×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [77]
中国科学院东亚植物... [63]
资源植物与生物技术... [38]
昆明植物所硕博研究... [37]
中国西南野生生物种... [10]
植物化学与西部植物资... [5]
More...
Authors
王红 [31]
李德铢 [27]
Sun Hang [16]
孙卫邦 [12]
牛洋 [11]
许建初 [10]
More...
Document Type
Journal ... [210]
Thesis [37]
Book [16]
Other [1]
Date Issued
2021 [8]
2020 [18]
2019 [20]
2018 [12]
2017 [17]
2016 [14]
More...
Language
英语 [156]
中文 [34]
Source Publication
FUNGAL DI... [12]
American J... [8]
MYCOSPHERE [7]
NEW PHYTOL... [7]
SCIENTIFIC... [7]
ANNALS OF ... [6]
More...
Funding Project
0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"Major Program of NSFC[31590823]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3AMajor%5C+Program%5C+of%5C+NSFC%5C%5B31590823%5C%5D"},{"jsname":"Moringa oleifera Lam. (Moringaceae) is an economically important multi-purpose tree indigenous to northwest India. Featured by richness in proteins, minerals and Vitamins, leaves of M. oleifera are used as highly nutrient vegetable and cattle fodder. Besides, the seed powder is used in water purification, and the seed oil is acquired for edibles, lubricating and cosmetics. Due to its multiple applications and commercial benefits, M. oleifera has been broadly introduced and cultivated around the world, and has been identified as the important one in agri-horti-silviculture programs. Mastering the reproductive characteristics and bionomics of a species is the foundation of fine variety breeding. And understanding the breeding system of M. oleifera provides basic evidence for the establishment of breeding techniques. Both traditional methods and modern DNA marker were applied to study the component parts of breeding system of M. oleifera introduced to Yunnan, China. Floral development, anthesis phenology, flowering pattern, species and visiting frequency of pollinating insects, as well as foraging behavior of pollinators were observed. Furthermore, the type of breeding system, outcrossing rate and gene flow were also tested by means of fluorescence, paraffin sections, outcrossing index, pollen-ovule ratio, and microsatellites. Then the findings are as follows. 1. Morphological differentiation of flower bud could be divided into 5 stages: bract differentiation, sepal differentiation, petal differentiation, stamen differentiation, and pistil differentiation. Abnormality of male and female reproductive structure is rare that do not prevent successful breeding. 2. With a few individuals flowering throughout the year, florescence of population appears twice a year, respectively in spring and autumn. Each blooming period lasts about 2 months, among which the stage of full blossom lasts about 1 month. The blooming period of a single flower is 7d, and anthesis time is forenoon. Pollen viability lasts from blooming to 24h after flowering, tested by TTC. While stigma reception lasts from 24h to 72h after blooming, tested by benzidine and hydrogen peroxide. Mature anthers and stigma are apart from time and space. Flavor rises up right away after blossom and continues to 48h.3. The OCI is 5, and P/O is 988.9±564.4. The breeding system of M. oleifera is outcrossing, partially self-compatible, and demand for pollinators. Self-incompatibility is gametophytic.4. A total of twenty polymorphic microsatellite markers were developed by method of FIASCO. The number of alleles per locus ranged from two to six, with an average of three. The expected (HE) and observed (HO) heterozygosities ranged from 0.3608 to 0.7606 (average of 0.5455) and from 0.0000 to 0.8750 (average of 0.4562), respectively. Seven loci were significantly deviated from Hardy-Weinberg equilibrium.5. Paternity analysis by SSR was used to estimate the outcrossing rate and gene flow of M. oleifera. The analysis was carried out in an experimental population with 12 maternal trees and 60 paternal trees. 155 seeds out of 288 seeds were confirmed pollen donors by 8 microsatellite loci at 95% strict confidence level. The multilocus outcrossing rate is tm=0.797,and single-locus outcrossing rate is ts=0.742. Most of pollen dispersal is within 20m, and the amount of downwind distribution is not significantly distinct from the upwind.6. The natural fruiting rate of M. oleifera is low under scale cultivation, and is limited by pollinators. Most reliable pollinators are Xylocopa valga andScolia vittifornis.7. Artificial xenogamy could improve fruit setting and the yield of seeds in practice.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3AMoringa%5C+oleifera%5C+Lam.%5C+%5C%28Moringaceae%5C%29%5C+is%5C+an%5C+economically%5C+important%5C+multi%5C-purpose%5C+tree%5C+indigenous%5C+to%5C+northwest%5C+India.%5C+Featured%5C+by%5C+richness%5C+in%5C+proteins%2C%5C+minerals%5C+and%5C+Vitamins%2C%5C+leaves%5C+of%5C+M.%5C+oleifera%5C+are%5C+used%5C+as%5C+highly%5C+nutrient%5C+vegetable%5C+and%5C+cattle%5C+fodder.%5C+Besides%2C%5C+the%5C+seed%5C+powder%5C+is%5C+used%5C+in%5C+water%5C+purification%2C%5C+and%5C+the%5C+seed%5C+oil%5C+is%5C+acquired%5C+for%5C+edibles%2C%5C+lubricating%5C+and%5C+cosmetics.%5C+Due%5C+to%5C+its%5C+multiple%5C+applications%5C+and%5C+commercial%5C+benefits%2C%5C+M.%5C+oleifera%5C+has%5C+been%5C+broadly%5C+introduced%5C+and%5C+cultivated%5C+around%5C+the%5C+world%2C%5C+and%5C+has%5C+been%5C+identified%5C+as%5C+the%5C+important%5C+one%5C+in%5C+agri%5C-horti%5C-silviculture%5C+programs.%5C+Mastering%5C+the%5C+reproductive%5C+characteristics%5C+and%5C+bionomics%5C+of%5C+a%5C+species%5C+is%5C+the%5C+foundation%5C+of%5C+fine%5C+variety%5C+breeding.%5C+And%5C+understanding%5C+the%5C+breeding%5C+system%5C+of%5C+M.%5C+oleifera%5C+provides%5C+basic%5C+evidence%5C+for%5C+the%5C+establishment%5C+of%5C+breeding%5C+techniques.%5C+Both%5C+traditional%5C+methods%5C+and%5C+modern%5C+DNA%5C+marker%5C+were%5C+applied%5C+to%5C+study%5C+the%5C+component%5C+parts%5C+of%5C+breeding%5C+system%5C+of%5C+M.%5C+oleifera%5C+introduced%5C+to%5C+Yunnan%2C%5C+China.%5C+Floral%5C+development%2C%5C+anthesis%5C+phenology%2C%5C+flowering%5C+pattern%2C%5C+species%5C+and%5C+visiting%5C+frequency%5C+of%5C+pollinating%5C+insects%2C%5C+as%5C+well%5C+as%5C+foraging%5C+behavior%5C+of%5C+pollinators%5C+were%5C+observed.%5C+Furthermore%2C%5C+the%5C+type%5C+of%5C+breeding%5C+system%2C%5C+outcrossing%5C+rate%5C+and%5C+gene%5C+flow%5C+were%5C+also%5C+tested%5C+by%5C+means%5C+of%5C+fluorescence%2C%5C+paraffin%5C+sections%2C%5C+outcrossing%5C+index%2C%5C+pollen%5C-ovule%5C+ratio%2C%5C+and%5C+microsatellites.%5C+Then%5C+the%5C+findings%5C+are%5C+as%5C+follows.%5C+1.%5C+Morphological%5C+differentiation%5C+of%5C+flower%5C+bud%5C+could%5C+be%5C+divided%5C+into%5C+5%5C+stages%5C%3A%5C+bract%5C+differentiation%2C%5C+sepal%5C+differentiation%2C%5C+petal%5C+differentiation%2C%5C+stamen%5C+differentiation%2C%5C+and%5C+pistil%5C+differentiation.