×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [391]
中国科学院东亚植... [216]
昆明植物所硕博研... [200]
资源植物与生物技... [106]
中国西南野生生物种... [96]
离退休 [43]
More...
Authors
李德铢 [72]
Sun Hang [63]
Yang Yong... [42]
高立志 [28]
龚洵 [24]
彭华 [23]
More...
Document Type
Journal ... [917]
Thesis [200]
Book [80]
Academic p... [2]
Conference... [2]
Other [2]
More...
Date Issued
2020 [61]
2019 [63]
2018 [43]
2017 [59]
2016 [59]
2015 [50]
More...
Language
英语 [700]
中文 [247]
Source Publication
云南植物研究 [43]
植物分类与资源学报 [41]
TAXON [27]
nature [27]
BOTANICAL... [26]
JOURNAL O... [24]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"China Scholarship Council","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council"},{"jsname":"Cold stress is one of the major environmental factors that adversely influence plants growth. Cold stress not only limits plants geographic distribution, but also reduces plants yield by shortening growing season, which brought billions of dollars economic losses for global crop. In nature, responses of overwintering plants to low temperature can be divided into three distinct phases: cold acclimation (CA), freezing, and post-freezing recovery (PFR). Until now, plenty intensive study about molecular mechanism of cold stress mainly focused on the above-zero low temperature phase. However, the studies on the freezing phase below zero and the following PFR phase with temperature going up to above-zero were rare. The previous research form our lab hinted that the responses of plants to freezing and PFR were complex and important. Except for passive reflection, there were also crucial active responses during this process. Several special rules were presented at the different levels including gene expression, signal transduction and membrane lipids changes, and fully understanding these rules would be helpful for us to explore the responses of plants to low temperature and then proceed to improve the freezing resistance of plants. In the present study, the mechanisms of respond to freezing and PFR of model plant Arabidopsis thaliana and its close relative Thellungiella halophlia that with extreme tolerance to abiotic stresses were carried out, including regulation of gene expression, signal transduction pathway and membrane lipids changes three levels which were essential for the freezing resistance of plants. Ground on these work, we obtained results from the following five aspects. First, the complete picture of A. thaliana responding to freezing and PFR at transcriptome level was elaborated and three functional genes closely related to the phases were identified. Second, the cis-elements with high frequent presence in differentially expressed genes were elucidated, and the practical binding of one elements among them was experimental verified during freezing and PFR. Moreover, we predicted the new elements which would respond to freezing and PFR. Third, the regulation of freezing stress by microRNA in A. thaliana was preliminarily investigated and 36 functional genes possibly regulated by miRNA during freezing and PFR were gained. Fourth, the negative effect of phytohormone Auxin on A. thaliana subjected to freezing stress was identified. Fifth, for the freezing-resistant plant T. halophlia, the rules of membrane lipids composition changes under freezing stress were uncovered.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3ACold%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+major%5C+environmental%5C+factors%5C+that%5C+adversely%5C+influence%5C+plants%5C+growth.%5C+Cold%5C+stress%5C+not%5C+only%5C+limits%5C+plants%5C+geographic%5C+distribution%2C%5C+but%5C+also%5C+reduces%5C+plants%5C+yield%5C+by%5C+shortening%5C+growing%5C+season%2C%5C+which%5C+brought%5C+billions%5C+of%5C+dollars%5C+economic%5C+losses%5C+for%5C+global%5C+crop.%5C+In%5C+nature%2C%5C+responses%5C+of%5C+overwintering%5C+plants%5C+to%5C+low%5C+temperature%5C+can%5C+be%5C+divided%5C+into%5C+three%5C+distinct%5C+phases%5C%3A%5C+cold%5C+acclimation%5C+%5C%28CA%5C%29%2C%5C+freezing%2C%5C+and%5C+post%5C-freezing%5C+recovery%5C+%5C%28PFR%5C%29.%5C+Until%5C+now%2C%5C+plenty%5C+intensive%5C+study%5C+about%5C+molecular%5C+mechanism%5C+of%5C+cold%5C+stress%5C+mainly%5C+focused%5C+on%5C+the%5C+above%5C-zero%5C+low%5C+temperature%5C+phase.