×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [288]
共享文献 [114]
昆明植物所硕博研究... [90]
资源植物与生物技术... [65]
中国西南野生生物种... [59]
植物化学与西部植物... [24]
More...
Authors
李德铢 [83]
许建初 [68]
杨祝良 [48]
赵琪 [29]
Sun Hang [27]
伊廷双 [19]
More...
Document Type
Journal ... [673]
Thesis [90]
Book [43]
Other [3]
Conference... [2]
Academic p... [1]
More...
Date Issued
2021 [56]
2020 [80]
2019 [83]
2018 [59]
2017 [82]
2016 [87]
More...
Language
英语 [456]
中文 [87]
Source Publication
PHYTOTAXA [77]
FUNGAL DI... [71]
MYCOSPHER... [44]
MOLECULAR... [32]
PLOS ONE [28]
MYCOLOGIC... [26]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Cytology study can reveal important biological features of plants and answers to a certain degree in phylogeny and distribution of genetic materials and so forth. By hard working of cytologists, chromosome data of plants have been increased to a great abundance, but yet disorderly distributed in different magazines, which made researches based on the whole chromosome data of one taxon rarely launched. Scientific databases have become increasingly indispensable as researching data growing daily. As Cytological studies are booming in China, in order to fill the absence of digital and statistical data of plant chromosome researches and chromosome atlas, we started to develop a Chinese Seed Plants Chromosome Database, aiming to construct a database and start to record published chromosome data of Chinese seed plants. Based on this database, we chose the part of gymnosperms and gave a discussion to the features of its chromosomes’ evolution and variation. Cytological experiments have been applied to some important phyto-groups for phylogeny research and germplasm identification.Part I: The Chinese Seed Plants Chromosome Database and Discussion on the features of Gymnosperms chromosomes,1 The Chinese Seed Plants Chromosome Database,The frame of database was constructed by Microsoft Access 2003. 19 items of data were included in, they are: Chinese and Latin names of family, genus and species; plant pictures, mitosis metaphase and karyotype figures; morphological characteristics and distributions of the plant; chromosome numbers and basic numbers; karyotype formula; karyotype description; origin of the plant material; literature and the source of photos. In this database, data can be checked and shared easily by extracted out in species sorted interface or family sorted interface. 120 species in 29 genera and 10 families of Gymnospers have been collected and input to the database. In Angiosperms, 61 species in 10 genera of family Magnoliaceae and 80 species in 3 genera of family Theaceae have been collected and input to the database.2 Discussion on the features of evolution and variation of Gymnosperms chromosomes,By data collection of the database, we analyzed chromosome features of the group Gymnosperm. Plants of Gymnosperm had been through a long historical evolution on earth, fossil records of which originated from the late Devonian period. Once an authoritative and major classification level in the plant kingdom, most Gymnosperms have been extinct unless conifers, cycads, Ginkgo and Getales. Three main features of Gymnosperm chromosomes are: relatively large chromosome, which can be recognized from figures in the database; constant