×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [105]
昆明植物所硕博研究... [62]
中国科学院东亚植物... [62]
资源植物与生物技术... [23]
中国科学院青藏高原研... [8]
植物分类与资源学报 [6]
More...
Authors
Sun Hang [26]
Yang Yong... [18]
段元文 [16]
牛洋 [14]
李德铢 [13]
王红 [12]
More...
Document Type
Journal ... [205]
Thesis [62]
Book [33]
Academic p... [1]
Other [1]
Date Issued
2021 [9]
2020 [21]
2019 [18]
2018 [15]
2017 [16]
2016 [13]
More...
Language
英语 [158]
中文 [55]
Source Publication
American ... [12]
JOURNAL O... [10]
PLOS ONE [7]
SCIENTIFIC... [7]
植物分类与资源学报 [7]
Annu. Rev.... [6]
More...
Funding Project
0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"During a field trip at a brule in Shangri-La, a mixed population of Ligularia Cass. was found, which including L. subspicata (Bur. et Franch.) Hand.-Mazz., L. nelumbifolia (Bur. et Franch.) Hand.-Mazz., L. tongolensis (Franch.) Hand.-Mazz., L. cymbulifera (W.W.Smith) Hand.-Mazz., L. lingiana S.W.Liu, and also some individuals morphologically intermediate between L. subspicata and L. nelumbifolia. Hence, these intermediate individuals were preliminarily assumed as natural hybrids of the two Ligularia. According to their morphology, they’re assumed to form hybrids A and B. Through careful comparison of specimens in herbarium and those we collected, the inflorescence of putative hybrid A is close to L. nelumbifolia, but the shape of laminae are intergradation of L. subspicata and L. nelumbifolia; overall morphology of putative hybrids B is similar to L. nelumbifolia, but inflorescence color is as same as L. subspicata. Compared to L. nelumbifolia (39%) and L. subspicata (36.8%), the germination rate of putative hybrid B (45.7%) slightly higher than the two; but that of hybrid A is extraordinarily low (0.3%). One possible interpretation of the low rate is hybridization. 60 individuals were collected, including putative parents, other 4 species of Ligularia nearby, putative hybrid A and B. They were all direct sequenced of four cpDNA fragments, and direct sequenced or cloning sequenced of nrDNA ITS4-5. The results support that L. nelumbifolia and L. subspicata are parents of putative hybrid A, and the majority female parent is L. subspicata, L. vellerea may also be involved in the hybridization in some degree; the nuclear sequences of putative hybrid B have no superposition, and its chloroplast DNA sequences are identical with L. nelumbifolia, so putative hybrid B could not be hybrid; and there are backcross individuals exist among the putative parent L. subspicata. NewHybrids analysis of ISSR markers indicated that, the individuals of putative hybrid A are almost L. nelumbifolia and L. subspicata F1 hybrid generation (10/11), only 1/11 possibly backcross or other forms; all individuals of hybrid B are L. nelumbifolia; except one individual of L. subspicata as backcrossed, the other parent individuals are 100% reliable. This study focused on molecular evidence, complemented by ecological, reproductive and other characteristics, we demonstrated that the morphologically intermediate individuals’ origin, and the probability of belonging to each parental or hybrid class. And concluded that L. nelumbifolia and L. subspicata are the parents of putative hybrid A, L. vellerea may also be involved in the hybridization in some degree, hybrids mainly are the first generation, a few individuals may be involved in backcross, and most probably backcross with L. subspicata according to the anthesis, while the assumption of hybrid B is not supported.