%5C+Abnormality%5C+of%5C+male%5C+and%5C+female%5C+reproductive%5C+structure%5C+is%5C+rare%5C+that%5C+do%5C+not%5C+prevent%5C+successful%5C+breeding.%5C+2.%5C+With%5C+a%5C+few%5C+individuals%5C+flowering%5C+throughout%5C+the%5C+year%2C%5C+florescence%5C+of%5C+population%5C+appears%5C+twice%5C+a%5C+year%2C%5C+respectively%5C+in%5C+spring%5C+and%5C+autumn.%5C+Each%5C+blooming%5C+period%5C+lasts%5C+about%5C+2%5C+months%2C%5C+among%5C+which%5C+the%5C+stage%5C+of%5C+full%5C+blossom%5C+lasts%5C+about%5C+1%5C+month.%5C+The%5C+blooming%5C+period%5C+of%5C+a%5C+single%5C+flower%5C+is%5C+7d%2C%5C+and%5C+anthesis%5C+time%5C+is%5C+forenoon.%5C+Pollen%5C+viability%5C+lasts%5C+from%5C+blooming%5C+to%5C+24h%5C+after%5C+flowering%2C%5C+tested%5C+by%5C+TTC.%5C+While%5C+stigma%5C+reception%5C+lasts%5C+from%5C+24h%5C+to%5C+72h%5C+after%5C+blooming%2C%5C+tested%5C+by%5C+benzidine%5C+and%5C+hydrogen%5C+peroxide.%5C+Mature%5C+anthers%5C+and%5C+stigma%5C+are%5C+apart%5C+from%5C+time%5C+and%5C+space.%5C+Flavor%5C+rises%5C+up%5C+right%5C+away%5C+after%5C+blossom%5C+and%5C+continues%5C+to%5C+48h.3.%5C+The%5C+OCI%5C+is%5C+5%2C%5C+and%5C+P%5C%2FO%5C+is%5C+988.9%C2%B1564.4.%5C+The%5C+breeding%5C+system%5C+of%5C+M.%5C+oleifera%5C+is%5C+outcrossing%2C%5C+partially%5C+self%5C-compatible%2C%5C+and%5C+demand%5C+for%5C+pollinators.%5C+Self%5C-incompatibility%5C+is%5C+gametophytic.4.%5C+A%5C+total%5C+of%5C+twenty%5C+polymorphic%5C+microsatellite%5C+markers%5C+were%5C+developed%5C+by%5C+method%5C+of%5C+FIASCO.%5C+The%5C+number%5C+of%5C+alleles%5C+per%5C+locus%5C+ranged%5C+from%5C+two%5C+to%5C+six%2C%5C+with%5C+an%5C+average%5C+of%5C+three.%5C+The%5C+expected%5C+%5C%28HE%5C%29%5C+and%5C+observed%5C+%5C%28HO%5C%29%5C+heterozygosities%5C+ranged%5C+from%5C+0.3608%5C+to%5C+0.7606%5C+%5C%28average%5C+of%5C+0.5455%5C%29%5C+and%5C+from%5C+0.0000%5C+to%5C+0.8750%5C+%5C%28average%5C+of%5C+0.4562%5C%29%2C%5C+respectively.%5C+Seven%5C+loci%5C+were%5C+significantly%5C+deviated%5C+from%5C+Hardy%5C-Weinberg%5C+equilibrium.5.%5C+Paternity%5C+analysis%5C+by%5C+SSR%5C+was%5C+used%5C+to%5C+estimate%5C+the%5C+outcrossing%5C+rate%5C+and%5C+gene%5C+flow%5C+of%5C+M.%5C+oleifera.%5C+The%5C+analysis%5C+was%5C+carried%5C+out%5C+in%5C+an%5C+experimental%5C+population%5C+with%5C+12%5C+maternal%5C+trees%5C+and%5C+60%5C+paternal%5C+trees.%5C+155%5C+seeds%5C+out%5C+of%5C+288%5C+seeds%5C+were%5C+confirmed%5C+pollen%5C+donors%5C+by%5C+8%5C+microsatellite%5C+loci%5C+at%5C+95%25%5C+strict%5C+confidence%5C+level.%5C+The%5C+multilocus%5C+outcrossing%5C+rate%5C+is%5C+tm%3D0.797%EF%BC%8Cand%5C+single%5C-locus%5C+outcrossing%5C+rate%5C+is%5C+ts%3D0.742.%5C+Most%5C+of%5C+pollen%5C+dispersal%5C+is%5C+within%5C+20m%2C%5C+and%5C+the%5C+amount%5C+of%5C+downwind%5C+distribution%5C+is%5C+not%5C+significantly%5C+distinct%5C+from%5C+the%5C+upwind.6.%5C+The%5C+natural%5C+fruiting%5C+rate%5C+of%5C+M.%5C+oleifera%5C+is%5C+low%5C+under%5C+scale%5C+cultivation%2C%5C+and%5C+is%5C+limited%5C+by%5C+pollinators.%5C+Most%5C+reliable%5C+pollinators%5C+are%5C+Xylocopa%5C+valga%5C+andScolia%5C+vittifornis.7.%5C+Artificial%5C+xenogamy%5C+could%5C+improve%5C+fruit%5C+setting%5C+and%5C+the%5C+yield%5C+of%5C+seeds%5C+in%5C+practice."},{"jsname":"NSFC[U1602264]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANSFC%5C%5BU1602264%5C%5D"},{"jsname":"National Key Research and Development Program of China[2017YFC0505200]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Key%5C+Research%5C+and%5C+Development%5C+Program%5C+of%5C+China%5C%5B2017YFC0505200%5C%5D"},{"jsname":"National Natural Science Foundation of China[31300199]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31300199%5C%5D"},{"jsname":"National Natural Science Foundation of China[31400167]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31400167%5C%5D"},{"jsname":"National Natural Science Foundation of China[31472052]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31472052%5C%5D"},{"jsname":"National Natural Science Foundation of China[31670322]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31670322%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B592010200112%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[60201000201]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B60201000201%5C%5D"},{"jsname":"National Science Foundation of China (NSFC)[31750110478]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ANational%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B31750110478%5C%5D"},{"jsname":"Orchidaceae is one of the largest families in angiosperm, but sadly they are among the most threatened of plants due to over collection and habitat loss. The conservation of orchids is more important and imminent under current climatic change scenarios. Orchids always have complex ecological interactions with pollinators, therefore it is critical to know their pollination strategies when apply conservation policy and techniques. The slipper orchids of Cypripedium Section Trigonopedia were thought to be pollinated by flies, yet no detailed experimental evidence was provided until now. The genus Calanthe comprises 150 species, only three of them have been observed their pollinators. In this dissertation, we investigated the pollination ecology of three orchids, Cypripedium fargesii Franch., Calanthe yaoshanensis Z. X. Ren et H. Wang and C. tricarinata Lindl. at the Yaoshan National Natural Reserve, Qiaojia, northeastern Yunnan, China. This study examined habitat, phenology, floral traits, pollinators, floral scent and reproductive success for each orchid. We dissected their pollination systems and deciphered attraction mechanisms involved. Finally we provided a conservation strategy for each orchid. 1. Breeding system, Cypripedium fargesii, Calanthe yaoshanensis and C. tricarinata are all self-compatible. However, there are no autogamy mechanisms under natural conditions; pollinators are needed for successful reproduction. The proportion of fully developed and viable embryos of cross-pollinated seeds is significantly higher than self-pollinated seeds. Post-zygotic fatality was the main cause for aborted embryo development of self-pollinated ovaries. 2. Pollination ecology of Cypripdium fargesii, Cypripedium fargesii is almost exclusively pollinated by mycophilous flat-footed flies in the genus Agathomyia (Platypezidae, Diptera). Our study is the first to report the flat-footed fly to be the pollinator of flowering plants. We suggest a novel deceptive pollination system that specifically targets flat-footed flies in C. fargesii. The orchid accomplishes its deception through morphology and offactory mimicry of ascomycete fungi infected leaves:(1) We found mycelia and conidia of Cladosporium sp. (Davidiellaceae) on the surface of mouthparts and tarsi of examined flies, this indicates that adult Agathomyia fly is feeding on fungal spores. Cladosporium always infects leaves and fruits of wild and cultivate plants and causes black mold spots on the surface of leaves and fruits. (2) The upper surface of orchid leaves are scattered with black or blackish maroon spots, also with a cluster of multicells chain-like trichome at the center of spots. These spots are similar to fungi infected mold spots on the surface of leaves. (3) The flower produce more than 50 scent molecules associated with a wide variety of flowers, leaves and fruits. 