%5C+However%2C%5C+the%5C+studies%5C+on%5C+the%5C+freezing%5C+phase%5C+below%5C+zero%5C+and%5C+the%5C+following%5C+PFR%5C+phase%5C+with%5C+temperature%5C+going%5C+up%5C+to%5C+above%5C-zero%5C+were%5C+rare.%5C+The%5C+previous%5C+research%5C+form%5C+our%5C+lab%5C+hinted%5C+that%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+freezing%5C+and%5C+PFR%5C+were%5C+complex%5C+and%5C+important.%5C+Except%5C+for%5C+passive%5C+reflection%2C%5C+there%5C+were%5C+also%5C+crucial%5C+active%5C+responses%5C+during%5C+this%5C+process.%5C+Several%5C+special%5C+rules%5C+were%5C+presented%5C+at%5C+the%5C+different%5C+levels%5C+including%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+and%5C+membrane%5C+lipids%5C+changes%2C%5C+and%5C+fully%5C+understanding%5C+these%5C+rules%5C+would%5C+be%5C+helpful%5C+for%5C+us%5C+to%5C+explore%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+low%5C+temperature%5C+and%5C+then%5C+proceed%5C+to%5C+improve%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+In%5C+the%5C+present%5C+study%2C%5C+the%5C+mechanisms%5C+of%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR%5C+of%5C+model%5C+plant%5C+Arabidopsis%5C+thaliana%5C+and%5C+its%5C+close%5C+relative%5C+Thellungiella%5C+halophlia%5C+that%5C+with%5C+extreme%5C+tolerance%5C+to%5C+abiotic%5C+stresses%5C+were%5C+carried%5C+out%2C%5C+including%5C+regulation%5C+of%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+pathway%5C+and%5C+membrane%5C+lipids%5C+changes%5C+three%5C+levels%5C+which%5C+were%5C+essential%5C+for%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+Ground%5C+on%5C+these%5C+work%2C%5C+we%5C+obtained%5C+results%5C+from%5C+the%5C+following%5C+five%5C+aspects.%5C+First%2C%5C+the%5C+complete%5C+picture%5C+of%5C+A.%5C+thaliana%5C+responding%5C+to%5C+freezing%5C+and%5C+PFR%5C+at%5C+transcriptome%5C+level%5C+was%5C+elaborated%5C+and%5C+three%5C+functional%5C+genes%5C+closely%5C+related%5C+to%5C+the%5C+phases%5C+were%5C+identified.%5C+Second%2C%5C+the%5C+cis%5C-elements%5C+with%5C+high%5C+frequent%5C+presence%5C+in%5C+differentially%5C+expressed%5C+genes%5C+were%5C+elucidated%2C%5C+and%5C+the%5C+practical%5C+binding%5C+of%5C+one%5C+elements%5C+among%5C+them%5C+was%5C+experimental%5C+verified%5C+during%5C+freezing%5C+and%5C+PFR.%5C+Moreover%2C%5C+we%5C+predicted%5C+the%5C+new%5C+elements%5C+which%5C+would%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR.%5C+Third%2C%5C+the%5C+regulation%5C+of%5C+freezing%5C+stress%5C+by%5C+microRNA%5C+in%5C+A.%5C+thaliana%5C+was%5C+preliminarily%5C+investigated%5C+and%5C+36%5C+functional%5C+genes%5C+possibly%5C+regulated%5C+by%5C+miRNA%5C+during%5C+freezing%5C+and%5C+PFR%5C+were%5C+gained.%5C+Fourth%2C%5C+the%5C+negative%5C+effect%5C+of%5C+phytohormone%5C+Auxin%5C+on%5C+A.%5C+thaliana%5C+subjected%5C+to%5C+freezing%5C+stress%5C+was%5C+identified.%5C+Fifth%2C%5C+for%5C+the%5C+freezing%5C-resistant%5C+plant%5C+T.%5C+halophlia%2C%5C+the%5C+rules%5C+of%5C+membrane%5C+lipids%5C+composition%5C+changes%5C+under%5C+freezing%5C+stress%5C+were%5C+uncovered."},{"jsname":"Construction Program of Biology First-class Discipline in Guizhou[CINYL [2017] 009]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AConstruction%5C+Program%5C+of%5C+Biology%5C+First%5C-class%5C+Discipline%5C+in%5C+Guizhou%5C%5BCINYL%5C+%5C%5B2017%5C%5D%5C+009%5C%5D"},{"jsname":"Cyatheaceae species, usually called tree ferns, are considered as relicts of a time when dinosaurs were common. In recent several decades, the number of Cyatheaceae plants decreases dramatically. In order to find the reasons and provide directions for protecting these endangered plants, the biological characteristics of Cyatheaceae were surveyed. Using AFLP and cpDNA sequence variations, the genetic diversity and phylogeography of Sphaeropteris brunoniana were also analyzed. Based on these findings, implications for conservation strategies were discussed for this relict tree fern. Main results of the dissertation were summarized as follows, (1) Cyatheaceae plants have extensive distribution in Yunnan, China, and most of them distribute in southeast of Yunnan. In southeast, they usually inhabit margins of evergreen broad-leaved forests