×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [160]
昆明植物所硕博研... [144]
共享文献 [97]
资源植物与生物技术... [37]
中国西南野生生物种... [21]
离退休 [5]
More...
Authors
李德铢 [40]
Sun Hang [37]
许建初 [22]
杨祝良 [16]
王红 [15]
邓涛 [14]
More...
Document Type
Journal ... [391]
Thesis [144]
Book [12]
Academic p... [1]
Conference... [1]
Date Issued
2021 [15]
2020 [60]
2019 [46]
2018 [42]
2017 [40]
2016 [41]
More...
Language
英语 [281]
中文 [116]
Source Publication
FUNGAL DI... [31]
JOURNAL O... [24]
MOLECULAR... [23]
TAXON [14]
MYCOSPHER... [13]
SCIENTIFI... [10]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=NEOTROPICAL%2BGENUS&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=NEOTROPICAL%2BGENUS&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"Guizhou Natural Science Foundation[Qiankehe LH (2016) 7206]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=NEOTROPICAL%2BGENUS&order=desc&&fq=dc.project.title_filter%3AGuizhou%5C+Natural%5C+Science%5C+Foundation%5C%5BQiankehe%5C+LH%5C+%5C%282016%5C%29%5C+7206%5C%5D"},{"jsname":"In the present study, we focused on “Pterygiella complex”, included Pterygiella Oliver, Xizangia D.Y. Hong, Phtheirospermum Bunge ex Fischer & C.A. Meyer, and Pseudobartsia D.Y. Hong, which is endemic to Eastern Asia. Based on chloroplast and nuclear sequences, we explored their phylogeny relationships within Orobanchaceae, the species relations within Pterygiella, and fruit and seed morphology of traditional tribe Rhinantheae. The phylogeny of “Pterygiella complex” was reconstructed based on nuclear and chloroplast sequences within the family Orobanchaceae. The genera relationship within the complex was reconstructed based on chloroplast sequences of atpB-rbcL, atpH-I, psbA-trnH, rpl16, trnL-F and trnS-G. The results showed that “Pterygiella complex” was not a natural group and could be divided into two different clades. Clade I included most taxa, e.g. Pterygiella, Xizangia, Pseudobartsia, Phtheirospermum (exclude P. japonicum). The species of this clade were endemic to East-Himalaya and Hengduan Mountains region. Clade II included Phtheirospermum japonicum (Thunberg) Kanitz, which was a heterogeneous member in genus Phtheirospermum and should be treated as a new monotypic genus. The results supported that Pterygiella bartschioides Hand.-Mazz. and Phtheirospermum glandulosum Benth. should be elevated to genus level as Xizangia and Pseudobartsia, respectively.Furthermore, we focused on the genus Pterygiella to explore the species’ circumscription by molecular phylogeny, DNA barcodes and morphological studies. The results suggested that Pterygiella should divide into three clades. P. duclouxii was divided into clade I and clade II, and P. nigrescens was included the clade I of these P. duclouxii taxa, with which it shares eglandular hairs on the stem. Clade III included P. suffruticosa and P. cylindrica, while the level of inter- and intra-species variation in two species did not support their distinction. Therefore, P. suffruticosa should move into or considered as a variety of P. cylindrica. The form of stem, leaf veins and the indumentum of stems are key traits for circumscribing the species within the genus. By comparing the effectiveness with core DNA barcodes, ITS-2 can be used as suitable DNA barcode in the genus Pterygiella.Fruit and seed characteristics of 49 species in 21 genera of the tribe Rhinantheae and 9 species in 9 genera of Orobachaceae were examined. 