3-methyl-1-butanol, 2-ethyl-1-hexanol and 1-Hexanol are also detected from Cladosporium, and 3-methyl-1-butanol is a typical microbial organic compound. The leaves of orchids and scent molecules mimic of ascomycete fungi infected leaves to attract flat-footed flies to find fungal spores for food. The orchid utilizes the special food habit and feeding behaviours of flat-footed flies. 3. Pollination ecology of Calanthe yaoshanensis. Calanthe yaoshanensis Z. X. Ren et H. Wang is a new species published by author. The main pollinator is drone fly (Eristalis tenax). C. yaoshanensis provides no reward to insect visitors, its pollination strategy is generalized food deception. The pollinators of C. yaoshanensis are attracted to bright yellow-colored perianths and alcohol-related sweet scent of the flowers. 4. Pollination ecology of Calanthe tricarinata, The insect visitation to C. tricarinata is very scarce, and Bombus patagiatus, the primary pollinator, carries pollinaria on its head. The pollination strategy is generalized food deception. The bumble bees are probably attracted by the yellow-colored sepals and petals, and brick-red lip of the orchid flowers. The fruit set is very low, 1.20%, 2.96% and 2.74% for 2008 to 2010 years, significant difference among three years. Low fruit set is due to severe pollinator limitation in over-grazing habitat. 5. Conservation strategies, Cypripedium fargesii is suggested to be conserved in situ, and both in situ and ex situ are recommended for conservation of two Calanthe species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3AOrchidaceae%5C+is%5C+one%5C+of%5C+the%5C+largest%5C+families%5C+in%5C+angiosperm%2C%5C+but%5C+sadly%5C+they%5C+are%5C+among%5C+the%5C+most%5C+threatened%5C+of%5C+plants%5C+due%5C+to%5C+over%5C+collection%5C+and%5C+habitat%5C+loss.%5C+The%5C+conservation%5C+of%5C+orchids%5C+is%5C+more%5C+important%5C+and%5C+imminent%5C+under%5C+current%5C+climatic%5C+change%5C+scenarios.%5C+Orchids%5C+always%5C+have%5C+complex%5C+ecological%5C+interactions%5C+with%5C+pollinators%2C%5C+therefore%5C+it%5C+is%5C+critical%5C+to%5C+know%5C+their%5C+pollination%5C+strategies%5C+when%5C+apply%5C+conservation%5C+policy%5C+and%5C+techniques.%5C+The%5C+slipper%5C+orchids%5C+of%5C+Cypripedium%5C+Section%5C+Trigonopedia%5C+were%5C+thought%5C+to%5C+be%5C+pollinated%5C+by%5C+flies%2C%5C+yet%5C+no%5C+detailed%5C+experimental%5C+evidence%5C+was%5C+provided%5C+until%5C+now.%5C+The%5C+genus%5C+Calanthe%5C+comprises%5C+150%5C+species%2C%5C+only%5C+three%5C+of%5C+them%5C+have%5C+been%5C+observed%5C+their%5C+pollinators.%5C+In%5C+this%5C+dissertation%2C%5C+we%5C+investigated%5C+the%5C+pollination%5C+ecology%5C+of%5C+three%5C+orchids%2C%5C+Cypripedium%5C+fargesii%5C+Franch.%2C%5C+Calanthe%5C+yaoshanensis%5C+Z.%5C+X.%5C+Ren%5C+et%5C+H.%5C+Wang%5C+and%5C+C.%5C+tricarinata%5C+Lindl.%5C+at%5C+the%5C+Yaoshan%5C+National%5C+Natural%5C+Reserve%2C%5C+Qiaojia%2C%5C+northeastern%5C+Yunnan%2C%5C+China.%5C+This%5C+study%5C+examined%5C+habitat%2C%5C+phenology%2C%5C+floral%5C+traits%2C%5C+pollinators%2C%5C+floral%5C+scent%5C+and%5C+reproductive%5C+success%5C+for%5C+each%5C+orchid.%5C+We%5C+dissected%5C+their%5C+pollination%5C+systems%5C+and%5C+deciphered%5C+attraction%5C+mechanisms%5C+involved.%5C+Finally%5C+we%5C+provided%5C+a%5C+conservation%5C+strategy%5C+for%5C+each%5C+orchid.%5C+1.%5C+Breeding%5C+system%2C%5C+Cypripedium%5C+fargesii%2C%5C+Calanthe%5C+yaoshanensis%5C+and%5C+C.%5C+tricarinata%5C+are%5C+all%5C+self%5C-compatible.%5C+However%2C%5C+there%5C+are%5C+no%5C+autogamy%5C+mechanisms%5C+under%5C+natural%5C+conditions%5C%3B%5C+pollinators%5C+are%5C+needed%5C+for%5C+successful%5C+reproduction.%5C+The%5C+proportion%5C+of%5C+fully%5C+developed%5C+and%5C+viable%5C+embryos%5C+of%5C+cross%5C-pollinated%5C+seeds%5C+is%5C+significantly%5C+higher%5C+than%5C+self%5C-pollinated%5C+seeds.%5C+Post%5C-zygotic%5C+fatality%5C+was%5C+the%5C+main%5C+cause%5C+for%5C+aborted%5C+embryo%5C+development%5C+of%5C+self%5C-pollinated%5C+ovaries.%5C+2.%5C+Pollination%5C+ecology%5C+of%5C+Cypripdium%5C+fargesii%2C%5C+Cypripedium%5C+fargesii%5C+is%5C+almost%5C+exclusively%5C+pollinated%5C+by%5C+mycophilous%5C+flat%5C-footed%5C+flies%5C+in%5C+the%5C+genus%5C+Agathomyia%5C+%5C%28Platypezidae%2C%5C+Diptera%5C%29.%5C+Our%5C+study%5C+is%5C+the%5C+first%5C+to%5C+report%5C+the%5C+flat%5C-footed%5C+fly%5C+to%5C+be%5C+the%5C+pollinator%5C+of%5C+flowering%5C+plants.%5C+We%5C+suggest%5C+a%5C+novel%5C+deceptive%5C+pollination%5C+system%5C+that%5C+specifically%5C+targets%5C+flat%5C-footed%5C+flies%5C+in%5C+C.%5C+fargesii.%5C+The%5C+orchid%5C+accomplishes%5C+its%5C+deception%5C+through%5C+morphology%5C+and%5C+offactory%5C+mimicry%5C+of%5C+ascomycete%5C+fungi%5C+infected%5C+leaves%EF%BC%9A%5C%281%5C%29%5C+We%5C+found%5C+mycelia%5C+and%5C+conidia%5C+of%5C+Cladosporium%5C+sp.%5C+%5C%28Davidiellaceae%5C%29%5C+on%5C+the%5C+surface%5C+of%5C+mouthparts%5C+and%5C+tarsi%5C+of%5C+examined%5C+flies%2C%5C+this%5C+indicates%5C+that%5C+adult%5C+Agathomyia%5C+fly%5C+is%5C+feeding%5C+on%5C+fungal%5C+spores.%5C+Cladosporium%5C+always%5C+infects%5C+leaves%5C+and%5C+fruits%5C+of%5C+wild%5C+and%5C+cultivate%5C+plants%5C+and%5C+causes%5C+black%5C+mold%5C+spots%5C+on%5C+the%5C+surface%5C+of%5C+leaves%5C+and%5C+fruits.%5C+%5C%282%5C%29%5C+The%5C+upper%5C+surface%5C+of%5C+orchid%5C+leaves%5C+are%5C+scattered%5C+with%5C+black%5C+or%5C+blackish%5C+maroon%5C+spots%2C%5C+also%5C+with%5C+a%5C+cluster%5C+of%5C+multicells%5C+chain%5C-like%5C+trichome%5C+at%5C+the%5C+center%5C+of%5C+spots.%5C+These%5C+spots%5C+are%5C+similar%5C+to%5C+fungi%5C+infected%5C+mold%5C+spots%5C+on%5C+the%5C+surface%5C+of%5C+leaves.%5C+%5C%283%5C%29%5C+The%5C+flower%5C+produce%5C+more%5C+than%5C+50%5C+scent%5C+molecules%5C+associated%5C+with%5C+a%5C+wide%5C+variety%5C+of%5C+flowers%2C%5C+leaves%5C+and%5C+fruits.%5C+3%5C-methyl%5C-1%5C-butanol%2C%5C+2%5C-ethyl%5C-1%5C-hexanol%5C+and%5C+1%5C-Hexanol%5C+are%5C+also%5C+detected%5C+from%5C+Cladosporium%2C%5C+and%5C+3%5C-methyl%5C-1%5C-butanol%5C+is%5C+a%5C+typical%5C+microbial%5C+organic%5C+compound.%5C+The%5C+leaves%5C+of%5C+orchids%5C+and%5C+scent%5C+molecules%5C+mimic%5C+of%5C+ascomycete%5C+fungi%5C+infected%5C+leaves%5C+to%5C+attract%5C+flat%5C-footed%5C+flies%5C+to%5C+find%5C+fungal%5C+spores%5C+for%5C+food.%5C+The%5C+orchid%5C+utilizes%5C+the%5C+special%5C+food%5C+habit%5C+and%5C+feeding%5C+behaviours%5C+of%5C+flat%5C-footed%5C+flies.