or secondary coniferous forests; however, the population update is very different and the age structure is unscientific. The spore of Cyatheaceae is trilete, radially symmetrical, and perinous. The spores of Alsophila species feature a ridged perine and a granular, verrucate or smooth exine. The spores of S. brunoniana are characterized by an incipient granular outermost layer and a verrucate exine. The metaphase chromosome numbers of gametophytes in the three examined species, viz. A. podophylla, A. gigantea and A. austro-yunnanensis, are 69, indicating that they are diploid and do not display variety in chromosome number. The chemical constituents of S. brunoniana are main simple and familiar compounds, such as saccharides, fatty acids and alcohols, and stigmasterols. (2) An unexpectedly high level of nDNA genetic diversity and low cpDNA diversity were detected in S. brunoniana. (3) This study showed that the genetic differentiation among populations within regions was low and between regions was significant. (4) There were several refugia of S. brunoniana in Yunnan during glacial periods. The Hainan populations were likely new colonizations and originated from Southeast Asia. (5) To retain existing genetic diversity, whether in situ or ex situ conservation or collection of germplasm is used, the populations of the two regions should be considered equally. Furthermore, ex situ conservation of this species should be preferably conducted on large populations.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3ACyatheaceae%5C+species%2C%5C+usually%5C+called%5C+tree%5C+ferns%2C%5C+are%5C+considered%5C+as%5C+relicts%5C+of%5C+a%5C+time%5C+when%5C+dinosaurs%5C+were%5C+common.%5C+In%5C+recent%5C+several%5C+decades%2C%5C+the%5C+number%5C+of%5C+Cyatheaceae%5C+plants%5C+decreases%5C+dramatically.%5C+In%5C+order%5C+to%5C+find%5C+the%5C+reasons%5C+and%5C+provide%5C+directions%5C+for%5C+protecting%5C+these%5C+endangered%5C+plants%2C%5C+the%5C+biological%5C+characteristics%5C+of%5C+Cyatheaceae%5C+were%5C+surveyed.%5C+Using%5C+AFLP%5C+and%5C+cpDNA%5C+sequence%5C+variations%2C%5C+the%5C+genetic%5C+diversity%5C+and%5C+phylogeography%5C+of%5C+Sphaeropteris%5C+brunoniana%5C+were%5C+also%5C+analyzed.%5C+Based%5C+on%5C+these%5C+findings%2C%5C+implications%5C+for%5C+conservation%5C+strategies%5C+were%5C+discussed%5C+for%5C+this%5C+relict%5C+tree%5C+fern.%5C+Main%5C+results%5C+of%5C+the%5C+dissertation%5C+were%5C+summarized%5C+as%5C+follows%2C%5C+%5C%281%5C%29%5C+Cyatheaceae%5C+plants%5C+have%5C+extensive%5C+distribution%5C+in%5C+Yunnan%2C%5C+China%2C%5C+and%5C+most%5C+of%5C+them%5C+distribute%5C+in%5C+southeast%5C+of%5C+Yunnan.%5C+In%5C+southeast%2C%5C+they%5C+usually%5C+inhabit%5C+margins%5C+of%5C+evergreen%5C+broad%5C-leaved%5C+forests%5C+or%5C+secondary%5C+coniferous%5C+forests%5C%3B%5C+however%2C%5C+the%5C+population%5C+update%5C+is%5C+very%5C+different%5C+and%5C+the%5C+age%5C+structure%5C+is%5C+unscientific.%5C+The%5C+spore%5C+of%5C+Cyatheaceae%5C+is%5C+trilete%2C%5C+radially%5C+symmetrical%2C%5C+and%5C+perinous.%5C+The%5C+spores%5C+of%5C+Alsophila%5C+species%5C+feature%5C+a%5C+ridged%5C+perine%5C+and%5C+a%5C+granular%2C%5C+verrucate%5C+or%5C+smooth%5C+exine.%5C+The%5C+spores%5C+of%5C+S.%5C+brunoniana%5C+are%5C+characterized%5C+by%5C+an%5C+incipient%5C+granular%5C+outermost%5C+layer%5C+and%5C+a%5C+verrucate%5C+exine.%5C+The%5C+metaphase%5C+chromosome%5C+numbers%5C+of%5C+gametophytes%5C+in%5C+the%5C+three%5C+examined%5C+species%2C%5C+viz.%5C+A.%5C+podophylla%2C%5C+A.%5C+gigantea%5C+and%5C+A.%5C+austro%5C-yunnanensis%2C%5C+are%5C+69%2C%5C+indicating%5C+that%5C+they%5C+are%5C+diploid%5C+and%5C+do%5C+not%5C+display%5C+variety%5C+in%5C+chromosome%5C+number.%5C+The%5C+chemical%5C+constituents%5C+of%5C+S.%5C+brunoniana%5C+are%5C+main%5C+simple%5C+and%5C+familiar%5C+compounds%2C%5C+such%5C+as%5C+saccharides%2C%5C+fatty%5C+acids%5C+and%5C+alcohols%2C%5C+and%5C+stigmasterols.%5C+%5C%282%5C%29%5C+An%5C+unexpectedly%5C+high%5C+level%5C+of%5C+nDNA%5C+genetic%5C+diversity%5C+and%5C+low%5C+cpDNA%5C+diversity%5C+were%5C+detected%5C+in%5C+S.%5C+brunoniana.%5C+%5C%283%5C%29%5C+This%5C+study%5C+showed%5C+that%5C+the%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+within%5C+regions%5C+was%5C+low%5C+and%5C+between%5C+regions%5C+was%5C+significant.