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ADuring%5C+a%5C+field%5C+trip%5C+at%5C+a%5C+brule%5C+in%5C+Shangri%5C-La%2C%5C+a%5C+mixed%5C+population%5C+of%5C+Ligularia%5C+Cass.%5C+was%5C+found%2C%5C+which%5C+including%5C+L.%5C+subspicata%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+nelumbifolia%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+tongolensis%5C+%5C%28Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+cymbulifera%5C+%5C%28W.W.Smith%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+lingiana%5C+S.W.Liu%2C%5C+and%5C+also%5C+some%5C+individuals%5C+morphologically%5C+intermediate%5C+between%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia.%5C+Hence%2C%5C+these%5C+intermediate%5C+individuals%5C+were%5C+preliminarily%5C+assumed%5C+as%5C+natural%5C+hybrids%5C+of%5C+the%5C+two%5C+Ligularia.%5C+According%5C+to%5C+their%5C+morphology%2C%5C+they%E2%80%99re%5C+assumed%5C+to%5C+form%5C+hybrids%5C+A%5C+and%5C+B.%5C+Through%5C+careful%5C+comparison%5C+of%5C+specimens%5C+in%5C+herbarium%5C+and%5C+those%5C+we%5C+collected%2C%5C+the%5C+inflorescence%5C+of%5C+putative%5C+hybrid%5C+A%5C+is%5C+close%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+the%5C+shape%5C+of%5C+laminae%5C+are%5C+intergradation%C2%A0of%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia%5C%3B%5C+overall%5C+morphology%5C+of%5C+putative%5C+hybrids%5C+B%5C+is%5C+similar%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+inflorescence%5C+color%5C+is%5C+as%5C+same%5C+as%5C+L.%5C+subspicata.%5C+Compared%5C+to%5C+L.%5C+nelumbifolia%5C+%5C%2839%25%5C%29%5C+and%5C+L.%5C+subspicata%5C+%5C%2836.8%25%5C%29%2C%5C+the%5C+germination%5C+rate%5C+of%5C+putative%5C+hybrid%5C+B%5C+%5C%2845.7%25%5C%29%5C+slightly%5C+higher%5C+than%5C+the%5C+two%5C%3B%5C+but%5C+that%5C+of%5C+hybrid%5C+A%5C+is%5C+extraordinarily%5C+low%5C+%5C%280.3%25%5C%29.%5C+One%5C+possible%5C+interpretation%5C+of%5C+the%5C+low%5C+rate%5C+is%5C+hybridization.%5C+60%5C+individuals%5C+were%5C+collected%2C%5C+including%5C+putative%5C+parents%2C%5C+other%5C+4%5C+species%5C+of%5C+Ligularia%5C+nearby%2C%5C+putative%5C+hybrid%5C+A%5C+and%5C+B.%5C+They%5C+were%5C+all%5C+direct%5C+sequenced%5C+of%5C+four%5C+cpDNA%5C+fragments%2C%5C+and%5C+direct%5C+sequenced%5C+or%5C+cloning%5C+sequenced%5C+of%5C+nrDNA%5C+ITS4%5C-5.%5C+The%5C+results%5C+support%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+and%5C+the%5C+majority%5C+female%5C+parent%5C+is%5C+L.%5C+subspicata%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%5C%3B%5C+the%5C+nuclear%5C+sequences%5C+of%5C+putative%5C+hybrid%5C+B%5C+have%5C+no%5C+superposition%2C%5C+and%5C+its%5C+chloroplast%5C+DNA%5C+sequences%5C+are%5C+identical%5C+with%5C+L.%5C+nelumbifolia%2C%5C+so%5C+putative%5C+hybrid%5C+B%5C+could%5C+not%5C+be%5C+hybrid%5C%3B%5C+and%5C+there%5C+are%5C+backcross%5C+individuals%5C+exist%5C+among%5C+the%5C+putative%5C+parent%5C+L.%5C+subspicata.%5C+NewHybrids%5C+analysis%5C+of%5C+ISSR%5C+markers%5C+indicated%5C+that%2C%5C+the%5C+individuals%5C+of%5C+putative%5C+hybrid%5C+A%5C+are%5C+almost%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+F1%5C+hybrid%5C+generation%5C+%5C%2810%5C%2F11%5C%29%2C%5C+only%5C+1%5C%2F11%5C+possibly%5C+backcross%5C+or%5C+other%5C+forms%5C%3B%5C+all%5C+individuals%5C+of%5C+hybrid%5C+B%5C+are%5C+L.%5C+nelumbifolia%5C%3B%5C+except%5C+one%5C+individual%5C+of%5C+L.