×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [99]
中国科学院东亚植物... [92]
昆明植物所硕博研究... [50]
资源植物与生物技术... [36]
中国西南野生生物种... [14]
植物化学与西部植物... [12]
More...
Authors
Sun Hang [38]
龚洵 [27]
李德铢 [20]
Gao Lian-... [13]
周浙昆 [11]
许建初 [11]
More...
Document Type
Journal ... [263]
Thesis [50]
Book [37]
Academic p... [1]
Conference... [1]
Date Issued
2021 [16]
2020 [22]
2019 [24]
2018 [19]
2017 [25]
2016 [22]
More...
Language
英语 [211]
中文 [47]
Source Publication
JOURNAL O... [17]
FRONTIERS... [10]
JOURNAL O... [10]
MOLECULAR... [10]
SCIENTIFI... [10]
PLOS ONE [9]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"National Natural Science Foundation of China[31210103911]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31210103911%5C%5D"},{"jsname":"National Natural Science Foundation of China[31570381]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31570381%5C%5D"},{"jsname":"National Natural Science Foundation of China[31600301]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31600301%5C%5D"},{"jsname":"National Natural Science Foundation of China[31770410]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31770410%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B592010200112%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[60201000201]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B60201000201%5C%5D"},{"jsname":"National Science Foundation of China (NSFC)[31750110478]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ANational%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B31750110478%5C%5D"},{"jsname":"Sophora davidii (Franch.) Skeels is an endemic species to China, and widely distributed in the dry valleys of the Himalayan-Hengduan Mountain Systems, the Yungui Plateau, the Qinling Mountain, the Loess Plateau and other places of China. Previous studies of plant phylogeography have focused mainly on some taxa from the mountainous areas of China, relatively few studies have been conducted on plant taxa from the river valleys. The population dynamics and evolutionary history of species in such habitat remain less unknown, including the factors affecting the population genetic structure and its potential refugia in glaciation. In this study, we first determine the chromosome number, ploidy and karyotype of most populations we sampled. Then, based on sequence data from two maternally inherited cpDNA and one biparentally inherited nuclear DNA fragments, our study revealed the genetic diversity and population genetic structure of S. davidii and factors affecting them. The demographic history and potential refugia of this speices were investigated and the genetic relationship among three varieties was also clarified. The main results are summarized as follows:1. Cytogeography,The chromosome number and karyotypes of 14 S. davidii populations have been studied. The results showed that the choromosome number of all the populations is 2n = 18. The interphase nuclei and prophase chromosomes of the species were found to be of the complex chromosome type and interstitial type. The results of karyotype analysis showed that 7 of 14 materials has satellites, and the number and position of satellites differ among populations, and thus revealed a series of diversified karyotypes. With most populations being of ploidy, cytogenetical divergence within the species lied mainly in chromosome size and structure. The fact that polyploidization did not occur very often for variations in Southwest China was against viewpoint that polyploidization level in this area is higher than that of other distribution areas due to the elevation of mountains and plateau. 2. Phylogeographic analysisbased on chloroplast sequence,We sequenced two cpDNA fragments rpl32-trnL(UAG)intergenic spacer and trnH-psbA spacer in 40 populations sampled, recovering 22 chlorotypes. The average with-in population diversity (hS = 0.171) was much lower than total genetic diversity (hT = 0.857). Population differentiation was high (NST = 0.924, GST = 0.801) indicating low levels of seed-based gene flow and significant phylogeographical stucture (NST > GST, P < 0.05) were exhibited by this species. The SAMOVA revealed seven diverging groups of related chlorotypes, six of them had distinct nonoverlapping geographical ranges: one in the northeast comprising 10 populations, a second with a southeast distribution comprising 22 populations, and the remaning four groups comprising 15 populations located in the west part of the species’ range along different river valleys. The genetic clustering of populations into three regions was also supported by analysis of molecular variance, which showed that most genetic variation (82.43%) was found among these three regions. Two clusters were distinguished by both phylogenetic analysis and genealogical analysis of chlorotypes, one consisting of chlorotypes from the western region and the second consisting of those from the eastern region. Significant genetic differences between the two regions might be attributed to vicariance and restricted gene flow, and this vicariance could be explained by the physical environmental heterogeneity on each side of the Tanaka-Kaiyong Line. Following the uplift of the Tibetan Plateau, the reorganization of the major river drainages was primarily caused by river separation and capture events. These historical events could change the distribution of S. davidii from fragmented to continuous (Upper/Lower Jinshajiang and Yalongjiang/Daduhe), and from continuous to fragmented (Nujiang and Jinshajiang/Honghe). However, spatial and temporal patterns of phylogeographic divergence are strongly associated with historical disjunction rather than modern drainage