%5C+%5C%284%5C%29%5C+There%5C+were%5C+several%5C+refugia%5C+of%5C+S.%5C+brunoniana%5C+in%5C+Yunnan%5C+during%5C+glacial%5C+periods.%5C+The%5C+Hainan%5C+populations%5C+were%5C+likely%5C+new%5C+colonizations%5C+and%5C+originated%5C+from%5C+Southeast%5C+Asia.%5C+%5C%285%5C%29%5C+To%5C+retain%5C+existing%5C+genetic%5C+diversity%2C%5C+whether%5C+in%5C+situ%5C+or%5C+ex%5C+situ%5C+conservation%5C+or%5C+collection%5C+of%5C+germplasm%5C+is%5C+used%2C%5C+the%5C+populations%5C+of%5C+the%5C+two%5C+regions%5C+should%5C+be%5C+considered%5C+equally.%5C+Furthermore%2C%5C+ex%5C+situ%5C+conservation%5C+of%5C+this%5C+species%5C+should%5C+be%5C+preferably%5C+conducted%5C+on%5C+large%5C+populations."},{"jsname":"Cytology study can reveal important biological features of plants and answers to a certain degree in phylogeny and distribution of genetic materials and so forth. By hard working of cytologists, chromosome data of plants have been increased to a great abundance, but yet disorderly distributed in different magazines, which made researches based on the whole chromosome data of one taxon rarely launched. Scientific databases have become increasingly indispensable as researching data growing daily. As Cytological studies are booming in China, in order to fill the absence of digital and statistical data of plant chromosome researches and chromosome atlas, we started to develop a Chinese Seed Plants Chromosome Database, aiming to construct a database and start to record published chromosome data of Chinese seed plants. Based on this database, we chose the part of gymnosperms and gave a discussion to the features of its chromosomes’ evolution and variation. Cytological experiments have been applied to some important phyto-groups for phylogeny research and germplasm identification.Part I: The Chinese Seed Plants Chromosome Database and Discussion on the features of Gymnosperms chromosomes,1 The Chinese Seed Plants Chromosome Database,The frame of database was constructed by Microsoft Access 2003. 19 items of data were included in, they are: Chinese and Latin names of family, genus and species; plant pictures, mitosis metaphase and karyotype figures; morphological characteristics and distributions of the plant; chromosome numbers and basic numbers; karyotype formula; karyotype description; origin of the plant material; literature and the source of photos. In this database, data can be checked and shared easily by extracted out in species sorted interface or family sorted interface. 120 species in 29 genera and 10 families of Gymnospers have been collected and input to the database. In Angiosperms, 61 species in 10 genera of family Magnoliaceae and 80 species in 3 genera of family Theaceae have been collected and input to the database.2 Discussion on the features of evolution and variation of Gymnosperms chromosomes,By data collection of the database, we analyzed chromosome features of the group Gymnosperm. Plants of Gymnosperm had been through a long historical evolution on earth, fossil records of which originated from the late Devonian period. Once an authoritative and major classification level in the plant kingdom, most Gymnosperms have been extinct unless conifers, cycads, Ginkgo and Getales. Three main features of Gymnosperm chromosomes are: relatively large chromosome, which can be recognized from figures in the database; constant chromosome numbers, in most families of Gymnosperm the basic chromosome number keeps a certain value; comparatively low variation, karyotype under family level differs a little. The variation of chromosomes in Gymnosperm is dominated by Robertsonian changes. Contrary to common variation type in Angiosperms, the variation from high unsymmetric karyotype to low unsymmetric karyotype was found in existence in Gymnosperm.Part II: cytology research on some important phyto-groups,3 Karyomorphology of three species in the order Huerteales and their phylogenetic implications,The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, was investigated in the study. Recent molecular research has discovered close relationships among these three genera, which has led to the