%5C+subspicata%5C+as%5C+backcrossed%2C%5C+the%5C+other%5C+parent%5C+individuals%5C+are%5C+100%25%5C+reliable.%5C+This%5C+study%5C+focused%5C+on%5C+molecular%5C+evidence%2C%5C+complemented%5C+by%5C+ecological%2C%5C+reproductive%5C+and%5C+other%5C+characteristics%2C%5C+we%5C+demonstrated%5C+that%5C+the%5C+morphologically%5C+intermediate%5C+individuals%E2%80%99%5C+origin%2C%5C+and%5C+the%5C+probability%5C+of%5C+belonging%5C+to%5C+each%5C+parental%5C+or%5C+hybrid%5C+class.%5C+And%5C+concluded%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+the%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%2C%5C+hybrids%5C+mainly%5C+are%5C+the%5C+first%5C+generation%2C%5C+a%5C+few%5C+individuals%5C+may%5C+be%5C+involved%5C+in%5C+backcross%2C%5C+and%5C+most%5C+probably%5C+backcross%5C+with%5C+L.%5C+subspicata%5C+according%5C+to%5C+the%5C+anthesis%2C%5C+while%5C+the%5C+assumption%5C+of%5C+hybrid%5C+B%5C+is%5C+not%5C+supported."},{"jsname":"ECOLPIN[AGL2011-24296]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AECOLPIN%5C%5BAGL2011%5C-24296%5C%5D"},{"jsname":"EU MSCA individual fellowship[705432]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AEU%5C+MSCA%5C+individual%5C+fellowship%5C%5B705432%5C%5D"},{"jsname":"EU MSCA individual fellowship[750252]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AEU%5C+MSCA%5C+individual%5C+fellowship%5C%5B750252%5C%5D"},{"jsname":"European Research Council through the Advanced Grant Project TREEPEACE[FP7-339728]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AEuropean%5C+Research%5C+Council%5C+through%5C+the%5C+Advanced%5C+Grant%5C+Project%5C+TREEPEACE%5C%5BFP7%5C-339728%5C%5D"},{"jsname":"Flower scent is a very important character in rose breeding. However, many of 25,000 rose cultivars have no scent or weak scent. The tea scent of modern roses mainly originated from Rosa odorata (Andrews) Sweet, which is one of the most important ancestors of modern cultivated roses and the very important rose breeding resource. Due to the land expanding, habitat fragmentation and so on, R. odorata has been listed as an endangered species in ‘Chinese Plant Red Data Book—Rare and Endangered Plants’ and as the third-category endangered species in ‘Chinese Rare and Endangered Protective Plants List’. Therefore, it is urgent to protect this species and studying the conservation genetics of R. odorata is essentially important to work out a strategy of conservation.R. odorata comprises three double-petaled varieties (R. odorata var. odorata, R. odorata var. erubescens, and R. odorata var. pseudindica) and one single-petaled variety (R. odorata var. gigantea). The taxonomy of the three double-petaled varieties of R. odorata has been disputed for a long time. They have been treated as intraspecific taxa of R. odorata var. gigantea or R. chinensis by different botanist. According to the morphological analyses, Hurst (1941) inferred that R. odorata var. odorata was the hybrid between R. odorata var. gigantea and R. chinensis. Therefore, in order to clarify the right protective units, two single-copy nuclear genes (GAPDH and ncpGS), together with two plastid loci (trnL-F and psbA-trnH) were applied to study the hybrid origin of the three double-petaled varieties and to identify their possible parents. Our data suggested the hybrid origin of the three double-petaled varieties. We inferred that R. odorata var. gigantea could be the maternal