chromosome numbers, in most families of Gymnosperm the basic chromosome number keeps a certain value; comparatively low variation, karyotype under family level differs a little. The variation of chromosomes in Gymnosperm is dominated by Robertsonian changes. Contrary to common variation type in Angiosperms, the variation from high unsymmetric karyotype to low unsymmetric karyotype was found in existence in Gymnosperm.Part II: cytology research on some important phyto-groups,3 Karyomorphology of three species in the order Huerteales and their phylogenetic implications,The karyomorphology of three species in Dipentodon (Dipentodontaceae), Perrottetia (Celastraceae), and Tapiscia (Tapisciaceae), namely Dipentodon sinicus, Perrottetia racemosa, and Tapiscia sinensis, was investigated in the study. Recent molecular research has discovered close relationships among these three genera, which has led to the establishment of the order Huerteales with Perrottetia being placed in Dipentodontaceae. Herein we report the chromosome numbers of D. sinicus and P. racemosa for the first time, and present their karyotype formulas as 2n = 34 = 22sm + 12st (D. sinicus), 2n = 20 = 11m + 9sm (P. racemosa), and 2n = 30 = 22m(2SAT) + 8sm (T. sinensis). Asymmetry of their karyotypes is categorized to be Type 3B in D. sinicus, Type 2A in P. racemosa, and Type 2A in T. sinensis. Each of the species shows special cytological features. Compared with Perrottetia, Dipentodon has a different basic chromosome number, a higher karyotype asymmetry, and different karyomorphology of its interphase nuclei, mitotic prophase, and metaphase. Thus, on the basis of these results, we have reservations regarding the suggestion of placing Dipentodon and Perrottetia together in the family Dipentodontaceae.4 Genomic analyses of intergeneric hybrids between Michelia crassipes and M. calcicola by GISH,Genomic in situ hybridization (GISH) is becoming the method of choice for identifying parental chromosomes in interspecific hybrids. Interspecific F1 hybrid between Michelia crassipes and M. calcicola, tow highly ornamental species in Michelia of Magnolicaceae, has been analized by double-colored GISH with its parents’ genome as the probe. Research gave the results that the chromosome number of the F1 hybrid is 2n=38 as the same of species in Michelia and other genera in Magnoliaceae, the basic chromosome is x=19, the karyotype formula is 2n=38=32m+6sm, and the asymmetry of karyotype is 1B type. Based on chromosome data of Michelia in our database, the karyotype of this genus is featured mostly by metacentric chromosomes and submetacentric chromosomes. In Mechelia, the variation range of submetacentric chromosomes is 4 to 18 and of the karyotype asymmetry is 1A to 2B type. Both the karyotype and karyotype asymmetry type of F1 hybrid is among the variation range of Michelia. The figure of GISH showed that all the 38 chromosomes of F1 hybrid have crossing parental signals, and signal on the no.1 and no.7 chromosome showed differences, which proved that both the parental genome have been transmitted to and recombinated in F1 hybrid.