yat-sen University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Cytotype%2BDistribution&order=desc&&fq=dc.project.title_filter%3AZhang%5C+Hong%5C-Da%5C+%5C%28Chang%5C+Hung%5C-Ta%5C%29%5C+Science%5C+Foundation%5C+at%5C+Sun%5C+Yat%5C-sen%5C+University"},{"jsname":"lastIndexed","jscount":"2024-12-02"}],"Funding Project","dc.project.title_filter")'>
Basic Work... [1]
CAS-TWAS P... [1]
Camellia t... [1]
China Scho... [1]
Glory Ligh... [1]
Kunming In... [1]
More...
Indexed By
SCI [19]
CSCD [4]
Funding Organization
31270434) [1]
31570211) [1]
31590823 [1]
Basic Work... [1]
CAS-TWAS P... [1]
China Scho... [1]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 47
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Polyploidization and sexual dimorphism of floral traits in a subdioecious population of Dasiphora glabra
期刊论文
JOURNAL OF PLANT ECOLOGY, 2021, 卷号: 14, 期号: 2, 页码: 229-240
Authors:
Wang,Lin-Lin
;
Yang,Na-Cai
;
Chen,Min-Yu
;
Yang,Yong-Ping
;
Duan,Yuan-Wen
View
  |  
Adobe PDF(671Kb)
  |  
Favorite
  |  
View/Download:115/33
  |  
Submit date:2022/04/02
natural selection
flower traits
polyploidy
sex separation
sexual dimorphism
GENDER DIMORPHISM
POLLEN LIMITATION
POLLINATOR VISITATION
PLANT REPRODUCTION
ALPINE PLANT
EVOLUTIONARY
STRATEGIES
DISPLAY
SYSTEM
FRUIT
旧世界(中亚和东亚)葱属植物的系统与进化研究
学位论文
, 2020
Authors:
Ziyoviddin Yusupov
Adobe PDF(10049Kb)
  |  
Favorite
  |  
View/Download:59/0
  |  
Submit date:2023/11/02
The coexistence of hermaphroditic and dioecious plants is associated with polyploidy and gender dimorphism in Dasiphora fruticosa
期刊论文
PLANT DIVERSITY, 2019, 卷号: 41, 期号: 5, 页码: 323-329
Authors:
Wang, Lin-Lin
;
Zhang, Zhi-Qiang
;
Yang, Yong-Ping
;
Duan, Yuan-Wen
View
  |  
Adobe PDF(1629Kb)
  |  
Favorite
  |  
View/Download:264/52
  |  
Submit date:2020/03/18
Gender polymorphism
Dioecy
Dasiphora fruticosa
Polyploidy
Reproductive isolation
A global plastid phylogeny uncovers extensive cryptic speciation in the fern genus
Hymenasplenium
(Aspleniaceae)
期刊论文
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 卷号: 127, 页码: 203-216
Authors:
Xu, Ke-Wang
;
Zhou, Xin-Mao
;
Yin, Qian-Yi
;
Zhang, Liang
;
Ngan Thi Lu
;
Knapp, Ralf
;
Thien Tam Luong
;
He, Hai
;
Fan, Qiang
;
Zhao, Wan-Yi
;
Gao, Xin-Fen
;
Liao, Wen-Bo
;
Zhang, Li-Bing
View
  |  
Adobe PDF(4692Kb)
  |  
Favorite
  |  
View/Download:235/70
  |  
Submit date:2018/12/27
Asplenium
Cryptic Species
Eupolypods Ii
Fern Phylogeny
Pantropical Distribution
Variations in Genome Size of Turnip Landraces from Two High-altitude Environments
期刊论文
JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2018, 卷号: 143, 期号: 2, 页码: 136-143
Authors:
Basak, Supriyo
;
Wang, Guangyan
;
Sun, Xudong
;
Yang, Yongping
View
  |  
Adobe PDF(662Kb)
  |  
Favorite
  |  
View/Download:214/68
  |  
Submit date:2018/07/02
Chromosome Number
Climatic Variables
Flow Cytometry
Intraspecies Variation
Qinghai-tibetan Plateau
IAPT/IOPB chromosome data 25 [extended online version]
期刊论文
TAXON, 2017, 卷号: 66, 期号: 5, 页码: E1-E42
Authors:
An'kova, Tatyana V.