parent and R. chinensis cultivars be the paternal parent. It is strongly suggested that the conservation of R. odorata is the conservation of its wild type, R. odorata var. gigantea. We first applied seven microsatellite loci (SSR) coupled with a single-copy nuclear gene GAPDH to study the genetic diversity and genetic structure of R. odorata var. gigantea. The main results are shown as follows:1. Genetic diversity:R. odorata var. gigantea maintains high degree of genetic diversity within and among populations (SSR: HT = 0.738, HS = 0.569, AR = 5.583, PPB = 97.35%, I = 1.703; GAPDH: HT = 0.739, HS = 0.540). We inferred that, outcrossing, long-lived tree species, clonal reproduction and general intraspecies hybridization between individuals, have contributed to the high degree of genetic diversity in R. odorata var. gigantea.2. Genetic differentiation and genetic structure:There was some degree of genetic differentiation among populations (SSR: GST = 0.229, FST = 0.240; GAPDH: GST = 0.269). The geographic isolation limited the dispersal of pollen or seeds, which resulted in the limitation of gene flow (Nm = 0.792). Then, the limited gene flow should be accounted for the genetic differentiation. Both the results of SSR data and haplotype analysis of GAPDH indicated that, the studied populations were divided into two distinct groups by Honghe River. These two groups showed significant genetic differentiation and represented two separate evolutionary lineages, which should be recognized as two evolutionary significant units (ESUs) for conservation concerns.3. Conservation of R. odorata:R. odorata var. gigantea has been listed in the ‘National Key Protective Wild Species List (II)’. Therefore, the conservation of this species is urgent. We inferred that, the main endangered reasons should be the habitat fragmentation and the reduction of populations and individuals per population resulted from environmental damage and human activities. We proposed that the strategy of in-situ conservation combining with ex-situ conservation should be carried out.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AFlower%5C+scent%5C+is%5C+a%5C+very%5C+important%5C+character%5C+in%5C+rose%5C+breeding.%5C+However%2C%5C+many%5C+of%5C+25%2C000%5C+rose%5C+cultivars%5C+have%5C+no%5C+scent%5C+or%5C+weak%5C+scent.%5C+The%5C+tea%5C+scent%5C+of%5C+modern%5C+roses%5C+mainly%5C+originated%5C+from%5C+Rosa%5C+odorata%5C+%5C%28Andrews%5C%29%5C+Sweet%2C%5C+which%5C+is%5C+one%5C+of%5C+the%5C+most%5C+important%5C+ancestors%5C+of%5C+modern%5C+cultivated%5C+roses%5C+and%5C+the%5C+very%5C+important%5C+rose%5C+breeding%5C+resource.%5C+Due%5C+to%5C+the%5C+land%5C+expanding%2C%5C+habitat%5C+fragmentation%5C+and%5C+so%5C+on%2C%5C+R.%5C+odorata%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Plant%5C+Red%5C+Data%5C+Book%E2%80%94Rare%5C+and%5C+Endangered%5C+Plants%E2%80%99%5C+and%5C+as%5C+the%5C+third%5C-category%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Rare%5C+and%5C+Endangered%5C+Protective%5C+Plants%5C+List%E2%80%99.%5C+Therefore%2C%5C+it%5C+is%5C+urgent%5C+to%5C+protect%5C+this%5C+species%5C+and%5C+studying%5C+the%5C+conservation%5C+genetics%5C+of%5C+R.%5C+odorata%5C+is%5C+essentially%5C+important%5C+to%5C+work%5C+out%5C+a%5C+strategy%5C+of%5C+conservation.R.%5C+odorata%5C+comprises%5C+three%5C+double%5C-petaled%5C+varieties%5C+%5C%28R.%5C+odorata%5C+var.%5C+odorata%2C%5C+R.%5C+odorata%5C+var.