%5C+%5C+3.%5C+Pollination%5C+ecology%5C+of%5C+Calanthe%5C+yaoshanensis.%5C+Calanthe%5C+yaoshanensis%5C+Z.%5C+X.%5C+Ren%5C+et%5C+H.%5C+Wang%5C+is%5C+a%5C+new%5C+species%5C+published%5C+by%5C+author.%5C+The%5C+main%5C+pollinator%5C+is%5C+drone%5C+fly%5C+%5C%28Eristalis%5C+tenax%5C%29.%5C+C.%5C+yaoshanensis%5C+provides%5C+no%5C+reward%5C+to%5C+insect%5C+visitors%2C%5C+its%5C+pollination%5C+strategy%5C+is%5C+generalized%5C+food%5C+deception.%5C+The%5C+pollinators%5C+of%5C+C.%5C+yaoshanensis%5C+are%5C+attracted%5C+to%5C+bright%5C+yellow%5C-colored%5C+perianths%5C+and%5C+alcohol%5C-related%5C+sweet%5C+scent%5C+of%5C+the%5C+flowers.%5C+4.%5C+Pollination%5C+ecology%5C+of%5C+Calanthe%5C+tricarinata%2C%5C+The%5C+insect%5C+visitation%5C+to%5C+C.%5C+tricarinata%5C+is%5C+very%5C+scarce%2C%5C+and%5C+Bombus%5C+patagiatus%2C%5C+the%5C+primary%5C+pollinator%2C%5C+carries%5C+pollinaria%5C+on%5C+its%5C+head.%5C+The%5C+pollination%5C+strategy%5C+is%5C+generalized%5C+food%5C+deception.%5C+The%5C+bumble%5C+bees%5C+are%5C+probably%5C+attracted%5C+by%5C+the%5C+yellow%5C-colored%5C+sepals%5C+and%5C+petals%2C%5C+and%5C+brick%5C-red%5C+lip%5C+of%5C+the%5C+orchid%5C+flowers.%5C+The%5C+fruit%5C+set%5C+is%5C+very%5C+low%2C%5C+1.20%25%2C%5C+2.96%25%5C+and%5C+2.74%25%5C+for%5C+2008%5C+to%5C+2010%5C+years%2C%5C+significant%5C+difference%5C+among%5C+three%5C+years.%5C+Low%5C+fruit%5C+set%5C+is%5C+due%5C+to%5C+severe%5C+pollinator%5C+limitation%5C+in%5C+over%5C-grazing%5C+habitat.%5C+5.%5C+Conservation%5C+strategies%2C%5C+Cypripedium%5C+fargesii%5C+is%5C+suggested%5C+to%5C+be%5C+conserved%5C+in%5C+situ%2C%5C+and%5C+both%5C+in%5C+situ%5C+and%5C+ex%5C+situ%5C+are%5C+recommended%5C+for%5C+conservation%5C+of%5C+two%5C+Calanthe%5C+species."},{"jsname":"Thailand Research Fund (TRF)[RSA5980068]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3AThailand%5C+Research%5C+Fund%5C+%5C%28TRF%5C%29%5C%5BRSA5980068%5C%5D"},{"jsname":"Tupistra pingbianensis J. L. Huang & X. Z. Liu, is a newly described perennial herb narrowly distributed in South-east Yunnan, China. It belongs to genera Tupistra Ker Gawler(Liliaceae). It usually occurs on outcrops of bare rock, or occasionally as an epiphyte on tree trunks covered with humus and moss. T. pingbianensis is unusual in that it exhibits rarity according to three different ways of measuring rarity, i.e. it has a small geographical range, is a habitat specialist, and always has low abundance where it occurs. Because of this, T. pingbianensis has been listed as an endangered species and catalogued in the Chinese Species Red List. In order to discuss the causes of rarity of T. pingbianensis, the multidisciplinary investigations of the seed and seedling establishment, cytology, breeding system, and population genetic structure of the endangered T. pingbianensis were performed in this thesis. Besides, the corresponding conservation strategies were also proposed according to the above-mentioned. The main results are summarized as follows:1. Biological traits of T. pingbianensis,T. pingbianensis is a perennial herbaceous with a creeping rhizome, thick basal leaves, and an inflorescence that is a terminal spike. Florescence is from November to December, while fruiting occurs between November and December in the next year. Reproduction and spread also occurs clonally via rhizomes, most seeds simply fall from the mother plant and germinate where they land. It occurs on outcrops of bare rock, or occasionally as an epiphyte on tree trunks covered with humus and moss, which are naturally rare habitat. Throughout its small geographical range, T. pingbianensis occurs as discrete, small populations size. 2. Seed germination traits of T. pingbianensis,Seed morphology was observed and effects of substrates soil types, light, sowing depth on germination percentage of the species T. pingbianensis were investigated primarily. The results showed that the average seed size was (1.17±0.02) cm × (0.79±0.01) cm × (0.77±0.01) cm (length × width × thickness), per-hundred-seed-weight was about 35.03±0.12g. Among the three different substrates soil types and sowing depths, seeds of T. pingbianensis germinate best in alkalescence soil and shallow sowing depth (2cm). It could germinate in the both light and dark, but the germination rate can be accelerated by light obviously. Its seed has high germination rate not just in greenhouse, but also in the field. We considered that this is a good strategy to expand its population in the special habit.3. Karyotype evolution status of T. pingbianensis,The karyotype of total eight species in Campylandra, Tupistra and Aspidistra from China were reported. Considering Tupistra has the similar morphological character with Campylandra but resemble Aspidistra in karyotype. The results support the earlier study that Tupistra is a transition between Compylandra and Aspidistra. Besides, our results also showes that the T. pingbianensis and T. fungilliformis has higher karyotype asymmetry than other species in this genera, which means these species have higher karyotype evolution status. 4. Reproduction ecology of T. pingbianensis, The flower phenology, pollinators of T. pingbianensis were documented herein. We also examined the breeding system of T. pingbianensis and seed fitness traits to determine what forms of pollination and mating occur in this naturally rare species, and is there evidence of inbreeding depression in its populations. The results shows that the flowers opened 10-15 days, which suggest stigma and pollen can keep high vitality for a long time (10-15 days). The only pollinators observed on T. pingbianensis flowers were ants (Aphaenogaster smythiesii Forel,Formicidea), springtail (Hypogastrura sp., Hypogastruridae, Collembola) and one species of beetles (Anomala corpulenta Motsch, Rutelidae). These pollinators generally have restricted movement capacities and hence promote geitonogamy or mating between individuals in close proximity within populations. The results of out crossing index (OCI) pollination experiments in our study suggest that T. pingbianensis has an animal-pollinated, mixed selfing and outcrossing breeding systems. However, a pollination experiment also fail to detect significant inbreeding depression upon F1 fruit set, seed weight and germinate rate fitness-traits. Since naturally rare species T. pingbianensis is not seriously genetically impoverished and likely to have adapted to tolerating a high level of inbreeding early in its history. 