establishment of the order Huerteales with Perrottetia being placed in Dipentodontaceae. Herein we report the chromosome numbers of D. sinicus and P. racemosa for the first time, and present their karyotype formulas as 2n = 34 = 22sm + 12st (D. sinicus), 2n = 20 = 11m + 9sm (P. racemosa), and 2n = 30 = 22m(2SAT) + 8sm (T. sinensis). Asymmetry of their karyotypes is categorized to be Type 3B in D. sinicus, Type 2A in P. racemosa, and Type 2A in T. sinensis. Each of the species shows special cytological features. Compared with Perrottetia, Dipentodon has a different basic chromosome number, a higher karyotype asymmetry, and different karyomorphology of its interphase nuclei, mitotic prophase, and metaphase. Thus, on the basis of these results, we have reservations regarding the suggestion of placing Dipentodon and Perrottetia together in the family Dipentodontaceae.4 Genomic analyses of intergeneric hybrids between Michelia crassipes and M. calcicola by GISH,Genomic in situ hybridization (GISH) is becoming the method of choice for identifying parental chromosomes in interspecific hybrids. Interspecific F1 hybrid between Michelia crassipes and M. calcicola, tow highly ornamental species in Michelia of Magnolicaceae, has been analized by double-colored GISH with its parents’ genome as the probe. Research gave the results that the chromosome number of the F1 hybrid is 2n=38 as the same of species in Michelia and other genera in Magnoliaceae, the basic chromosome is x=19, the karyotype formula is 2n=38=32m+6sm, and the asymmetry of karyotype is 1B type. Based on chromosome data of Michelia in our database, the karyotype of this genus is featured mostly by metacentric chromosomes and submetacentric chromosomes. In Mechelia, the variation range of submetacentric chromosomes is 4 to 18 and of the karyotype asymmetry is 1A to 2B type. Both the karyotype and karyotype asymmetry type of F1 hybrid is among the variation range of Michelia. The figure of GISH showed that all the 38 chromosomes of F1 hybrid have crossing parental signals, and signal on the no.1 and no.7 chromosome showed differences, which proved that both the parental genome have been transmitted to and recombinated in F1 hybrid.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3ACytology%5C+study%5C+can%5C+reveal%5C+important%5C+biological%5C+features%5C+of%5C+plants%5C+and%5C+answers%5C+to%5C+a%5C+certain%5C+degree%5C+in%5C+phylogeny%5C+and%5C+distribution%5C+of%5C+genetic%5C+materials%5C+and%5C+so%5C+forth.%5C+By%5C+hard%5C+working%5C+of%5C+cytologists%2C%5C+chromosome%5C+data%5C+of%5C+plants%5C+have%5C+been%5C+increased%5C+to%5C+a%5C+great%5C+abundance%2C%5C+but%5C+yet%5C+disorderly%5C+distributed%5C+in%5C+different%5C+magazines%2C%5C+which%5C+made%5C+researches%5C+based%5C+on%5C+the%5C+whole%5C+chromosome%5C+data%5C+of%5C+one%5C+taxon%5C+rarely%5C+launched.%5C+Scientific%5C+databases%5C+have%5C+become%5C+increasingly%5C+indispensable%5C+as%5C+researching%5C+data%5C+growing%5C+daily.%5C+As%5C+Cytological%5C+studies%5C+are%5C+booming%5C+in%5C+China%2C%5C+in%5C+order%5C+to%5C+fill%5C+the%5C+absence%5C+of%5C+digital%5C+and%5C+statistical%5C+data%5C+of%5C+plant%5C+chromosome%5C+researches%5C+and%5C+chromosome%5C+atlas%2C%5C+we%5C+started%5C+to%5C+develop%5C+a%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%2C%5C+aiming%5C+to%5C+construct%5C+a%5C+database%5C+and%5C+start%5C+to%5C+record%5C+published%5C+chromosome%5C+data%5C+of%5C+Chinese%5C+seed%5C+plants.%5C+Based%5C+on%5C+this%5C+database%2C%5C+we%5C+chose%5C+the%5C+part%5C+of%5C+gymnosperms%5C+and%5C+gave%5C+a%5C+discussion%5C+to%5C+the%5C+features%5C+of%5C+its%5C+chromosomes%E2%80%99%5C+evolution%5C+and%5C+variation.%5C+Cytological%5C+experiments%5C+have%5C+been%5C+applied%5C+to%5C+some%5C+important%5C+phyto%5C-groups%5C+for%5C+phylogeny%5C+research%5C+and%5C+germplasm%5C+identification.Part%5C+I%5C%3A%5C+The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%5C+and%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8C1%5C+%C2%A0The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%EF%BC%8CThe%5C+frame%5C+of%5C+database%5C+was%5C+constructed%5C+by%5C+Microsoft%5C+Access%5C+2003.