%5C+erubescens%2C%5C+and%5C+R.%5C+odorata%5C+var.%5C+pseudindica%5C%29%5C+and%5C+one%5C+single%5C-petaled%5C+variety%5C+%5C%28R.%5C+odorata%5C+var.%5C+gigantea%5C%29.%5C+The%5C+taxonomy%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+of%5C+R.%5C+odorata%5C+has%5C+been%5C+disputed%5C+for%5C+a%5C+long%5C+time.%5C+They%5C+have%5C+been%5C+treated%5C+as%5C+intraspecific%5C+taxa%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+or%5C+R.%5C+chinensis%5C+by%5C+different%5C+botanist.%5C+According%5C+to%5C+the%5C+morphological%5C+analyses%2C%5C+Hurst%5C+%5C%281941%5C%29%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+odorata%5C+was%5C+the%5C+hybrid%5C+between%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+and%5C+R.%5C+chinensis.%5C+Therefore%2C%5C+in%5C+order%5C+to%5C+clarify%5C+the%5C+right%5C+protective%5C+units%2C%5C+two%5C+single%5C-copy%5C+nuclear%5C+genes%5C+%5C%28GAPDH%5C+and%5C+ncpGS%5C%29%2C%5C+together%5C+with%5C+two%5C+plastid%5C+loci%5C+%5C%28trnL%5C-F%5C+and%5C+psbA%5C-trnH%5C%29%5C+were%5C+applied%5C+to%5C+study%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+and%5C+to%5C+identify%5C+their%5C+possible%5C+parents.%5C+Our%5C+data%5C+suggested%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties.%5C+We%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+could%5C+be%5C+the%5C+maternal%5C+parent%5C+and%5C+R.%5C+chinensis%5C+cultivars%5C+be%5C+the%5C+paternal%5C+parent.%5C+It%5C+is%5C+strongly%5C+suggested%5C+that%5C+the%5C+conservation%5C+of%5C+R.%5C+odorata%5C+is%5C+the%5C+conservation%5C+of%5C+its%5C+wild%5C+type%2C%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+We%5C+first%5C+applied%5C+seven%5C+microsatellite%5C+loci%5C+%5C%28SSR%5C%29%5C+coupled%5C+with%5C+a%5C+single%5C-copy%5C+nuclear%5C+gene%5C+GAPDH%5C+to%5C+study%5C+the%5C+genetic%5C+diversity%5C+and%5C+genetic%5C+structure%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+The%5C+main%5C+results%5C+are%5C+shown%5C+as%5C+follows%5C%3A1.%5C+Genetic%5C+diversity%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+maintains%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+within%5C+and%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+HT%5C+%3D%5C+0.738%2C%5C+HS%5C+%3D%5C+0.569%2C%5C+AR%5C+%3D%5C+5.583%2C%5C+PPB%5C+%3D%5C+97.35%25%2C%5C+I%5C+%3D%5C+1.703%5C%3B%5C+GAPDH%5C%3A%5C+HT%5C+%3D%5C+0.739%2C%5C+HS%5C+%3D%5C+0.540%5C%29.%5C+We%5C+inferred%5C+that%2C%5C+outcrossing%2C%5C+long%5C-lived%5C+tree%5C+species%2C%5C+clonal%5C+reproduction%5C+and%5C+general%5C+intraspecies%5C+hybridization%5C+between%5C+individuals%2C%5C+have%5C+contributed%5C+to%5C+the%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+in%5C+R.%5C+odorata%5C+var.%5C+gigantea.2.%5C+Genetic%5C+differentiation%5C+and%5C+genetic%5C+structure%EF%BC%9AThere%5C+was%5C+some%5C+degree%5C+of%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+GST%5C+%3D%5C+0.229%2C%5C+FST%5C+%3D%5C+0.240%5C%3B%5C+GAPDH%5C%3A%5C+GST%5C+%3D%5C+0.269%5C%29.%5C+The%5C+geographic%5C+isolation%5C+limited%5C+the%5C+dispersal%5C+of%5C+pollen%5C+or%5C+seeds%2C%5C+which%5C+resulted%5C+in%5C+the%5C+limitation%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.792%5C%29.%5C+Then%2C%5C+the%5C+limited%5C+gene%5C+flow%5C+should%5C+be%5C+accounted%5C+for%5C+the%5C+genetic%5C+differentiation.%5C+Both%5C+the%5C+results%5C+of%5C+SSR%5C+data%5C+and%5C+haplotype%5C+analysis%5C+of%5C+GAPDH%5C+indicated%5C+that%2C%5C+the%5C+studied%5C+populations%5C+were%5C+divided%5C+into%5C+two%5C+distinct%5C+groups%5C+by%5C+Honghe%5C+River.