5. Conservation genetic of T. pingbianensis, The levels and partitioning of genetic diversity were investigated in Tupistra pingbianensis. Here genetic diversity and patterns of genetic variation within and among 11 populations were analyzed using AFLP markers with 97 individuals across its whole geographical range. High levels of genetic variation were revealed both at the species level (P99 = 96.012%; Ht = 0.302) and at the population level (P99 = 51.41%; Hs = 0.224). Strong genetic differentiation among populations was also detected (FST = 0.2961; ⍬Ⅱ= 0.281), which corresponded to results reported for typical animal-pollinated, mixed selfing and outcrossing plant species. Special habitat and its life history traits may play an important role in shaping the genetic diversity and the genetic structure of this species. Based on the special habitat in T. pingbianensis, the most suitable strategy for its conservation is the protection of its habitat. Moreover, given the observed strong genetic differentiation among populations of T. pingbianensis, the preservation of genetic diversity in this species will require the protection of many populations as possible to maintain the current levels of genetic variability.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3ATupistra%5C+pingbianensis%5C+J.%5C+L.%5C+Huang%5C+%5C%26%5C+X.%5C+Z.%5C+Liu%2C%5C+is%5C+a%5C+newly%5C+described%5C+perennial%5C+herb%5C+narrowly%5C+distributed%5C+in%5C+South%5C-east%5C+Yunnan%2C%5C+China.%5C+It%5C+belongs%5C+to%5C+genera%5C+Tupistra%5C+Ker%5C+Gawler%5C%28Liliaceae%5C%29.%5C+It%5C+usually%5C+occurs%5C+on%5C+outcrops%5C+of%5C+bare%5C+rock%2C%5C+or%5C+occasionally%5C+as%5C+an%5C+epiphyte%5C+on%5C+tree%5C+trunks%5C+covered%5C+with%5C+humus%5C+and%5C+moss.%5C+T.%5C+pingbianensis%5C+is%5C+unusual%5C+in%5C+that%5C+it%5C+exhibits%5C+rarity%5C+according%5C+to%5C+three%5C+different%5C+ways%5C+of%5C+measuring%5C+rarity%2C%5C+i.e.%5C+it%5C+has%5C+a%5C+small%5C+geographical%5C+range%2C%5C+is%5C+a%5C+habitat%5C+specialist%2C%5C+and%5C+always%5C+has%5C+low%5C+abundance%5C+where%5C+it%5C+occurs.%5C+Because%5C+of%5C+this%2C%5C+T.%5C+pingbianensis%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+and%5C+catalogued%5C+in%5C+the%5C+Chinese%5C+Species%5C+Red%5C+List.%5C+In%5C+order%5C+to%5C+discuss%5C+the%5C+causes%5C+of%5C+rarity%5C+of%5C+T.%5C+pingbianensis%2C%5C+the%5C+multidisciplinary%5C+investigations%5C+of%5C+the%5C+seed%5C+and%5C+seedling%5C+establishment%2C%5C+cytology%2C%5C+breeding%5C+system%2C%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+the%5C+endangered%5C+T.%5C+pingbianensis%5C+were%5C+performed%5C+in%5C+this%5C+thesis.%5C+Besides%2C%5C+the%5C+corresponding%5C+conservation%5C+strategies%5C+were%5C+also%5C+proposed%5C+according%5C+to%5C+the%5C+above%5C-mentioned.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Biological%5C+traits%5C+of%5C+T.%5C+pingbianensis%2CT.%5C+pingbianensis%5C+is%5C+a%5C+perennial%5C+herbaceous%5C+with%5C+a%5C+creeping%5C+rhizome%2C%5C+thick%5C+basal%5C+leaves%2C%5C+and%5C+an%5C+inflorescence%5C+that%5C+is%5C+a%5C+terminal%5C+spike.%5C+Florescence%5C+is%5C+from%5C+November%5C+to%5C+December%2C%5C+while%5C+fruiting%5C+occurs%5C+between%5C+November%5C+and%5C+December%5C+in%5C+the%5C+next%5C+year.%5C+Reproduction%5C+and%5C+spread%5C+also%5C+occurs%5C+clonally%5C+via%5C+rhizomes%2C%5C+most%5C+seeds%5C+simply%5C+fall%5C+from%5C+the%5C+mother%5C+plant%5C+and%5C+germinate%5C+where%5C+they%5C+land.%5C+It%5C+occurs%5C+on%5C+outcrops%5C+of%5C+bare%5C+rock%2C%5C+or%5C+occasionally%5C+as%5C+an%5C+epiphyte%5C+on%5C+tree%5C+trunks%5C+covered%5C+with%5C+humus%5C+and%5C+moss%2C%5C+which%5C+are%5C+naturally%5C+rare%5C+habitat.%5C+Throughout%5C+its%5C+small%5C+geographical%5C+range%2C%5C+T.%5C+pingbianensis%5C+occurs%5C+as%5C+discrete%2C%5C+small%5C+populations%5C+size.%5C+2.%5C+Seed%5C+germination%5C+traits%5C+of%5C+T.%5C+pingbianensis%2CSeed%5C+morphology%5C+was%5C+observed%5C+and%5C+effects%5C+of%5C+substrates%5C+soil%5C+types%2C%5C+light%2C%5C+sowing%5C+depth%5C+on%5C+germination%5C+percentage%5C+of%5C+the%5C+species%5C+T.%5C+pingbianensis%5C+were%5C+investigated%5C+primarily.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+average%5C+seed%5C+size%5C+was%5C+%5C%281.17%C2%B10.02%5C%29%5C+cm%5C+%C3%97%5C+%5C%280.79%C2%B10.01%5C%29%5C+cm%5C+%C3%97%5C+%5C%280.77%C2%B10.01%5C%29%5C+cm%5C+%5C%28length%5C+%C3%97%5C+width%5C+%C3%97%5C+thickness%5C%29%2C%5C+per%5C-hundred%5C-seed%5C-weight%5C+was%5C+about%5C+35.03%C2%B10.12g.%5C+Among%5C+the%5C+three%5C+different%5C+substrates%5C+soil%5C+types%5C+and%5C+sowing%5C+depths%2C%5C+seeds%5C+of%5C+T.%5C+pingbianensis%5C+germinate%5C+best%5C+in%5C+alkalescence%5C+soil%5C+and%5C+shallow%5C+sowing%5C+depth%5C+%5C%282cm%5C%29.%5C+It%5C+could%5C+germinate%5C+in%5C+the%5C+both%5C+light%5C+and%5C+dark%2C%5C+but%5C+the%5C+germination%5C+rate%5C+can%5C+be%5C+accelerated%5C+by%5C+light%5C+obviously.%5C+Its%5C+seed%5C+has%5C+high%5C+germination%5C+rate%5C+not%5C+just%5C+in%5C+greenhouse%2C%5C+but%5C+also%5C+in%5C+the%5C+field.%5C+We%5C+considered%5C+that%5C+this%5C+is%5C+a%5C+good%5C+strategy%5C+to%5C+expand%5C+its%5C+population%5C+in%5C+the%5C+special%5C+habit.3.%5C+Karyotype%5C+evolution%5C+status%5C+of%5C+T.%5C+pingbianensis%2CThe%5C+karyotype%5C+of%5C+total%5C+eight%5C+species%5C+in%5C+Campylandra%2C%5C+Tupistra%5C+and%5C+Aspidistra%5C+from%5C+China%5C+were%5C+reported.%5C+Considering%5C+Tupistra%5C+has%5C+the%5C+similar%5C+morphological%5C+character%5C+with%5C+Campylandra%5C+but%5C+resemble%5C+Aspidistra%5C+in%5C+karyotype.%5C+The%5C+results%5C+support%5C+the%5C+earlier%5C+study%5C+that%5C+Tupistra%5C+is%5C+a%5C+transition%5C+between%5C+Compylandra%5C+and%5C+Aspidistra.%5C+Besides%2C%5C+our%5C+results%5C+also%5C+showes%5C+that%5C+the%5C+T.%5C+pingbianensis%5C+and%5C+T.%5C+fungilliformis%5C+has%5C+higher%5C+karyotype%5C+asymmetry%5C+than%5C+other%5C+species%5C+in%5C+this%5C+genera%2C%5C+which%5C+means%5C+these%5C+species%5C+have%5C+higher%5C+karyotype%5C+evolution%5C+status.%5C+4.%5C+Reproduction%5C+ecology%5C+of%5C+T.%5C+pingbianensis%2C%5C+The%5C+flower%5C+phenology%2C%5C+pollinators%5C+of%5C+T.%5C+pingbianensis%5C+were%5C+documented%5C+herein.%5C+We%5C+also%5C+examined%5C+the%5C+breeding%5C+system%5C+of%5C+T.%5C+pingbianensis%5C+and%5C+seed%5C+fitness%5C+traits%5C+to%5C+determine%5C+what%5C+forms%5C+of%5C+pollination%5C+and%5C+mating%5C+occur%5C+in%5C+this%5C+naturally%5C+rare%5C+species%2C%5C+and%5C+is%5C+there%5C+evidence%5C+of%5C+inbreeding%5C+depression%5C+in%5C+its%5C+populations.%5C+The%5C+results%5C+shows%5C+that%5C+the%5C+flowers%5C+opened%5C+10%5C-15%5C+days%2C%5C+which%5C+suggest%5C+stigma%5C+and%5C+pollen%5C+can%5C+keep%5C+high%5C+vitality%5C+for%5C+a%5C+long%5C+time%5C+%5C%2810%5C-15%5C+days%5C%29.%5C+The%5C+only%5C+pollinators%5C+observed%5C+on%5C+T.%5C+pingbianensis%5C+flowers%5C+were%5C+ants%5C+%5C%28Aphaenogaster%5C+smythiesii%5C+Forel%2CFormicidea%5C%29%2C%5C+springtail%5C+%5C%28Hypogastrura%5C+sp.%2C%5C+Hypogastruridae%2C%5C+Collembola%5C%29%5C+and%5C+one%5C+species%5C+of%5C+beetles%5C+%5C%28Anomala%5C+corpulenta%5C+Motsch%2C%5C+Rutelidae%5C%29.