25 characters were selected and analyzed by principal component analysis for discovering the systematic significances. The results suggested four main types and six subtypes were distinguished based on gross seed coat appearance, inner tangential wall and thickenings of radial wall. Fruit and seed data reflect the close relationships within “Pterygiella complex”. While, Xizangia was distinctly different from Pterygiella. Phtheirospermum tenuisectum was more similar to the member of section minutisepala within the genus Phtheiroseprmum. Phtheirospermum japonicum was heterogeneous within the genus Phtheirospermum. On the whole, fruit and seed data supported Xizangia and Pseudobartsia as a genus rank and Phtheirospermum japonicum was a heterogeneous member in Phtheirospermum","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=NEOTROPICAL%2BGENUS&order=desc&&fq=dc.project.title_filter%3AIn%5C+the%5C+present%5C+study%2C%5C+we%5C+focused%5C+on%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%2C%5C+included%5C+Pterygiella%5C+Oliver%2C%5C+Xizangia%5C+D.Y.%5C+Hong%2C%5C+Phtheirospermum%5C+Bunge%5C+ex%5C+Fischer%5C+%5C%26%5C+C.A.%5C+Meyer%2C%5C+and%5C+Pseudobartsia%5C+D.Y.%5C+Hong%2C%5C+which%5C+is%5C+endemic%5C+to%5C+Eastern%5C+Asia.%5C+Based%5C+on%5C+chloroplast%5C+and%5C+nuclear%5C+sequences%2C%5C+we%5C+explored%5C+their%5C+phylogeny%5C+relationships%5C+within%5C+Orobanchaceae%2C%5C+the%5C+species%5C+relations%5C+within%5C+Pterygiella%2C%5C+and%5C+fruit%5C+and%5C+seed%5C+morphology%5C+of%5C+traditional%5C+tribe%5C+Rhinantheae.%5C+The%5C+phylogeny%5C+of%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%5C+was%5C+reconstructed%5C+based%5C+on%5C+nuclear%5C+and%5C+chloroplast%5C+sequences%5C+within%5C+the%5C+family%5C+Orobanchaceae.%5C+The%5C+genera%5C+relationship%5C+within%5C+the%5C+complex%5C+was%5C+reconstructed%5C+based%5C+on%5C+chloroplast%5C+sequences%5C+of%5C+atpB%5C-rbcL%2C%5C+atpH%5C-I%2C%5C+psbA%5C-trnH%2C%5C+rpl16%2C%5C+trnL%5C-F%5C+and%5C+trnS%5C-G.%5C+The%5C+results%5C+showed%5C+that%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%5C+was%5C+not%5C+a%5C+natural%5C+group%5C+and%5C+could%5C+be%5C+divided%5C+into%5C+two%5C+different%5C+clades.%5C+Clade%5C+I%5C+included%5C+most%5C+taxa%2C%5C+e.g.%5C+Pterygiella%2C%5C+Xizangia%2C%5C+Pseudobartsia%2C%5C+Phtheirospermum%5C+%5C%28exclude%5C+P.%5C+japonicum%5C%29.%5C+The%5C+species%5C+of%5C+this%5C+clade%5C+were%5C+endemic%5C+to%5C+East%5C-Himalaya%5C+and%5C+Hengduan%5C+Mountains%5C+region.%5C+Clade%5C+II%5C+included%5C+Phtheirospermum%5C+japonicum%5C+%5C%28Thunberg%5C%29%5C+Kanitz%2C%5C+which%5C+was%5C+a%5C+heterogeneous%5C+member%5C+in%5C+genus%5C+Phtheirospermum%5C+and%5C+should%5C+be%5C+treated%5C+as%5C+a%5C+new%5C+monotypic%5C+genus.%5C+The%5C+results%5C+supported%5C+that%5C+Pterygiella%5C+bartschioides%5C+Hand.%5C-Mazz.%5C+and%5C+Phtheirospermum%5C+glandulosum%5C+Benth.