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3ACytology%5C+study%5C+can%5C+reveal%5C+important%5C+biological%5C+features%5C+of%5C+plants%5C+and%5C+answers%5C+to%5C+a%5C+certain%5C+degree%5C+in%5C+phylogeny%5C+and%5C+distribution%5C+of%5C+genetic%5C+materials%5C+and%5C+so%5C+forth.%5C+By%5C+hard%5C+working%5C+of%5C+cytologists%2C%5C+chromosome%5C+data%5C+of%5C+plants%5C+have%5C+been%5C+increased%5C+to%5C+a%5C+great%5C+abundance%2C%5C+but%5C+yet%5C+disorderly%5C+distributed%5C+in%5C+different%5C+magazines%2C%5C+which%5C+made%5C+researches%5C+based%5C+on%5C+the%5C+whole%5C+chromosome%5C+data%5C+of%5C+one%5C+taxon%5C+rarely%5C+launched.%5C+Scientific%5C+databases%5C+have%5C+become%5C+increasingly%5C+indispensable%5C+as%5C+researching%5C+data%5C+growing%5C+daily.%5C+As%5C+Cytological%5C+studies%5C+are%5C+booming%5C+in%5C+China%2C%5C+in%5C+order%5C+to%5C+fill%5C+the%5C+absence%5C+of%5C+digital%5C+and%5C+statistical%5C+data%5C+of%5C+plant%5C+chromosome%5C+researches%5C+and%5C+chromosome%5C+atlas%2C%5C+we%5C+started%5C+to%5C+develop%5C+a%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%2C%5C+aiming%5C+to%5C+construct%5C+a%5C+database%5C+and%5C+start%5C+to%5C+record%5C+published%5C+chromosome%5C+data%5C+of%5C+Chinese%5C+seed%5C+plants.%5C+Based%5C+on%5C+this%5C+database%2C%5C+we%5C+chose%5C+the%5C+part%5C+of%5C+gymnosperms%5C+and%5C+gave%5C+a%5C+discussion%5C+to%5C+the%5C+features%5C+of%5C+its%5C+chromosomes%E2%80%99%5C+evolution%5C+and%5C+variation.%5C+Cytological%5C+experiments%5C+have%5C+been%5C+applied%5C+to%5C+some%5C+important%5C+phyto%5C-groups%5C+for%5C+phylogeny%5C+research%5C+and%5C+germplasm%5C+identification.Part%5C+I%5C%3A%5C+The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%5C+and%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8C1%5C+%C2%A0The%5C+Chinese%5C+Seed%5C+Plants%5C+Chromosome%5C+Database%EF%BC%8CThe%5C+frame%5C+of%5C+database%5C+was%5C+constructed%5C+by%5C+Microsoft%5C+Access%5C+2003.%5C+19%5C+items%5C+of%5C+data%5C+were%5C+included%5C+in%2C%5C+they%5C+are%5C%3A%5C+Chinese%5C+and%5C+Latin%5C+names%5C+of%5C+family%2C%5C+genus%5C+and%5C+species%5C%3B%5C+plant%5C+pictures%2C%5C+mitosis%5C+metaphase%5C+and%5C+karyotype%5C+figures%5C%3B%5C+morphological%5C+characteristics%5C+and%5C+distributions%5C+of%5C+the%5C+plant%5C%3B%5C+chromosome%5C+numbers%5C+and%5C+basic%5C+numbers%5C%3B%5C+karyotype%5C+formula%5C%3B%5C+karyotype%5C+description%5C%3B%5C+origin%5C+of%5C+the%5C+plant%5C+material%5C%3B%5C+literature%5C+and%5C+the%5C+source%5C+of%5C+photos.%5C+In%5C+this%5C+database%2C%5C+data%5C+can%5C+be%5C+checked%5C+and%5C+shared%5C+easily%5C+by%5C+extracted%5C+out%5C+in%5C+species%5C+sorted%5C+interface%5C+or%5C+family%5C+sorted%5C+interface.%5C+120%5C+species%5C+in%5C+29%5C+genera%5C+and%5C+10%5C+families%5C+of%5C+Gymnospers%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.%5C+In%5C+Angiosperms%2C%5C+61%5C+species%5C+in%5C+10%5C+genera%5C+of%5C+family%5C+Magnoliaceae%5C+and%5C+80%5C+species%5C+in%5C+3%5C+genera%5C+of%5C+family%5C+Theaceae%5C+have%5C+been%5C+collected%5C+and%5C+input%5C+to%5C+the%5C+database.2%5C+Discussion%5C+on%5C+the%5C+features%5C+of%5C+evolution%5C+and%5C+variation%5C+of%5C+Gymnosperms%5C+chromosomes%EF%BC%8CBy%5C+data%5C+collection%5C+of%5C+the%5C+database%2C%5C+we%5C+analyzed%5C+chromosome%5C+features%5C+of%5C+the%5C+group%5C+Gymnosperm.