%5C+19%5C+items%5C+of%5C+data%5C+were%5C+included%5C+in%2C%5C+they%5C+are%5C%3A%5C+Chinese%5C+and%5C+Latin%5C+names%5C+of%5C+family%2C%5C+genus%5C+and%5C+species%5C%3B%5C+plant%5C+pictures%2C%5C+mitosis%5C+metaphase%5C+and%5C+karyotype%5C+figures%5C%3B%5C+morphological%5C+characteristics%5C+and%5C+distributions%5C+of%5C+the%5C+plant%5C%3B%5C+chromosome%5C+numbers%5C+and%5C+basic%5C+numbers%5C%3B%5C+karyotype%5C+formula%5C%3B%5C+karyotype%5C+description%5C%3B%5C+origin%5C+of%5C+the%5C+plant%5C+material%5C%3B%5C+literature%5C+and%5C+the%5C+source%5C+of%5C+photos.%5C+In%5C+this%5C+database%2C%5C+data%5C+can%5C+be%5C+checked%5C+and%5C+shared%5C+easily%5C+by%5C+extracted%5C+out%5C+in%5C+species%5C+sorted%5C+interface%5C+or%5C+family%5C+sorted%5C+interface.%5C+120%5C+species%5C+in%5C+29%5C+genera%5C+and%5C+10%5C+families%5C+of%5C+Gymnospers%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.%5C+In%5C+Angiosperms%2C%5C+61%5C+species%5C+in%5C+10%5C+genera%5C+of%5C+family%5C+Magnoliaceae%5C+and%5C+80%5C+species%5C+in%5C+3%5C+genera%5C+of%5C+family%5C+Theaceae%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.2%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+evolution%5C+and%5C+variation%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8CBy%5C+data%5C+collection%5C+of%5C+the%5C+database%2C%5C+we%5C+analyzed%5C+chromosome%5C+features%5C+of%5C+the%5C+group%5C+Gymnosperm.%5C+Plants%5C+of%5C+Gymnosperm%5C+had%5C+been%5C+through%5C+a%5C+long%5C+historical%5C+evolution%5C+on%5C+earth%2C%5C+fossil%5C+records%5C+of%5C+which%5C+originated%5C+from%5C+the%5C+late%5C+Devonian%5C+period.%5C+Once%5C+an%5C+authoritative%5C+and%5C+major%5C+classification%5C+level%5C+in%5C+the%5C+plant%5C+kingdom%2C%5C+most%5C+Gymnosperms%5C+have%5C+been%5C+extinct%5C+unless%5C+conifers%2C%5C+cycads%2C%5C+Ginkgo%5C+and%5C+Getales.%5C+Three%5C+main%5C+features%5C+of%5C+Gymnosperm%5C+chromosomes%5C+are%5C%3A%5C+relatively%5C+large%5C+chromosome%2C%5C+which%5C+can%5C+be%5C+recognized%5C+from%5C+figures%5C+in%5C+the%5C+database%5C%3B%5C+constant%5C+chromosome%5C+numbers%2C%5C+in%5C+most%5C+families%5C+of%5C+Gymnosperm%5C+the%5C+basic%5C+chromosome%5C+number%5C+keeps%5C+a%5C+certain%5C+value%5C%3B%5C+comparatively%5C+low%5C+variation%2C%5C+karyotype%5C+under%5C+family%5C+level%5C+differs%5C+a%5C+little.%5C+The%5C+variation%5C+of%5C+chromosomes%5C+in%5C+Gymnosperm%5C+is%5C+dominated%5C+by%5C+Robertsonian%5C+changes.%5C+Contrary%5C+to%5C+common%5C+variation%5C+type%5C+in%5C+Angiosperms%2C%5C+the%5C+variation%5C+from%5C+high%5C+unsymmetric%5C+karyotype%5C+to%5C+low%5C+unsymmetric%5C+karyotype%5C+was%5C+found%5C+in%5C+existence%5C+in%5C+Gymnosperm.Part%5C+II%5C%3A%5C+cytology%5C+research%5C+on%5C+some%5C+important%5C+phyto%5C-groups%EF%BC%8C3%5C+Karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+the%5C+order%5C+Huerteales%5C+and%5C+their%5C+phylogenetic%5C+implications%EF%BC%8CThe%5C+karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+Dipentodon%5C+%5C%28Dipentodontaceae%5C%29%2C%5C+Perrottetia%5C+%5C%28Celastraceae%5C%29%2C%5C+and%5C+Tapiscia%5C+%5C%28Tapisciaceae%5C%29%2C%5C+namely%5C+Dipentodon%5C+sinicus%2C%5C+Perrottetia%5C+racemosa%2C%5C+and%5C+Tapiscia%5C+sinensis%2C%5C+was%5C+investigated%5C+in%5C+the%5C+study.%5C+Recent%5C+molecular%5C+research%5C+has%5C+discovered%5C+close%5C+relationships%5C+among%5C+these%5C+three%5C+genera%2C%5C+which%5C+has%5C+led%5C+to%5C+the%5C+establishment%5C+of%5C+the%5C+order%5C+Huerteales%5C+with%5C+Perrottetia%5C+being%5C+placed%5C+in%5C+Dipentodontaceae.%5C+Herein%5C+we%5C+report%5C+the%5C+chromosome%5C+numbers%5C+of%5C+D.%5C+sinicus%5C+and%5C+P.%5C+racemosa%5C+for%5C+the%5C+first%5C+time%2C%5C+and%5C+present%5C+their%5C+karyotype%5C+formulas%5C+as%5C+2n%5C+%3D%5C+34%5C+%3D%5C+22sm%5C+%5C%2B%5C+12st%5C+%5C%28D.%5C+sinicus%5C%29%2C%5C+2n%5C+%3D%5C+20%5C+%3D%5C+11m%5C+%5C%2B%5C+9sm%5C+%5C%28P.%5C+racemosa%5C%29%2C%5C+and%5C+2n%5C+%3D%5C+30%5C+%3D%5C+22m%5C%282SAT%5C%29%5C+%5C%2B%5C+8sm%5C+%5C%28T.%5C+sinensis%5C%29.%5C+Asymmetry%5C+of%5C+their%5C+karyotypes%5C+is%5C+categorized%5C+to%5C+be%5C+Type%5C+3B%5C+in%5C+D.%5C+sinicus%2C%5C+Type%5C+2A%5C+in%5C+P.%5C+racemosa%2C%5C+and%5C+Type%5C+2A%5C+in%5C+T.%5C+sinensis.%5C+Each%5C+of%5C+the%5C+species%5C+shows%5C+special%5C+cytological%5C+features.