%5C+These%5C+pollinators%5C+generally%5C+have%5C+restricted%5C+movement%5C+capacities%5C+and%5C+hence%5C+promote%5C+geitonogamy%5C+or%5C+mating%5C+between%5C+individuals%5C+in%5C+close%5C+proximity%5C+within%5C+populations.%5C+The%5C+results%5C+of%5C+out%5C+crossing%5C+index%5C+%5C%28OCI%5C%29%5C+pollination%5C+experiments%5C+in%5C+our%5C+study%5C+suggest%5C+that%5C+T.%5C+pingbianensis%5C+has%5C+an%5C+animal%5C-pollinated%2C%5C+mixed%5C+selfing%5C+and%5C+outcrossing%5C+breeding%5C+systems.%5C+However%2C%5C+a%5C+pollination%5C+experiment%5C+also%5C+fail%5C+to%5C+detect%5C+significant%5C+inbreeding%5C+depression%5C+upon%5C+F1%5C+fruit%5C+set%2C%5C+seed%5C+weight%5C+and%5C+germinate%5C+rate%5C+fitness%5C-traits.%5C+Since%5C+naturally%5C+rare%5C+species%5C+T.%5C+pingbianensis%5C+is%5C+not%5C+seriously%5C+genetically%5C+impoverished%5C+and%5C+likely%5C+to%5C+have%5C+adapted%5C+to%5C+tolerating%5C+a%5C+high%5C+level%5C+of%5C+inbreeding%5C+early%5C+in%5C+its%5C+history.%5C+5.%5C+Conservation%5C+genetic%5C+of%5C+T.%5C+pingbianensis%2C%5C+The%5C+levels%5C+and%5C+partitioning%5C+of%5C+genetic%5C+diversity%5C+were%5C+investigated%5C+in%5C+Tupistra%5C+pingbianensis.%5C+Here%5C+genetic%5C+diversity%5C+and%5C+patterns%5C+of%5C+genetic%5C+variation%5C+within%5C+and%5C+among%5C+11%5C+populations%5C+were%5C+analyzed%5C+using%5C+AFLP%5C+markers%5C+with%5C+97%5C+individuals%5C+across%5C+its%5C+whole%5C+geographical%5C+range.%5C+High%5C+levels%5C+of%5C+genetic%5C+variation%5C+were%5C+revealed%5C+both%5C+at%5C+the%5C+species%5C+level%5C+%5C%28P99%5C+%3D%5C+96.012%25%5C%3B%5C+Ht%5C+%3D%5C+0.302%5C%29%5C+and%5C+at%5C+the%5C+population%5C+level%5C+%5C%28P99%5C+%3D%5C+51.41%25%5C%3B%5C+Hs%5C+%3D%5C+0.224%5C%29.%5C+Strong%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+was%5C+also%5C+detected%5C+%5C%28FST%5C+%3D%5C+0.2961%5C%3B%5C+%E2%8D%AC%E2%85%A1%3D%5C+0.281%5C%29%2C%5C+which%5C+corresponded%5C+to%5C+results%5C+reported%5C+for%5C+typical%5C+animal%5C-pollinated%2C%5C+mixed%5C+selfing%5C+and%5C+outcrossing%5C+plant%5C+species.%5C+Special%5C+habitat%5C+and%5C+its%5C+life%5C+history%5C+traits%5C+may%5C+play%5C+an%5C+important%5C+role%5C+in%5C+shaping%5C+the%5C+genetic%5C+diversity%5C+and%5C+the%5C+genetic%5C+structure%5C+of%5C+this%5C+species.%5C+Based%5C+on%5C+the%5C+special%5C+habitat%5C+in%5C+T.%5C+pingbianensis%2C%5C+the%5C+most%5C+suitable%5C+strategy%5C+for%5C+its%5C+conservation%5C+is%5C+the%5C+protection%5C+of%5C+its%5C+habitat.%5C+Moreover%2C%5C+given%5C+the%5C+observed%5C+strong%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+of%5C+T.%5C+pingbianensis%2C%5C+the%5C+preservation%5C+of%5C+genetic%5C+diversity%5C+in%5C+this%5C+species%5C+will%5C+require%5C+the%5C+protection%5C+of%5C+many%5C+populations%5C+as%5C+possible%5C+to%5C+maintain%5C+the%5C+current%5C+levels%5C+of%5C+genetic%5C+variability."},{"jsname":"Until now, little data about the plant reproductive characters and ecological adaptation have been documented in the species-rich Sino-Himalaya region. Anemone rivularis (Ranunculaceae), mainly occurs in this area, and is of particular interest for its unique flower heliotropic movement and sex allocation strategy. In this study, we investigated the reproductive biology and adaptation mechanism of A. rivularis on the Yulong Snow Mountain Lijiang, northwestern Yunnan. The main results were summarized as follows: 1 Reproductive biology, The mating system, flowering phenology, floral morphology and pollination efficiency were examined in Anemone rivularis. This species is a perennial plant with hermaphroditic flowers, and its inflorescence is an acropetal cyme with protogynous flowers. In contrast to some self-incompatible species reported in Anemone, our results proved that A. rivularis was self-compatible. The seed set under natural pollination was more than 70%, indicating that there was no pollen limitation. Meanwhile, the seed set of artificial-cross-pollinated flowers was significantly higher than that of artificial-self-pollinated flowers, suggesting that the mixed mating system of A. rivularis was based on cross-pollination, and the results also supported a favor of outcrossing reproductive strategy for perennial herbs as some previous reports. Clearly, the reproductive strategy of A. rivularis prefer to cross-pollination in the alpine Sino-Himalayan region, in order to improve the reproductive fitness. 2 Flower heliotropism, The flower heliotropic movement mechanism, influences and adaptive significance were investigated in Anemone rivularis. The results indicated that under natural conditions, a treatment of pistils and stamens removal, flowers of A. rivularis retained accurately sun-tracking behavior through daytime, and the petals were found to close in the evening; but flowers would lose heliotropic movement if tepals were removed, with peduncles keeping a vertical orientation. This indicated that the tepals were crucial for heliotropic behavior. The flower heliotropism of A. rivularis was sensitive to blue light frequencies rather than red frequencies, suggesting that the light signal must be received by tepals, which driving the peduncles to bend due to differential cell elongation along the two sides of peduncle. Furthermore, there was a close relationship between diurnal heliotropic movements and temperature of flower interior in A. rivularis. Flowers with tepals could provide a relatively narrow range of temperatures, in comparison with flowers lacking tepals, in order to maintain reproductive organs in functional floral temperature range. Our study demonstrated that both the development of pistils and stamens and the visiting of insects could benefit from flower heliotropism in A. rivularis.3 Sex allocation, Floral traits, male and female functions, reproductive fitness, and sex allocation hypotheses were assessed in intra-inflorescence of Anemone rivularis. Though the inflorescence showed an acropetal flower-opening sequence as well as in many flowering species (early flowers are proximal and late flowers are distal), it engaged different sex allocation strategy. Our observations documented that the late-opening flowers of each inflorescence produce significantly more ovules and fewer pollen grains compared to early-opening flowers, and the pollen:ovule ratio (P:O) declined obviously from primary flower position to tertiary flower position, suggesting that later flowers would tend to favor female-bias investment. The nature-pollinating seed set among flower positions was constant, and there was no resource trade-off between flower size and sexual organs in this species, and the first-removal treatment did not lead to a significant increase in seed set of flowers in the later position. Thus, early-opening flower may not represent a significant competitor for resources with late-opening flowers on the same inflorescence, suggesting that the pattern of floral design and floral display may be determined prior to flowering and is inalterable by resources during flowering. So the female-biased allocation of distal flowers in A. rivularis may be resulted from the the selection by variation in the mating environment.