%5C+should%5C+be%5C+elevated%5C+to%5C+genus%5C+level%5C+as%5C+Xizangia%5C+and%5C+Pseudobartsia%2C%5C+respectively.Furthermore%2C%5C+we%5C+focused%5C+on%5C+the%5C+genus%5C+Pterygiella%5C+to%5C+explore%5C+the%5C+species%E2%80%99%5C+circumscription%5C+by%5C+molecular%5C+phylogeny%2C%5C+DNA%5C+barcodes%5C+and%5C+morphological%5C+studies.%5C+The%5C+results%5C+suggested%5C+that%5C+Pterygiella%5C+should%5C+divide%5C+into%5C+three%5C+clades.%5C+P.%5C+duclouxii%5C+was%5C+divided%5C+into%5C+clade%5C+I%5C+and%5C+clade%5C+II%2C%5C+and%5C+P.%5C+nigrescens%5C+was%5C+included%5C+the%5C+clade%5C+I%5C+of%5C+these%5C+P.%5C+duclouxii%5C+taxa%2C%5C+with%5C+which%5C+it%5C+shares%5C+eglandular%5C+hairs%5C+on%5C+the%5C+stem.%5C+Clade%5C+III%5C+included%5C+P.%5C+suffruticosa%5C+and%5C+P.%5C+cylindrica%2C%5C+while%5C+the%5C+level%5C+of%5C+inter%5C-%5C+and%5C+intra%5C-species%5C+variation%5C+in%5C+two%5C+species%5C+did%5C+not%5C+support%5C+their%5C+distinction.%5C+Therefore%2C%5C+P.%5C+suffruticosa%5C+should%5C+move%5C+into%5C+or%5C+considered%5C+as%5C+a%5C+variety%5C+of%5C+P.%5C+cylindrica.%5C+The%5C+form%5C+of%5C+stem%2C%5C+leaf%5C+veins%5C+and%5C+the%5C+indumentum%5C+of%5C+stems%5C+are%5C+key%5C+traits%5C+for%5C+circumscribing%5C+the%5C+species%5C+within%5C+the%5C+genus.%5C+By%5C+comparing%5C+the%5C+effectiveness%5C+with%5C+core%5C+DNA%5C+barcodes%2C%5C+ITS%5C-2%5C+can%5C+be%5C+used%5C+as%5C+suitable%5C+DNA%5C+barcode%5C+in%5C+the%5C+genus%5C+Pterygiella.Fruit%5C+and%5C+seed%5C+characteristics%5C+of%5C+49%5C+species%5C+in%5C+21%5C+genera%5C+of%5C+the%5C+tribe%5C+Rhinantheae%5C+and%5C+9%5C+species%5C+in%5C+9%5C+genera%5C+of%5C+Orobachaceae%5C+were%5C+examined.%5C+25%5C+characters%5C+were%5C+selected%5C+and%5C+analyzed%5C+by%5C+principal%5C+component%5C+analysis%5C+for%5C+discovering%5C+the%5C+systematic%5C+significances.%5C+The%5C+results%5C+suggested%5C+four%5C+main%5C+types%5C+and%5C+six%5C+subtypes%5C+were%5C+distinguished%5C+based%5C+on%5C+gross%5C+seed%5C+coat%5C+appearance%2C%5C+inner%5C+tangential%5C+wall%5C+and%5C+thickenings%5C+of%5C+radial%5C+wall.%5C+Fruit%5C+and%5C+seed%5C+data%5C+reflect%5C+the%5C+close%5C+relationships%5C+within%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D.%5C+While%2C%5C+Xizangia%5C+was%5C+distinctly%5C+different%5C+from%5C+Pterygiella.%5C+Phtheirospermum%5C+tenuisectum%5C+was%5C+more%5C+similar%5C+to%5C+the%5C+member%5C+of%5C+section%5C+minutisepala%5C+within%5C+the%5C+genus%5C+Phtheiroseprmum.%5C+Phtheirospermum%5C+japonicum%5C+was%5C+heterogeneous%5C+within%5C+the%5C+genus%5C+Phtheirospermum.%5C+On%5C+the%5C+whole%2C%5C+fruit%5C+and%5C+seed%5C+data%5C+supported%5C+Xizangia%5C+and%5C+Pseudobartsia%5C+as%5C+a%5C+genus%5C+rank%5C+and%5C+Phtheirospermum%5C+japonicum%5C+was%5C+a%5C+heterogeneous%5C+member%5C+in%5C+Phtheirospermum"},{"jsname":"Japan Society for the Promotion of Science[1264402271]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=NEOTROPICAL%2BGENUS&order=desc&&fq=dc.project.title_filter%3AJapan%5C+Society%5C+for%5C+the%5C+Promotion%5C+of%5C+Science%5C%5B1264402271%5C%5D"},{"jsname":"lastIndexed","jscount":"2024-12-02"}],"Funding Project","dc.project.title_filter")'>
China Scho... [2]
National K... [2]
Science Re... [2]
Science an... [2]
973 key pr... [1]
Aconitum c... [1]
More...