%5C+Plants%5C+of%5C+Gymnosperm%5C+had%5C+been%5C+through%5C+a%5C+long%5C+historical%5C+evolution%5C+on%5C+earth%2C%5C+fossil%5C+records%5C+of%5C+which%5C+originated%5C+from%5C+the%5C+late%5C+Devonian%5C+period.%5C+Once%5C+an%5C+authoritative%5C+and%5C+major%5C+classification%5C+level%5C+in%5C+the%5C+plant%5C+kingdom%2C%5C+most%5C+Gymnosperms%5C+have%5C+been%5C+extinct%5C+unless%5C+conifers%2C%5C+cycads%2C%5C+Ginkgo%5C+and%5C+Getales.%5C+Three%5C+main%5C+features%5C+of%5C+Gymnosperm%5C+chromosomes%5C+are%5C%3A%5C+relatively%5C+large%5C+chromosome%2C%5C+which%5C+can%5C+be%5C+recognized%5C+from%5C+figures%5C+in%5C+the%5C+database%5C%3B%5C+constant%5C+chromosome%5C+numbers%2C%5C+in%5C+most%5C+families%5C+of%5C+Gymnosperm%5C+the%5C+basic%5C+chromosome%5C+number%5C+keeps%5C+a%5C+certain%5C+value%5C%3B%5C+comparatively%5C+low%5C+variation%2C%5C+karyotype%5C+under%5C+family%5C+level%5C+differs%5C+a%5C+little.%5C+The%5C+variation%5C+of%5C+chromosomes%5C+in%5C+Gymnosperm%5C+is%5C+dominated%5C+by%5C+Robertsonian%5C+changes.%5C+Contrary%5C+to%5C+common%5C+variation%5C+type%5C+in%5C+Angiosperms%2C%5C+the%5C+variation%5C+from%5C+high%5C+unsymmetric%5C+karyotype%5C+to%5C+low%5C+unsymmetric%5C+karyotype%5C+was%5C+found%5C+in%5C+existence%5C+in%5C+Gymnosperm.Part%5C+II%5C%3A%5C+cytology%5C+research%5C+on%5C+some%5C+important%5C+phyto%5C-groups%EF%BC%8C3%5C+Karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+the%5C+order%5C+Huerteales%5C+and%5C+their%5C+phylogenetic%5C+implications%EF%BC%8CThe%5C+karyomorphology%5C+of%5C+three%5C+species%5C+in%5C+Dipentodon%5C+%5C%28Dipentodontaceae%5C%29%2C%5C+Perrottetia%5C+%5C%28Celastraceae%5C%29%2C%5C+and%5C+Tapiscia%5C+%5C%28Tapisciaceae%5C%29%2C%5C+namely%5C+Dipentodon%5C+sinicus%2C%5C+Perrottetia%5C+racemosa%2C%5C+and%5C+Tapiscia%5C+sinensis%2C%5C+was%5C+investigated%5C+in%5C+the%5C+study.%5C+Recent%5C+molecular%5C+research%5C+has%5C+discovered%5C+close%5C+relationships%5C+among%5C+these%5C+three%5C+genera%2C%5C+which%5C+has%5C+led%5C+to%5C+the%5C+establishment%5C+of%5C+the%5C+order%5C+Huerteales%5C+with%5C+Perrottetia%5C+being%5C+placed%5C+in%5C+Dipentodontaceae.%5C+Herein%5C+we%5C+report%5C+the%5C+chromosome%5C+numbers%5C+of%5C+D.%5C+sinicus%5C+and%5C+P.%5C+racemosa%5C+for%5C+the%5C+first%5C+time%2C%5C+and%5C+present%5C+their%5C+karyotype%5C+formulas%5C+as%5C+2n%5C+%3D%5C+34%5C+%3D%5C+22sm%5C+%5C%2B%5C+12st%5C+%5C%28D.%5C+sinicus%5C%29%2C%5C+2n%5C+%3D%5C+20%5C+%3D%5C+11m%5C+%5C%2B%5C+9sm%5C+%5C%28P.%5C+racemosa%5C%29%2C%5C+and%5C+2n%5C+%3D%5C+30%5C+%3D%5C+22m%5C%282SAT%5C%29%5C+%5C%2B%5C+8sm%5C+%5C%28T.%5C+sinensis%5C%29.%5C+Asymmetry%5C+of%5C+their%5C+karyotypes%5C+is%5C+categorized%5C+to%5C+be%5C+Type%5C+3B%5C+in%5C+D.%5C+sinicus%2C%5C+Type%5C+2A%5C+in%5C+P.%5C+racemosa%2C%5C+and%5C+Type%5C+2A%5C+in%5C+T.%5C+sinensis.%5C+Each%5C+of%5C+the%5C+species%5C+shows%5C+special%5C+cytological%5C+features.%5C+Compared%5C+with%5C+Perrottetia%2C%5C+Dipentodon%5C+has%5C+a%5C+different%5C+basic%5C+chromosome%5C+number%2C%5C+a%5C+higher%5C+karyotype%5C+asymmetry%2C%5C+and%5C+different%5C+karyomorphology%5C+of%5C+its%5C+interphase%5C+nuclei%2C%5C+mitotic%5C+prophase%2C%5C+and%5C+metaphase.