%5C+These%5C+two%5C+groups%5C+showed%5C+significant%5C+genetic%5C+differentiation%5C+and%5C+represented%5C+two%5C+separate%5C+evolutionary%5C+lineages%2C%5C+which%5C+should%5C+be%5C+recognized%5C+as%5C+two%5C+evolutionary%5C+significant%5C+units%5C+%5C%28ESUs%5C%29%5C+for%5C+conservation%5C+concerns.3.%5C+Conservation%5C+of%5C+R.%5C+odorata%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+has%5C+been%5C+listed%5C+in%5C+the%5C+%E2%80%98National%5C+Key%5C+Protective%5C+Wild%5C+Species%5C+List%5C+%5C%28II%5C%29%E2%80%99.%5C+Therefore%2C%5C+the%5C+conservation%5C+of%5C+this%5C+species%5C+is%5C+urgent.%5C+We%5C+inferred%5C+that%2C%5C+the%5C+main%5C+endangered%5C+reasons%5C+should%5C+be%5C+the%5C+habitat%5C+fragmentation%5C+and%5C+the%5C+reduction%5C+of%5C+populations%5C+and%5C+individuals%5C+per%5C+population%5C+resulted%5C+from%5C+environmental%5C+damage%5C+and%5C+human%5C+activities.%5C+We%5C+proposed%5C+that%5C+the%5C+strategy%5C+of%5C+in%5C-situ%5C+conservation%5C+combining%5C+with%5C+ex%5C-situ%5C+conservation%5C+should%5C+be%5C+carried%5C+out."},{"jsname":"Japan Society for the Promotion of Science[1264402271]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AJapan%5C+Society%5C+for%5C+the%5C+Promotion%5C+of%5C+Science%5C%5B1264402271%5C%5D"},{"jsname":"Major Program of NSFC[31590823]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3AMajor%5C+Program%5C+of%5C+NSFC%5C%5B31590823%5C%5D"},{"jsname":"NASA[NNX12AK56G]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ANASA%5C%5BNNX12AK56G%5C%5D"},{"jsname":"National Key Research and Development Program of China[2017YFC0505200]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ANational%5C+Key%5C+Research%5C+and%5C+Development%5C+Program%5C+of%5C+China%5C%5B2017YFC0505200%5C%5D"},{"jsname":"National Natural Science Foundation of China[31370229]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31370229%5C%5D"},{"jsname":"National Natural Science Foundation of China[31400167]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31400167%5C%5D"},{"jsname":"National Natural Science Foundation of China[31600164]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=POLLEN%2BLIMITATION&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31600164%5C%5D"},{"jsname":"lastIndexed","jscount":"2024-09-10"}],"Funding Project","dc.project.title_filter")'>
''Investis... [1]
BRIDGE Pro... [1]
Basic Expe... [1]
COILEX[CGL... [1]
Cluster of... [1]
Constructi... [1]
More...
Indexed By
SCI [90]
CSCD [10]
Funding Organization
National N... [4]
CAS/SAFEA ... [3]
Chinese Ac... [3]
31590823) [2]
National S... [2]
''Investis... [1]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 302
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:254/4
  |  
Submit date:2017/07/19
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:184/1
  |  
Submit date:2017/07/19
Boron in plants: deficiency and toxicity
期刊论文
出版物, 3111, 期号: 0, 页码: 1—24
Authors:
Juan J. Camacho-Cristóbal
;
Jesús Rexach
;
Agustín González-Fontes
Adobe PDF(123Kb)
  |  
Favorite
  |  
View/Download:151/1
  |  
Submit date:2017/07/21
Data Analysisin Vegetation Ecology
期刊论文
出版物, 3111, 期号: 0, 页码: 1-297
Authors:
Otto Wildi
Adobe PDF(3432Kb)
  |  
Favorite
  |  
View/Download:168/2
  |  
Submit date:2017/07/24
Does pollinator dependence decrease along elevational gradients?