Indexed By
SCI [238]
CSCD [5]
ISTP [1]
SSCI [1]
Funding Organization
National N... [9]
CAS/SAFEA ... [7]
Chinese Ac... [5]
John D. an... [5]
Chinese Ac... [4]
Hundred Ta... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 549
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:207/1
  |  
Submit date:2017/07/19
A global phylogeny of grammitid ferns (Polypodiaceae) and its systematic implications
期刊论文
TAXON, 2023, 卷号: 72, 期号: 5, 页码: 974-1018
Authors:
Zhou,Xin-Mao
;
Yang,Jian-Jun
;
Liang,Zhen-Long
;
Pollawatn,Rossarin
;
Knapp,Ralf
;
Parris,Barbara
;
Sundue,Michael
;
Ranker,Tom A.
;
Zhou,Lin
;
Lu,Ngan Thi
;
Luong,Thien Tam
;
Wan,Xia
;
He,Zhao-Rong
;
Zhao,Jing
;
Zhang,Liang
;
Zhang,Li-Bing
View
  |  
Adobe PDF(6158Kb)
  |  
Favorite
  |  
View/Download:66/14
  |  
Submit date:2024/07/10
Archigrammitis
Asia-Pacific clade
Ctenopterella
Grammitis
Oreogrammitis
Prosaptia
LEUCOTRICHUM POLYPODIACEAE
NEOTROPICAL GENUS
DNA-SEQUENCES
EVOLUTION
GENERA
BIOGEOGRAPHY
LELLINGERIA
COMMUNITY
RECIRCUMSCRIPTION
DRYOPTERIDACEAE
A global phylogeny of Lycopodiaceae (Lycopodiales; lycophytes) with the description of a new genus, Brownseya, from Oceania
期刊论文
TAXON, 2022, 卷号: 71, 期号: 1, 页码: 25-51
Authors:
Chen,De-Kui
;
Zhou,Xin-Mao
;
Rothfels,Carl J.
;
Shepherd,Lara D.
;
Knapp,Ralf
;
Zhang,Liang
;
Lu,Ngan Thi
;
Fan,Xue-Ping
;
Wan,Xia
;
Gao,Xin-Fen
;
He,Hai
;
Zhang,Li-Bing
View
  |  
Adobe PDF(8520Kb)
  |  
Favorite
  |  
View/Download:306/11
  |  
Submit date:2022/04/02
Huperzia
Lycophyte Phylogeny
Lycopodiella Serpentina
Phlegmariurus
Phylloglossum
Vascular Plant Evolution
Complete Chloroplast Genome
Lycopodiopsida Lycopodiaceae
Generic Classification
Spore Morphology
Early Evolution
Land Plants
Rbcl Gene
Huperzia
Sequence
Likelihood
A new species of Volvariella and the first record of Volvariella pulla (Agaricales: incertae sedis) from Thailand
期刊论文
PHYTOTAXA, 2021, 卷号: 480, 期号: 3, 页码: 237-250
Authors:
Niego,Allen Grace T.
;
Sysouphanthong,Phongeun
;
Thongklang,Naritsada
;
Hyde,Kevin D.
;
Phonemany,Monthien
;
Phookamsak,Rungtiwa
;
Raspe,Olivier
View
  |  
Adobe PDF(3392Kb)
  |  
Favorite
  |  
View/Download:152/42
  |  
Submit date:2022/04/02
1 new species
ITS
LSU
new record
phylogeny
taxonomy
BASIDIOMYCOTA
CANTHAROCYBE
PLUTEACEAE
PHYLOGENY
ALIGNMENT
GENUS
TOOL
Three Novel Entomopathogenic Fungi From China and Thailand
期刊论文
FRONTIERS IN MICROBIOLOGY, 2021, 卷号: 11, 页码: 608991
Authors:
Wei,De-Ping
;
Wanasinghe,Dhanushka N.
;
Xu,Jian-Chu
;
To-anun,Chaiwat
;
Mortimer,Peter E.
;
Hyde,Kevin D.
;
Elgorban,Abdallah M.
;
Madawala,Sumedha
;
Suwannarach,Nakarin
;
Karunarathna,Samantha C.