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=flower%2Bvisiting&order=desc&&fq=dc.project.title_filter%3AUntil%5C+now%2C%5C+little%5C+data%5C+about%5C+the%5C+plant%5C+reproductive%5C+characters%5C+and%5C+ecological%5C+adaptation%5C+have%5C+been%5C+documented%5C+in%5C+the%5C+species%5C-rich%5C+Sino%5C-Himalaya%5C+region.%5C+Anemone%5C+rivularis%5C+%5C%28Ranunculaceae%5C%29%2C%5C+mainly%5C+occurs%5C+in%5C+this%5C+area%2C%5C+and%5C+is%5C+of%5C+particular%5C+interest%5C+for%5C+its%5C+unique%5C+flower%5C+heliotropic%5C+movement%5C+and%5C+sex%5C+allocation%5C+strategy.%5C+In%5C+this%5C+study%2C%5C+we%5C+investigated%5C+the%5C+reproductive%5C+biology%5C+and%5C+adaptation%5C+mechanism%5C+of%5C+A.%5C+rivularis%5C+on%5C+the%5C+Yulong%5C+Snow%5C+Mountain%5C+Lijiang%2C%5C+northwestern%5C+Yunnan.%5C+The%5C+main%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1%5C+Reproductive%5C+biology%2C%5C+The%5C+mating%5C+system%2C%5C+flowering%5C+phenology%2C%5C+floral%5C+morphology%5C+and%5C+pollination%5C+efficiency%5C+were%5C+examined%5C+in%5C+Anemone%5C+rivularis.%5C+This%5C+species%5C+is%5C+a%5C+perennial%5C+plant%5C+with%5C+hermaphroditic%5C+flowers%2C%5C+and%5C+its%5C+inflorescence%5C+is%5C+an%5C+acropetal%5C+cyme%5C+with%5C+protogynous%5C+flowers.%5C+In%5C+contrast%5C+to%5C+some%5C+self%5C-incompatible%5C+species%5C+reported%5C+in%5C+Anemone%2C%5C+our%5C+results%5C+proved%5C+that%5C+A.%5C+rivularis%5C+was%5C+self%5C-compatible.%5C+The%5C+seed%5C+set%5C+under%5C+natural%5C+pollination%5C+was%5C+more%5C+than%5C+70%25%2C%5C+indicating%5C+that%5C+there%5C+was%5C+no%5C+pollen%5C+limitation.%5C+Meanwhile%2C%5C+the%5C+seed%5C+set%5C+of%5C+artificial%5C-cross%5C-pollinated%5C+flowers%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+of%5C+artificial%5C-self%5C-pollinated%5C+flowers%2C%5C+suggesting%5C+that%5C+the%5C+mixed%5C+mating%5C+system%5C+of%5C+A.%5C+rivularis%5C+was%5C+based%5C+on%5C+cross%5C-pollination%2C%5C+and%5C+the%5C+results%5C+also%5C+supported%5C+a%5C+favor%5C+of%5C+outcrossing%5C+reproductive%5C+strategy%5C+for%5C+perennial%5C+herbs%5C+as%5C+some%5C+previous%5C+reports.%5C+Clearly%2C%5C+the%5C+reproductive%5C+strategy%5C+of%5C+A.%5C+rivularis%5C+prefer%5C+to%5C+cross%5C-pollination%5C+in%5C+the%5C+alpine%5C+Sino%5C-Himalayan%5C+region%2C%5C+in%5C+order%5C+to%5C+improve%5C+the%5C+reproductive%5C+fitness.%5C+2%5C+Flower%5C+heliotropism%2C%5C+The%5C+flower%5C+heliotropic%5C+movement%5C+mechanism%2C%5C+influences%5C+and%5C+adaptive%5C+significance%5C+were%5C+investigated%5C+in%5C+Anemone%5C+rivularis.%5C+The%5C+results%5C+indicated%5C+that%5C+under%5C+natural%5C+conditions%2C%5C+a%5C+treatment%5C+of%5C+pistils%5C+and%5C+stamens%5C+removal%2C%5C+flowers%5C+of%5C+A.%5C+rivularis%5C+retained%5C+accurately%5C+sun%5C-tracking%5C+behavior%5C+through%5C+daytime%2C%5C+and%5C+the%5C+petals%5C+were%5C+found%5C+to%5C+close%5C+in%5C+the%5C+evening%5C%3B%5C+but%5C+flowers%5C+would%5C+lose%5C+heliotropic%5C+movement%5C+if%5C+tepals%5C+were%5C+removed%2C%5C+with%5C+peduncles%5C+keeping%5C+a%5C+vertical%5C+orientation.%5C+This%5C+indicated%5C+that%5C+the%5C+tepals%5C+were%5C+crucial%5C+for%5C+heliotropic%5C+behavior.%5C+The%5C+flower%5C+heliotropism%5C+of%5C+A.%5C+rivularis%5C+was%5C+sensitive%5C+to%5C+blue%5C+light%5C+frequencies%5C+rather%5C+than%5C+red%5C+frequencies%2C%5C+suggesting%5C+that%5C+the%5C+light%5C+signal%5C+must%5C+be%5C+received%5C+by%5C+tepals%2C%5C+which%5C+driving%5C+the%5C+peduncles%5C+to%5C+bend%5C+due%5C+to%5C+differential%5C+cell%5C+elongation%5C+along%5C+the%5C+two%5C+sides%5C+of%5C+peduncle.%5C+Furthermore%2C%5C+there%5C+was%5C+a%5C+close%5C+relationship%5C+between%5C+diurnal%5C+heliotropic%5C+movements%5C+and%5C+temperature%5C+of%5C+flower%5C+interior%5C+in%5C+A.%5C+rivularis.%5C+Flowers%5C+with%5C+tepals%5C+could%5C+provide%5C+a%5C+relatively%5C+narrow%5C+range%5C+of%5C+temperatures%2C%5C+in%5C+comparison%5C+with%5C+flowers%5C+lacking%5C+tepals%2C%5C+in%5C+order%5C+to%5C+maintain%5C+reproductive%5C+organs%5C+in%5C+functional%5C+floral%5C+temperature%5C+range.%5C+Our%5C+study%5C+demonstrated%5C+that%5C+both%5C+the%5C+development%5C+of%5C+pistils%5C+and%5C+stamens%5C+and%5C+the%5C+visiting%5C+of%5C+insects%5C+could%5C+benefit%5C+from%5C+flower%5C+heliotropism%5C+in%5C+A.%5C+rivularis.3%5C+Sex%5C+allocation%2C%5C+Floral%5C+traits%2C%5C+male%5C+and%5C+female%5C+functions%2C%5C+reproductive%5C+fitness%2C%5C+and%5C+sex%5C+allocation%5C+hypotheses%5C+were%5C+assessed%5C+in%5C+intra%5C-inflorescence%5C+of%5C+Anemone%5C+rivularis.%5C+Though%5C+the%5C+inflorescence%5C+showed%5C+an%5C+acropetal%5C+flower%5C-opening%5C+sequence%5C+as%5C+well%5C+as%5C+in%5C+many%5C+flowering%5C+species%5C+%5C%28early%5C+flowers%5C+are%5C+proximal%5C+and%5C+late%5C+flowers%5C+are%5C+distal%5C%29%2C%5C+it%5C+engaged%5C+different%5C+sex%5C+allocation%5C+strategy.%5C+Our%5C+observations%5C+documented%5C+that%5C+the%5C+late%5C-opening%5C+flowers%5C+of%5C+each%5C+inflorescence%5C+produce%5C+significantly%5C+more%5C+ovules%5C+and%5C+fewer%5C+pollen%5C+grains%5C+compared%5C+to%5C+early%5C-opening%5C+flowers%2C%5C+and%5C+the%5C+pollen%5C%3Aovule%5C+ratio%5C+%5C%28P%5C%3AO%5C%29%5C+declined%5C+obviously%5C+from%5C+primary%5C+flower%5C+position%5C+to%5C+tertiary%5C+flower%5C+position%2C%5C+suggesting%5C+that%5C+later%5C+flowers%5C+would%5C+tend%5C+to%5C+favor%5C+female%5C-bias%5C+investment.%5C+The%5C+nature%5C-pollinating%5C+seed%5C+set%5C+among%5C+flower%5C+positions%5C+was%5C+constant%2C%5C+and%5C+there%5C+was%5C+no%5C+resource%5C+trade%5C-off%5C+between%5C+flower%5C+size%5C+and%5C+sexual%5C+organs%5C+in%5C+this%5C+species%2C%5C+and%5C+the%5C+first%5C-removal%5C+treatment%5C+did%5C+not%5C+lead%5C+to%5C+a%5C+significant%5C+increase%5C+in%5C+seed%5C+set%5C+of%5C+flowers%5C+in%5C+the%5C+later%5C+position.%5C+Thus%2C%5C+early%5C-opening%5C+flower%5C+may%5C+not%5C+represent%5C+a%5C+significant%5C+competitor%5C+for%5C+resources%5C+with%5C+late%5C-opening%5C+flowers%5C+on%5C+the%5C+same%5C+inflorescence%2C%5C+suggesting%5C+that%5C+the%5C+pattern%5C+of%5C+floral%5C+design%5C+and%5C+floral%5C+display%5C+may%5C+be%5C+determined%5C+prior%5C+to%5C+flowering%5C+and%5C+is%5C+inalterable%5C+by%5C+resources%5C+during%5C+flowering.%5C+So%5C+the%5C+female%5C-biased%5C+allocation%5C+of%5C+distal%5C+flowers%5C+in%5C+A.%5C+rivularis%5C+may%5C+be%5C+resulted%5C+from%5C+the%5C+the%5C+selection%5C+by%5C+variation%5C+in%5C+the%5C+mating%5C+environment."},{"jsname":"lastIndexed","jscount":"2024-10-11"}],"Funding Project","dc.project.title_filter")'>
Basic Expe... [1]
CAS Presid... [1]
Chinese Ac... [1]
Chinese Ac... [1]
Craigia yu... [1]
Major Prog... [1]
More...