;
Zykova, Elena Yu.
;
Chiarini, Franco E.
;
Lipari, David
;
Barboza, Gloria E.
;
Knapp, Sandra
;
Erst, Andrey S.
;
Kuzmin, Igor V.
;
Mitrenina, Elizaveta Yu.
;
An'kova, Tatyana V.
;
Xiang, Kunli
;
Wang, Wei
;
Goyal, Henna
;
Gupta, Raghbir Chand
;
Singh, Vijay
;
Himshikha
;
Gupta, Raghbir Chand
;
Singhal, Vijay Kumar
;
Kumar, Rohit
;
Krahulcova, Anna
;
Lomonosova, Maria N.
;
Freitag, Helmut
;
Mubarik, Nadeem
;
Kaur, Harpreet
;
Kumari, Santosh
;
Gupta, Raghbir Chand
;
Sardin Nasario, Joao Paulo
;
Martins do Carmo, Joao Afonso
;
Forni-Martins, Eliana Regina
;
Rodrigues, Rodrigo S.
;
Vieira, Diego D.
;
Lopes, Marta Estevam A.
;
Dourado, Diego Augusto O.
;
de Andrade, Maria Jose G.
;
Salomon, Bjorn
;
von Bothmer, Roland
;
Shner, Julia V.
;
Ostroumova, Tatiana A.
;
Alexeeva, Tatiana V.
;
Murtazaliev, Ramazan A.
;
Xiang, Chun-Lei
;
Chen, Ya-Ping
;
Zhao, Fei
;
Peng, Hua
;
Funamoto, Tsuneo
View
  |  
Adobe PDF(13613Kb)
  |  
Favorite
  |  
View/Download:425/87
  |  
Submit date:2017/12/18
以柳兰和野菊为例探讨植物多倍体与二倍体的耐旱能力差异
学位论文
: 中国科学院大学, 2017
Authors:
郭雯
Adobe PDF(3355Kb)
  |  
Favorite
  |  
View/Download:202/7
  |  
Submit date:2019/06/14
Divergence in Eco-Physiological Responses to Drought Mirrors the Distinct Distribution of Chamerion angustifolium Cytotypes in the Himalaya-Hengduan Mountains Region
期刊论文
FRONTIERS IN PLANT SCIENCE, 2016, 卷号: 7, 期号: 1, 页码: 1329
Authors:
Guo, Wen
;
Yang, Jie
;
Sun, Xu-Dong
;
Chen, Guang-Jie
;
Yang, Yong-Ping
;
Duan, Yuan-Wen
View
  |  
Adobe PDF(1859Kb)
  |  
Favorite
  |  
View/Download:270/55
  |  
Submit date:2016/11/04
C. Angustifolium
Cytotype Distribution
Common Garden Experiment
Drought Tolerance
Physiological Fitness
Mixed reproduction strategy and polyploidy facilitate dominance of Kobresia pygmaea on the Tibetan Plateau
期刊论文
JOURNAL OF PLANT ECOLOGY, 2016, 卷号: 9, 期号: 1, 页码: 87-99
Authors:
Seeber, Elke
;
Miehe, Georg
;
Hensen, Isabell
;
Yang, Yongping
;
Wesche, Karsten
View
  |  
Adobe PDF(791Kb)
  |  
Favorite
  |  
View/Download:279/84
  |  
Submit date:2016/06/27
Alpine Rangelands
Clonal Diversity
Flow Cytometry
Grazing
Microsatellite Analyses
New chromosome counts, polyploidy, and karyotype evolution in Aster L. (Asteraceae: Astereae) from the Qinghai-Tibet Plateau
期刊论文
CARYOLOGIA, 2016, 卷号: 69, 期号: 4, 页码: 370-378
Authors:
Meng, Ying
;
Yang, Yong-Ping
;
Deng, Tao
;
Nie, Ze-Long
View
  |  
Adobe PDF(1231Kb)
  |  
Favorite
  |  
View/Download:196/42
  |  
Submit date:2017/01/05
Aster
Asteraceae
Chromosome Number
Polyploidy
The Qinghai-tibet Plateau