%5C+Thus%2C%5C+on%5C+the%5C+basis%5C+of%5C+these%5C+results%2C%5C+we%5C+have%5C+reservations%5C+regarding%5C+the%5C+suggestion%5C+of%5C+placing%5C+Dipentodon%5C+and%5C+Perrottetia%5C+together%5C+in%5C+the%5C+family%5C+Dipentodontaceae.4%5C+Genomic%5C+analyses%5C+of%5C+intergeneric%5C+hybrids%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%5C+by%5C+GISH%EF%BC%8CGenomic%5C+in%5C+situ%5C+hybridization%5C+%5C%28GISH%5C%29%5C+is%5C+becoming%5C+the%5C+method%5C+of%5C+choice%5C+for%5C+identifying%5C+parental%5C+chromosomes%5C+in%5C+interspecific%5C+hybrids.%5C+Interspecific%5C+F1%5C+hybrid%5C+between%5C+Michelia%5C+crassipes%5C+and%5C+M.%5C+calcicola%2C%5C+tow%5C+highly%5C+ornamental%5C+species%5C+in%5C+Michelia%5C+of%5C+Magnolicaceae%2C%5C+has%5C+been%5C+analized%5C+by%5C+double%5C-colored%5C+GISH%5C+with%5C+its%5C+parents%E2%80%99%5C+genome%5C+as%5C+the%5C+probe.%5C+Research%5C+gave%5C+the%5C+results%5C+that%5C+the%5C+chromosome%5C+number%5C+of%5C+the%5C+F1%5C+hybrid%5C+is%5C+2n%3D38%5C+as%5C+the%5C+same%5C+of%5C+species%5C+in%5C+Michelia%5C+and%5C+other%5C+genera%5C+in%5C+Magnoliaceae%2C%5C+the%5C+basic%5C+chromosome%5C+is%5C+x%3D19%2C%5C+the%5C+karyotype%5C+formula%5C+is%5C+2n%3D38%3D32m%5C%2B6sm%2C%5C+and%5C+the%5C+asymmetry%5C+of%5C+karyotype%5C+is%5C+1B%5C+type.%5C+Based%5C+on%5C+chromosome%5C+data%5C+of%5C+Michelia%5C+in%5C+our%5C+database%2C%5C+the%5C+karyotype%5C+of%5C+this%5C+genus%5C+is%5C+featured%5C+mostly%5C+by%5C+metacentric%5C+chromosomes%5C+and%5C+submetacentric%5C+chromosomes.%5C+In%5C+Mechelia%2C%5C+the%5C+variation%5C+range%5C+of%5C+submetacentric%5C+chromosomes%5C+is%5C+4%5C+to%5C+18%5C+and%5C+of%5C+the%5C+karyotype%5C+asymmetry%5C+is%5C+1A%5C+to%5C+2B%5C+type.%5C+Both%5C+the%5C+karyotype%5C+and%5C+karyotype%5C+asymmetry%5C+type%5C+of%5C+F1%5C+hybrid%5C+is%5C+among%5C+the%5C+variation%5C+range%5C+of%5C+Michelia.%5C+The%5C+figure%5C+of%5C+GISH%5C+showed%5C+that%5C+all%5C+the%5C+38%5C+chromosomes%5C+of%5C+F1%5C+hybrid%5C+have%5C+crossing%5C+parental%5C+signals%2C%5C+and%5C+signal%5C+on%5C+the%5C+no.1%5C+and%5C+no.7%5C+chromosome%5C+showed%5C+differences%2C%5C+which%5C+proved%5C+that%5C+both%5C+the%5C+parental%5C+genome%5C+have%5C+been%5C+transmitted%5C+to%5C+and%5C+recombinated%5C+in%5C+F1%5C+hybrid."},{"jsname":"Friends of the Royal Botanic Gardens Victoria","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AFriends%5C+of%5C+the%5C+Royal%5C+Botanic%5C+Gardens%5C+Victoria"},{"jsname":"Funds for International Cooperation and Exchange of the National Natural Science Foundation of China[31210103919]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AFunds%5C+for%5C+International%5C+Cooperation%5C+and%5C+Exchange%5C+of%5C+the%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31210103919%5C%5D"},{"jsname":"German Academic Exchange Service (DAAD)","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AGerman%5C+Academic%5C+Exchange%5C+Service%5C+%5C%28DAAD%5C%29"},{"jsname":"Innovation Program of the Chinese Academy of Sciences[KSCX2-YW-Z-0926]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=multi-gene%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AInnovation%5C+Program%5C+of%5C+the%5C+Chinese%5C+Academy%5C+of%5C+Sciences%5C%5BKSCX2%5C-YW%5C-Z%5C-0926%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-09-27"}],"Funding Project","dc.project.title_filter")'>
Chiang Mai... [3]
Chinese Ac... [3]
CAS Presid... [2]
Mae Fah Lu... [2]
Mushroom R... [2]
National S... [2]
More...