;
Tibpromma,Saowaluck
;
Lumyong,Saisamorn
View
  |  
Adobe PDF(9889Kb)
  |  
Favorite
  |  
View/Download:270/61
  |  
Submit date:2022/04/02
Insect fungi
Ophiocordycipitaceae
Paraisaria alba
Paraisaria arcta
Paraisaria rosea
taxonomy
Yunnan Province
MULTIPLE SEQUENCE ALIGNMENT
MULTIGENE PHYLOGENY
CORDYCEPS
OPHIOCORDYCIPITACEAE
DIVERSITY
COMBINATIONS
ASCOMYCOTA
PARAISARIA
MORPHOLOGY
ANAMORPH
Diversity of Flower Visiting Beetles at Higher Elevations on the Yulong Snow Mountain (Yunnan, China)
期刊论文
DIVERSITY-BASEL, 2021, 卷号: 13, 期号: 11, 页码: 604
Authors:
Li,Kai-Qin
;
Ren,Zong-Xin
;
Li,Qiang
View
  |  
Adobe PDF(2409Kb)
  |  
Favorite
  |  
View/Download:178/57
  |  
Submit date:2022/04/02
alpine
diversity
Hengduan Mountain
modularity
plant-insect interaction
FLORAL BIOLOGY
RAIN-FOREST
POLLINATION
COLEOPTERA
COMMUNITY
SPECIALIZATION
NETWORKS
SARAWAK
ANDES
Three new species of Smithiomyces from tropical Asia support an amphi-Pacific disjunct distribution in the genus
期刊论文
MYCOLOGIA, 2021, 卷号: 113, 期号: 5, 页码: 1009-1021
Authors:
Ge,Zai-Wei
;
Xu,Tianxiu
;
Qu,Hua
;
Ma,Yunrui
View
  |  
Adobe PDF(6821Kb)
  |  
Favorite
  |  
View/Download:153/45
  |  
Submit date:2022/04/02
Agaricaceae
Agaricales
biogeography
systematics
taxonomy
3 new taxa
PHYLOGENETIC INFERENCE
AGARICACEAE
SEQUENCES
Do dispersers shape diaspore mass in vespicochory?
期刊论文
ECOLOGY, 2021, 卷号: 102, 期号: 6, 页码: e03302
Authors:
Li,Ying
;
Wang,Bo
;
Chomicki,Guillaume
;
Chen,Gao
View
  |  
Adobe PDF(2146Kb)
  |  
Favorite
  |  
View/Download:180/11
  |  
Submit date:2022/04/02
diaspore
disperser
seed dispersal
Stemona
vespicochory
wasp
Validation and morphology of Begonia fagopyrofolia in B. sect. Stolonifera (lieguitiaceae) in China
期刊论文
PHYTOTAXA, 2021, 卷号: 479, 期号: 1, 页码: 105-113
Authors:
Chen,Wen-hong
;
Wu,Jian-yong
;
Radbouchoom,Sirilak
;
Shui,Yu-min
View
  |  
Adobe PDF(3616Kb)
  |  
Favorite
  |  
View/Download:124/38
  |  
Submit date:2022/04/02
Begonia fagopyrofolia
Begonia sect. Stolonifera
China
leaf epidermis
nomenclature
pollen grains
seeds
SEED MICROMORPHOLOGY
The natural hybridization between species Ligularia nelumbifolia and Cremanthodium stenoglossum (Senecioneae, Asteraceae) suggests underdeveloped reproductive isolation and ambiguous intergeneric boundary
期刊论文
AOB PLANTS, 2021, 卷号: 13, 期号: 2, 页码: plab012
Authors:
Hu,Li
;
Yang,Rui
;
Wang,Yue-Hua
;
Gong,Xun
View
  |  
Adobe PDF(1018Kb)
  |  
Favorite
  |  
View/Download:145/24
  |  
Submit date:2022/04/02
Cremanthodium
ddRAD-seq
F(1)s
Ligularia
natural hybridization
HYBRID SPECIATION
YUNNAN
INTROGRESSION
DISPLACEMENT
RADIATION
VELLEREA
PATTERNS
PROGRAM
STACKS