Indexed By
SCI [105]
CSCD [9]
AHCI [1]
Funding Organization
Chinese Ac... [4]
CAS/SAFEA ... [3]
National N... [3]
31370362) [2]
31460015 [2]
CGIAR Rese... [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 264
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
The formation and function of plant volatiles: perfumes for pollinator attraction and defense
期刊论文
Physiology and metabolism, 3111, 期号: 0, 页码: 237-243
Authors:
Eran Pichersky
;
Jonathan Gershenzon
Adobe PDF(103Kb)
  |  
Favorite
  |  
View/Download:146/1
  |  
Submit date:2017/07/26
Use of Substitute Species in Conservation Biology
期刊论文
Conservation Biology, 3111, 期号: 0, 页码: 1821-1826
Authors:
TIM CARO
;
JOHN EADIE
;
ANDREW SIH
Adobe PDF(172Kb)
  |  
Favorite
  |  
View/Download:227/1
  |  
Submit date:2017/07/24
云南梧桐(Firmiana major)的变色花传粉功能特征及遗传结构研究
学位论文
: 中国科学院大学, 2022
Authors:
马雨倩
Adobe PDF(5297Kb)
  |  
Favorite
  |  
View/Download:32/0
  |  
Submit date:2024/05/14
云南梧桐,极小种群野生植物,遗传结构,花色变化,传粉特征
Firmiana major
Plant Species with Extremely Small Populations
Genetic structure
Floral color change
Pollination characteristics
保护生物学的技术方法在极度濒危植物紫花杜鹃中的应用
学位论文
: 中国科学院大学, 2022
Authors:
敖艺山
Adobe PDF(2193Kb)
  |  
Favorite
  |  
View/Download:39/0
  |  
Submit date:2024/05/14
ddRAD-seq、遗传多样性、群体遗传学、保护策略
ddRAD-seq、Genetic Diversity、Population genetics、Conservation Strategy
Appressorial interactions with host and their evolution
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 110, 期号: 1, 页码: 75-107
Authors:
Chethana,K. W. Thilini
;
Jayawardena,Ruvishika S.
;
Chen,Yi-Jyun
;
Konta,Sirinapa
;
Tibpromma,Saowaluck
;
Phukhamsakda,Chayanard
;
Abeywickrama,Pranami D.
;
Samarakoon,Milan C.
;
Senwanna,Chanokned
;
Mapook,Ausana
;
Tang,Xia
;
Gomdola,Deecksha
;
Marasinghe,Diana S.
;
Padaruth,Oundhyalah D.
;
Balasuriya,Abhaya
;
Xu,Jianping
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
View
  |  
Adobe PDF(8605Kb)
  |  
Favorite
  |  
View/Download:137/31
  |  
Submit date:2022/04/02
Ancestral characters
Evolution
Host-recognition
Hyaline appressoria
Infection process
Melanized appressoria
Proto-appressoria
ACTIVATED PROTEIN-KINASE
UROMYCES-VICIAE-FABAE
INFECTION STRUCTURE FORMATION
SCANNING-ELECTRON-MICROSCOPY
BEAUVERIA-BASSIANA INFECTION
BOTRYTIS-CINEREA VIRULENCE
BIOLOGICAL-CONTROL AGENTS
WALL-DEGRADING ENZYMES
GREY MOLD FUNGUS
ENTOMOPATHOGENIC FUNGUS
Diversity of Flower Visiting Beetles at Higher Elevations on the Yulong Snow Mountain (Yunnan, China)
期刊论文
DIVERSITY-BASEL, 2021, 卷号: 13, 期号: 11, 页码: 604
Authors:
Li,Kai-Qin
;
Ren,Zong-Xin
;
Li,Qiang
View
  |  
Adobe PDF(2409Kb)
  |  
Favorite
  |  
View/Download:162/55
  |  
Submit date:2022/04/02
alpine
diversity
Hengduan Mountain
modularity
plant-insect interaction
FLORAL BIOLOGY
RAIN-FOREST
POLLINATION
COLEOPTERA
COMMUNITY
SPECIALIZATION
NETWORKS
SARAWAK
ANDES
The pollination of Habenaria rhodocheila (Orchidaceae) in South China: When butterflies take sides
期刊论文
ECOLOGY AND EVOLUTION, 2021, 卷号: 11, 期号: 6, 页码: 2849-2861
Authors:
Chen,Xing-Hui
;
Tan,Shao-Lin
;
Liang,Yue-Long
;
Huang,Lang
;
Xiao,Han-Wen
;
Luo,Huo-Lin
;
Xiong,Dong-Jin
;
Yang,Bo-Yun
;
Ren,Zong-Xin
View
  |  
Adobe PDF(1981Kb)
  |  
Favorite
  |  
View/Download:140/56
  |  
Submit date:2022/04/02
breeding system
butterflies
Habenaria
pollination efficiency
reproductive success
Flower Color Evolution and the Evidence of Pollinator-Mediated Selection
期刊论文
FRONTIERS IN PLANT SCIENCE, 2021, 卷号: 12, 页码: 617851
Authors:
Trunschke,Judith
;
Lunau,Klaus
;
Pyke,Graham H.
;
Ren,Zong-Xin
;
Wang,Hong
View
  |  
Adobe PDF(9195Kb)
  |  
Favorite
  |  
View/Download:155/33
  |  
Submit date:2022/04/02
color perception
color preference
flower color variation
pollinator attraction
pollinator behavior
pollinator-mediated selection
ANTHOCYANIN-FLAVONE COPIGMENTATION
BUMBLEBEES BOMBUS-TERRESTRIS
NATURAL-SELECTION
PHENOTYPIC SELECTION
INSECT POLLINATORS
TRAIT COMBINATIONS
RECEPTOR NOISE
FLORAL TRAITS
VISION
BEES
Bimodal activity of diurnal flower visitation at high elevation
期刊论文
ECOLOGY AND EVOLUTION, 2021, 卷号: 11, 期号: 19, 页码: 13487-13500
Authors:
Xu,Xin
;
Ren,Zong-Xin
;
Trunschke,Judith
;
Kuppler,Jonas
;
Zhao,Yan-Hui
;
Knop,Eva
;
Wang,Hong
View
  |  
Adobe PDF(903Kb)
  |  
Favorite
  |  
View/Download:152/49
  |  
Submit date:2022/04/02
Bombus
diurnal activity patterns
flower visitors
high elevation
solar radiation
FALSE DISCOVERY RATE
ACTIVITY PATTERNS
SPATIOTEMPORAL VARIATION
POLLINATOR ACTIVITY
HYMENOPTERA APIDAE
SOLAR-RADIATION
BUMBLE BEES
COMMUNITY
ABUNDANCE
CLOCK
The impact of a native dominant plant, Euphorbia jolkinii, on plant-flower visitor networks and pollen deposition on stigmas of co-flowering species in subalpine meadows of Shangri-La, SW China
期刊论文
JOURNAL OF ECOLOGY, 2021, 卷号: 109, 期号: 5, 页码: 2107-2120
Authors:
Zhao,Yan-Hui
;
Memmott,Jane
;
Vaughan,Ian P.
;
Li,Hai-Dong
;
Ren,Zong-Xin
;
Lazaro,Amparo
;
Zhou,Wei
;
Xu,Xin
;
Wang,Wei-Jia
;
Liang,Huan
;
Li,De-Zhu
;
Wang,Hong
View
  |  
Adobe PDF(1378Kb)
  |  
Favorite
  |  
View/Download:148/23
  |  
Submit date:2022/04/02
Euphorbia
interaction evenness
livestock grazing
mutualistic networks
newly dominant native plants
pollen deposition