Indexed By
SCI [443]
CSCD [6]
AHCI [1]
Funding Organization
Chinese A... [43]
Deanship ... [15]
CAS/SAFEA... [10]
Mushroom R... [7]
Chinese Ac... [6]
Mae Fah Lu... [6]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 812
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:165/2
  |  
Submit date:2017/07/19
Stagonosporopsis pogostemonis: A Novel Ascomycete Fungus Causing Leaf Spot and Stem Blight on Pogostemon cablin (Lamiaceae) in South China
期刊论文
PATHOGENS, 2021, 卷号: 10, 期号: 9, 页码: 1093
Authors:
Dong,Zhang-Yong
;
Huang,Ying-Hua
;
Manawasinghe,Ishara S.
;
Wanasinghe,Dhanushka N.
;
Liu,Jia-Wei
;
Shu,Yong-Xin
;
Zhao,Min-Ping
;
Xiang,Mei-Mei
;
Luo,Mei
Favorite
  |  
View/Download:19/0
  |  
Submit date:2022/04/02
Didymellaceae
phoma-like
pathogenicity
phylogeny
MELOIDOGYNE-INCOGNITA
1ST REPORT
PYRETHRUM
IDENTIFICATION
POPULATION
PATCHOULI
TANACETI
DISEASE
AGENTS
PLANTS
Amanita submelleialba sp. nov. in section Amanita from northern Thailand
期刊论文
PHYTOTAXA, 2021, 卷号: 513, 期号: 2, 页码: 129-140
Authors:
Liu,Yuan S.
;
Liu,Jian-Kui
;
Mortimer,Peter E.
;
Lumyong,Saisamorn
Favorite
  |  
View/Download:6/0
  |  
Submit date:2022/04/02
1 
new species
Amanitaceae
Multi-gene
Phylogeny
Taxonomy
PHYLOGENETIC CONTRIBUTIONS
DIVERSITY
IDENTIFICATION
Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 108, 期号: 1, 页码: 1-215
Authors:
Tennakoon,Danushka S.
;
Kuo,Chang-Hsin
;
Maharachchikumbura,Sajeewa S. N.
;
Thambugala,Kasun M.
;
Gentekaki,Eleni
;
Phillips,Alan J. L.
;
Bhat,D. Jayarama
;
Wanasinghe,Dhanushka N.
;
de Silva,Nimali I.
;
Promputtha,Itthayakorn
;
Hyde,Kevin D.
Favorite
  |  
View/Download:27/0
  |  
Submit date:2022/04/02
46 new taxa
Ascomycota
Dothideomycetes
Incertae sedis
Multi-gene phylogeny
Taxonomy
Sordariomycetes
PUI NATIONAL-PARK
SP.-NOV.
MOLECULAR PHYLOGENY
MULTIGENE PHYLOGENY
FUNGAL SUCCESSION
ENDOPHYTIC FUNGUS
SAPROBIC FUNGI
ALLIED GENERA
SEQUENCE DATA
RAIN-FOREST
One New Species and Two New Host Records of Apiospora from Bamboo and Maize in Northern Thailand with Thirteen New Combinations
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 10, 页码: 1071
Authors:
Tian,Xingguo
;
Karunarathna,Samantha C.
;
Mapook,Ausana
;
Promputtha,Itthayakorn
;
Xu,Jianchu
;
Bao,Danfeng
;
Tibpromma,Saowaluck
Favorite
  |  
View/Download:16/0
  |  
Submit date:2022/04/02
one new species
new combinations
new host records
phylogeny
taxonomy
ARTHRINIUM APIOSPORACEAE
PRIMER SETS
FUNGI
YUNNAN
Yuxiensis granularis gen. et sp. nov., a Novel Quellkorper-Bearing Fungal Taxon Added to Scortechiniaceae and Inclusion of Parasympodiellaceae in Coronophorales Based on Phylogenetic Evidence
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 10, 页码: 1011
Authors:
Bundhun,Digvijayini
;
Wanasinghe,Dhanushka N.
;
Maharachchikumbura,Sajeewa S. N.
;
Bhat,Darbhe J.
;
Huang,Shi-Ke
;
Lumyong,Saisamorn
;
Mortimer,Peter E.
;
Hyde,Kevin D.