期刊论文
PLANT DIVERSITY, 2023, 卷号: 45, 期号: 4, 页码: 446-455
Authors:
Xu,Yue-Wen
;
Sun,Lu
;
Ma,Rong
;
Gao,Yong-Qian
;
Sun,Hang
;
Song,Bo
View
  |  
Adobe PDF(1587Kb)
  |  
Favorite
  |  
View/Download:34/5
  |  
Submit date:2024/05/09
Global change
Pollen limitation
Pollinator decline
Qinghai-Tibet plateau
Seed production
PLANT REPRODUCTIVE SUCCESS
POLLEN LIMITATION
SELF-FERTILIZATION
INTERACTION NETWORKS
FLOWERING PLANTS
LEAF HERBIVORY
RHEUM-NOBILE
R PACKAGE
ALPINE
EVOLUTION
保护生物学的技术方法在极度濒危植物紫花杜鹃中的应用
学位论文
: 中国科学院大学, 2022
Authors:
敖艺山
Adobe PDF(2193Kb)
  |  
Favorite
  |  
View/Download:30/0
  |  
Submit date:2024/05/14
ddRAD-seq、遗传多样性、群体遗传学、保护策略
ddRAD-seq、Genetic Diversity、Population genetics、Conservation Strategy
Phenotypic Selection in Halenia elliptica D. Don (Gentianaceae), an Alpine Biennial with Mixed Mating System
期刊论文
PLANTS-BASEL, 2022, 卷号: 11, 期号: 11, 页码: 1488
Authors:
Huang, Xiaojuan
;
Chen, Minyu
;
Wang, Linlin
;
Yang, Mingliu
;
Yang, Nacai
;
Li, Zhonghu
;
Duan, Yuanwen
View
  |  
Adobe PDF(1554Kb)
  |  
Favorite
  |  
View/Download:56/14
  |  
Submit date:2024/04/30
phenotypic selection
selfing syndrome
mixed mating system
seed production
resource limitation
floral traits
spur length
Halenia elliptica
POLLINATOR-MEDIATED SELECTION
POLLEN-OVULE RATIOS
FLORAL DISPLAY
NATURAL-SELECTION
SELF-FERTILIZATION
SPUR LENGTH
REPRODUCTIVE ASSURANCE
INBREEDING DEPRESSION
FLOWERING PHENOLOGY
PLANT REPRODUCTION
蓖麻化成生和子理究矮化形成的生理和分子机理研究
学位论文
, 2021
Authors:
王再青
Adobe PDF(6734Kb)
  |  
Favorite
  |  
View/Download:665/1
  |  
Submit date:2023/11/02
Sexual conflict in protandrous flowers and the evolution of gynodioecy
期刊论文
EVOLUTION, 2021, 卷号: 75, 期号: 2, 页码: 278-293
Authors:
Wang,Hao
;
Barrett,Spencer C. H.
;
Li,Xue-Yan
;
Niu,Yang
;
Duan,Yuan-Wen
;
Zhang,Zhi-Qiang
;
Li,Qing-Jun
Favorite
  |  
View/Download:77/0
  |  
Submit date:2022/04/02
Cyananthus
dichogamy
floral longevity
pollen limitation
sexual dimorphism
sexual interference
FLORAL LONGEVITY
REPRODUCTIVE ASSURANCE
POLLEN LIMITATION
MALE-STERILITY
SEED SET
SELECTION
POLLINATION
ALPINE
INTERFERENCE
HERKOGAMY
Occurrence and Prevention of Delayed Autonomous Selfing in Salvia umbratica (Lamiaceae)
期刊论文
FRONTIERS IN PLANT SCIENCE, 2021, 卷号: 12, 页码: 635310
Authors:
Xiao,Han-Wen
;
Huang,Yan-Bo
;
Chang,Yu-Hang
;
Chen,Yun
;
Abbott,Richard J.
;
Wei,Yu-Kun
;
Ma,Yong-Peng
Favorite
  |  
View/Download:86/0
  |  
Submit date:2022/04/02
delayed self-pollination
pollen-limitation
recurving styles
seed set
Salvia
Lamiaceae
floral longevity
resource use
STAMINAL LEVER MECHANISM
KOSTELETZKYA-VIRGINICA
INBREEDING DEPRESSION
POLLINATION BIOLOGY
POLLEN LIMITATION
SENECIO-VULGARIS
L. LAMIACEAE
FERTILIZATION
DICHOGAMY
CURVATURE