%5C+Compared%5C+with%5C+Perrottetia%2C%5C+Dipentodon%5C+has%5C+a%5C+different%5C+basic%5C+chromosome%5C+number%2C%5C+a%5C+higher%5C+karyotype%5C+asymmetry%2C%5C+and%5C+different%5C+karyomorphology%5C+of%5C+its%5C+interphase%5C+nuclei%2C%5C+mitotic%5C+prophase%2C%5C+and%5C+metaphase.%5C+Thus%2C%5C+on%5C+the%5C+basis%5C+of%5C+these%5C+results%2C%5C+we%5C+have%5C+reservations%5C+regarding%5C+the%5C+suggestion%5C+of%5C+placing%5C+Dipentodon%5C+and%5C+Perrottetia%5C+together%5C+in%5C+the%5C+family%5C+Dipentodontaceae.4%5C+Genomic%5C+analyses%5C+of%5C+intergeneric%5C+hybrids%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%5C+by%5C+GISH%EF%BC%8CGenomic%5C+in%5C+situ%5C+hybridization%5C+%5C%28GISH%5C%29%5C+is%5C+becoming%5C+the%5C+method%5C+of%5C+choice%5C+for%5C+identifying%5C+parental%5C+chromosomes%5C+in%5C+interspecific%5C+hybrids.%5C+Interspecific%5C+F1%5C+hybrid%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%2C%5C+tow%5C+highly%5C+ornamental%5C+species%5C+in%5C+Michelia%5C+of%5C+Magnolicaceae%2C%5C+has%5C+been%5C+analized%5C+by%5C+double%5C-colored%5C+GISH%5C+with%5C+its%5C+parents%E2%80%99%5C+genome%5C+as%5C+the%5C+probe.%5C+Research%5C+gave%5C+the%5C+results%5C+that%5C+the%5C+chromosome%5C+number%5C+of%5C+the%5C+F1%5C+hybrid%5C+is%5C+2n%3D38%5C+as%5C+the%5C+same%5C+of%5C+species%5C+in%5C+Michelia%5C+and%5C+other%5C+genera%5C+in%5C+Magnoliaceae%2C%5C+the%5C+basic%5C+chromosome%5C+is%5C+x%3D19%2C%5C+the%5C+karyotype%5C+formula%5C+is%5C+2n%3D38%3D32m%5C%2B6sm%2C%5C+and%5C+the%5C+asymmetry%5C+of%5C+karyotype%5C+is%5C+1B%5C+type.%5C+Based%5C+on%5C+chromosome%5C+data%5C+of%5C+Michelia%5C+in%5C+our%5C+database%2C%5C+the%5C+karyotype%5C+of%5C+this%5C+genus%5C+is%5C+featured%5C+mostly%5C+by%5C+metacentric%5C+chromosomes%5C+and%5C+submetacentric%5C+chromosomes.%5C+In%5C+Mechelia%2C%5C+the%5C+variation%5C+range%5C+of%5C+submetacentric%5C+chromosomes%5C+is%5C+4%5C+to%5C+18%5C+and%5C+of%5C+the%5C+karyotype%5C+asymmetry%5C+is%5C+1A%5C+to%5C+2B%5C+type.%5C+Both%5C+the%5C+karyotype%5C+and%5C+karyotype%5C+asymmetry%5C+type%5C+of%5C+F1%5C+hybrid%5C+is%5C+among%5C+the%5C+variation%5C+range%5C+of%5C+Michelia.%5C+The%5C+figure%5C+of%5C+GISH%5C+showed%5C+that%5C+all%5C+the%5C+38%5C+chromosomes%5C+of%5C+F1%5C+hybrid%5C+have%5C+crossing%5C+parental%5C+signals%2C%5C+and%5C+signal%5C+on%5C+the%5C+no.1%5C+and%5C+no.7%5C+chromosome%5C+showed%5C+differences%2C%5C+which%5C+proved%5C+that%5C+both%5C+the%5C+parental%5C+genome%5C+have%5C+been%5C+transmitted%5C+to%5C+and%5C+recombinated%5C+in%5C+F1%5C+hybrid."},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Interdisciplinary Research Project of Kunming Institute of Botany[KIB2017003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AInterdisciplinary%5C+Research%5C+Project%5C+of%5C+Kunming%5C+Institute%5C+of%5C+Botany%5C%5BKIB2017003%5C%5D"},{"jsname":"Japan Society for the Promotion of Science[1264402271]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AJapan%5C+Society%5C+for%5C+the%5C+Promotion%5C+of%5C+Science%5C%5B1264402271%5C%5D"},{"jsname":"Kunming Institute of Botany, Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AKunming%5C+Institute%5C+of%5C+Botany%2C%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Large-scale Scientific Facilities of the Chinese Academy of Sciences[2017-LSFGBOWS-01]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3ALarge%5C-scale%5C+Scientific%5C+Facilities%5C+of%5C+the%5C+Chinese%5C+Academy%5C+of%5C+Sciences%5C%5B2017%5C-LSFGBOWS%5C-01%5C%5D"},{"jsname":"Major State Basic Research Development Program[2010CB951704]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AMajor%5C+State%5C+Basic%5C+Research%5C+Development%5C+Program%5C%5B2010CB951704%5C%5D"},{"jsname":"Ministry of Science and Technology, Taiwan[106-2311-B-001-005]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Chromosome%2BNumber&order=desc&&fq=dc.project.title_filter%3AMinistry%5C+of%5C+Science%5C+and%5C+Technology%2C%5C+Taiwan%5C%5B106%5C-2311%5C-B%5C-001%5C-005%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-05-30"}],"Funding Project","dc.project.title_filter")'>
Aconitum c... [1]
Astilbe Bu... [1]
Bambusoide... [1]
Basic Work... [1]
Begonia se... [1]
C. sinensi... [1]
More...