Favorite
  |  
View/Download:31/0
  |  
Submit date:2022/04/02
2 new taxa
1 new combination
Hypocreomycetidae
phylogeny
Sordariomycetes
Yunnan
MULTIGENE PHYLOGENY
ASCOMYCOTA
MORPHOLOGY
LONGISPORA
OUTLINE
GENERA
Morphological and phylogenetic insights reveal Cucurbitaria berberidicola (Cucurbitariaceae, Pleosporales) as a new species from Uzbekistan
期刊论文
PHYTOTAXA, 2021, 卷号: 518, 期号: 1, 页码: 1-13
Authors:
Appadoo,Michee A.
;
Wanasinghe,Dhanushka N.
;
Gafforov,Yusufjon
;
Chethana,K. W. Thilini
;
Abdurazakov,Aziz
;
Hyde,Kevin D.
;
Li,Qirui
Favorite
  |  
View/Download:27/0
  |  
Submit date:2022/04/02
new species
Berberis
Central Asia
Dothideomycetes
multi-gene phylogeny
saprobes
FUNGI
CHECKLIST
OUTLINE
GEN.
Amanita chuformis, a new Amanita species with a marginate basal bulb
期刊论文
MYCOSCIENCE, 2021, 卷号: 62, 期号: 1, 页码: 29-35
Authors:
Cui,Yang-Yang
;
Cai,Qing
;
Yang,Zhu L.
Adobe PDF(1067Kb)
  |  
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
molecular evidence
morphological characters
taxonomy
MOLECULAR PHYLOGENY
ALIGNMENTS
SEQUENCES
TAXONOMY
Yunnan-Guizhou Plateau: a mycological hotspot
期刊论文
PHYTOTAXA, 2021, 卷号: 523, 期号: 1, 页码: 1-31
Authors:
Wijayawardene,Nalin N.
;
Dissanayake,Lakmali S.
;
Dai,Dong-Qi
;
Li,Qi-Rui
;
Xiao,Yuanpin
;
Wen,Ting-Chi
;
Karunarathna,Samantha C.
;
Wu,Hai-Xia
;
Zhang,Huang
;
Tibpromma,Saowaluck
;
Kang,Ji-Chuan
;
Wang,Yong
;
Shen,Xiang-Chun
;
Tang,Li-Zhou
;
Deng,Chun-Ying
;
Liu,Yanxia
;
Kang,Yingqian
Adobe PDF(8258Kb)
  |  
Favorite
  |  
View/Download:34/1
  |  
Submit date:2022/04/02
2 new species
polyphasic approach
six new records
species diversity
taxonomy
MULTIPLE SEQUENCE ALIGNMENT
SP-NOV
PHYLOGENETIC CLASSIFICATION
ENTOMOPATHOGENIC GENUS
MULTIGENE PHYLOGENY
FUNGI
CORDYCEPS
GENERA
DIVERSITY
LINEAGES
Appressorial interactions with host and their evolution
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 110, 期号: 1, 页码: 75-107
Authors:
Chethana,K. W. Thilini
;
Jayawardena,Ruvishika S.
;
Chen,Yi-Jyun
;
Konta,Sirinapa
;
Tibpromma,Saowaluck
;
Phukhamsakda,Chayanard
;
Abeywickrama,Pranami D.
;
Samarakoon,Milan C.
;
Senwanna,Chanokned
;
Mapook,Ausana
;
Tang,Xia
;
Gomdola,Deecksha
;
Marasinghe,Diana S.
;
Padaruth,Oundhyalah D.
;
Balasuriya,Abhaya
;
Xu,Jianping
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
Adobe PDF(8605Kb)
  |  
Favorite
  |  
View/Download:19/0
  |  
Submit date:2022/04/02
Ancestral characters
Evolution
Host-recognition
Hyaline appressoria
Infection process
Melanized appressoria
Proto-appressoria
ACTIVATED PROTEIN-KINASE
UROMYCES-VICIAE-FABAE
INFECTION STRUCTURE FORMATION
SCANNING-ELECTRON-MICROSCOPY
BEAUVERIA-BASSIANA INFECTION
BOTRYTIS-CINEREA VIRULENCE
BIOLOGICAL-CONTROL AGENTS
WALL-DEGRADING ENZYMES
GREY MOLD FUNGUS
ENTOMOPATHOGENIC FUNGUS