Indexed By
SCI [444]
CSCD [75]
ISTP [1]
Funding Organization
Chinese Ac... [5]
John D. an... [5]
Project of... [5]
3111010391... [4]
National N... [4]
CAS/SAFEA ... [3]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 1204
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
Systematics and Biogeography of Aralia L. (Araliaceae):Revision of Aralia Sects. Aralia, Humiles, Nanae, andSciadodendron
期刊论文
出版物, 3111, 卷号: 57, 期号: 0, 页码: 1-172
Authors:
Jun Wen
Adobe PDF(7233Kb)
  |  
Favorite
  |  
View/Download:158/5
  |  
Submit date:2017/07/24
Aralia
Aralia Sect. Aralia
Aralia Sect. Dimorphanthus
Aralia Sect. Humiles
Aralia Sect. Nanae
Aralia Sect. pentapanax
Aralia Sect. Sciadodendron
Biogeography
Araliaceae
Systematics
HANDBOOKOF BIOLOGICAL STATISTICS
期刊论文
出版物, 3111, 期号: 0, 页码: 1-291
Authors:
JOHN H. MCDONALD
Adobe PDF(1363Kb)
  |  
Favorite
  |  
View/Download:140/2
  |  
Submit date:2017/07/24
Effector-triggered immunity by the plantpathogen Phytophthora
期刊论文
TRENDS in Microbiology, 3111, 卷号: 14, 期号: 11, 页码: 470-473
Authors:
Dinah Qutob
;
Jennifer Tedman-Jones
;
Mark Gijzen
Adobe PDF(152Kb)
  |  
Favorite
  |  
View/Download:72/1
  |  
Submit date:2017/07/24
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:161/2
  |  
Submit date:2017/07/19
High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L
期刊论文
DNA RESEARCH, 2021, 卷号: 28, 期号: 6, 页码: 8
Authors:
Wang, Mingcheng
;
Gu, Zhijia
;
Fu, Zhixi
;
Jiang, Dechun
Favorite
  |  
View/Download:148/0
  |  
Submit date:2022/07/15
caper spurge
biodiesel plant
genome assembly
nanopore sequencing
oil metabolism
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
期刊论文
nature plants, 2021
Authors:
Gregory W. Stull
View
  |  
Adobe PDF(3425Kb)
  |  
Favorite
  |  
View/Download:136/31
  |  
Submit date:2021/08/23
High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae
期刊论文
MOLECULAR ECOLOGY RESOURCES, 2021, 卷号: 21, 期号: 1, 页码: 153-169
Authors:
He,Simei
;
Dong,Xiao
;
Zhang,Guanghui
;
Fan,Wei
;
Duan,Shengchang
;
Shi,Hong
;
Li,Dawei
;
Li,Rui
;
Chen,Geng
;
Long,Guangqiang
;
Zhao,Yan
;
Chen,Mo
;
Yan,Mi
;
Yang,Jianli
;
Lu,Yingchun
;
Zhou,Yanli
;
Chen,Wei
;
Dong,Yang
;
Yang,Shengchao
Favorite
  |  
View/Download:17/0
  |  
Submit date:2022/04/02
Erigeron breviscapus
genome
GWAS
scutellarin
FLAVONOIDS-BIOSYNTHESIS
WIDE ASSOCIATION
AGRONOMIC TRAITS
HIGH-ACCURACY
GENE FAMILY
PREDICTION
ALIGNMENT
PATHWAY
IDENTIFICATION
ACCUMULATION
High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L.
期刊论文
DNA RESEARCH, 2021, 卷号: 28, 期号: 6, 页码: dsab022
Authors:
Wang,Mingcheng
;
Gu,Zhijia
;
Fu,Zhixi
;
Jiang,Dechun
Favorite
  |  
View/Download:12/0
  |  
Submit date:2022/04/02
caper spurge
biodiesel plant
genome assembly
nanopore sequencing
oil metabolism
PHYLOGENETIC ANALYSIS
FOSSIL-FUELS
ANNOTATION
TOOL
IDENTIFICATION
PREDICTION
DATABASE
SEEDS
GENE
New chromosome counts and other karyological data for members of the Stemonaceae
期刊论文
BLUMEA, 2021, 卷号: 66, 期号: 1, 页码: 53-56
Authors:
Kiehn,M.
;
Temsch,E. M.
;
Pernausl,L. A.
;
Hofbauer,M.
;
Chen,G.
;
Vajrodaya,S.
;
Schinnerl,J.
Favorite
  |  
View/Download:4/0
  |  
Submit date:2022/04/02
chromosome length
chromosome number
genome size
karyology
Stemona
Stemonaceae
Stichoneuron
NUCLEAR-DNA AMOUNTS
GENOME SIZE
ALKALOIDS
CROOMIA
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
期刊论文
NATURE PLANTS, 2021, 卷号: 7, 期号: 8, 页码: 1015+
Authors:
Stull,Gregory W.
;
Qu,Xiao-Jian
;
Parins-Fukuchi,Caroline
;
Yang,Ying-Ying
;
Yang,Jun-Bo
;
Yang,Zhi-Yun
;
Hu,Yi
;
Ma,Hong
;
Soltis,Pamela S.
;
Soltis,Douglas E.
;
Li,De-Zhu
;
Smith,Stephen A.
;
Yi,Ting-Shuang
Favorite
  |  
View/Download:22/0
  |  
Submit date:2022/04/02
SEED PLANTS
R PACKAGE
POLYPLOIDY
CONIFERS
TREE
GENERATION
INFERENCE
ANCIENT
DISCORDANCE
ANGIOSPERMS