connections. Moreover, the following north-south split in the eastern region and effective isolation with their genetic diversity were essentially modelled by genetic drift. The higher chlorotype richness and genetic divergence for populations in western region compared with other two regions suggests that there were multipe refugia or in situ survival of S. davidii in the Himalayan-Hengduan Mountain region. Fixation of chlorotypes in the northeastern region and near fixation in the southeastern region suggest a recent colonization of these areas. We further found that this species underwent past range expansion around 37-303 thousand years ago (kya). The southeastern populations likely experienced a demographic expansion via unidirectional gene flow along rivers, while northeastern populations underwent a more northward expansion, both from initial populations (s) (21, 22, 23) preserved on eastern refugia (Jinshajiang). This process might have been accompanied with a series of founder effects or bottlenecks making populations genetically impoverished. 3. Phylogeographic analysisbased on nuclear sequence,We sequenced the nuclear (ncpGS) region in all populations sampled, recovering 23 nuclear haplotypes. Compared to cpDNA, both NST (0.470) and GST (0.338) were relatively lower, but NST was also significantly larger than GST. 37.10% of the total variation was distributed among regions which was much lower than that shown by chlorotypes. Thus, more extensive distribution of nuclear haplotypes was exhibited across the geographical range instead of the strong population subdivision observed in chlorotypes. Similarly to the chloroplast data, we found that genetic differentiation of nDNA was positively correlated with the geographical distance, but the increase in the geographical distance between populations did not increase the genetic differentiation of nDNA as rapidly as that of cpDNA. These contrasting levels between the chloroplast and nuclear genomes of S. davidii are likely due to limited gene flow of cpDNA by seeds vs. the extensive gene flow of nDNA by wind-mediated pollen in the population history. We also determined from nuclear markers that haplotype diversity was reduced in the southeastern and northeastern regions due to the loss of rare haplotypes in western region. This reduction of gene diversity is also a signature of founder events or recent bottleneck during post-glacial colonization. However, nuclear diversity within populations remains high. This provides evidence that regionally pollen flow might be sufficiently high to blur the genetic identity of founder populations over a reasonably large spatial scale.3. Relationships among three varieties,The phylogenetic analysis identified two phylogroups of chlorotypes, corresponding to S. davidii var. davidii and var. chuansinesis. The former was distinguished by the abscence of predonminant nuclear haplotype H1 of the latter. The monophyletic group of chlorotypes in var. davidii and var. liangshanesis showed their relatively close relationship. And their genetic divergence from the third variety appears to be relative to their slight morphological difference in leaf size and the divergent environmental niche spaces they occupy. Thus, the observed differences in morphological characters between var. chuansinesis and other two varieties can be explained by the seed dispersal limitation illustrated above (as inferred by geographical separation) and by environmental heterogeneity (as inferred by precipitation or elevation) or by a combination of both. After all, the geological changes, drainage reorganization, and floristic differences following the Himalayan uplift have been suggested to affect the genetic structure of S. davidii. These results provide new insights into the phylogeographic pattern of plants in China. In addition, the unique population genetic structure found in S. davidii has provided important insights into the evolutionary history of this species. The genetic profile uncovered in this study is also critical for its conservation management. Our study has uncovered the existence of at least two ‘evolutionary significant units’ independent units within S. davidii, corresponding to var. davidii from eastern region and var. chuansinensis from western region. The conservation efforts should first focus on most western populations and on the southeastern ones exhibiting high levels of genetic diversity, while the genetically homogeneous northeastern populations located in the degraded Loess Plateau should require much greater conservation efforts.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3ASophora%5C+davidii%5C+%5C%28Franch.%5C%29%5C+Skeels%5C+is%5C+an%5C+endemic%5C+species%5C+to%5C+China%2C%5C+and%5C+widely%5C+distributed%5C+in%5C+the%5C+dry%5C+valleys%5C+of%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+Systems%2C%5C+the%5C+Yungui%5C+Plateau%2C%5C+the%5C+Qinling%5C+Mountain%2C%5C+the%5C+Loess%5C+Plateau%5C+and%5C+other%5C+places%5C+of%5C+China.%5C+Previous%5C+studies%5C+of%5C+plant%5C+phylogeography%5C+have%5C+focused%5C+mainly%5C+on%5C+some%5C+taxa%5C+from%5C+the%5C+mountainous%5C+areas%5C+of%5C+China%2C%5C+relatively%5C+few%5C+studies%5C+have%5C+been%5C+conducted%5C+on%5C+plant%5C+taxa%5C+from%5C+the%5C+river%5C+valleys.%5C+The%5C+population%5C+dynamics%5C+and%5C+evolutionary%5C+history%5C+of%5C+species%5C+in%5C+such%5C+habitat%5C+remain%5C+less%5C+unknown%2C%5C+including%5C+the%5C+factors%5C+affecting%5C+the%5C+population%5C+genetic%5C+structure%5C+and%5C+its%5C+potential%5C+refugia%5C+in%5C+glaciation.%5C+In%5C+this%5C+study%2C%5C+we%5C+first%5C+determine%5C+the%5C+chromosome%5C+number%2C%5C+ploidy%5C+and%5C+karyotype%5C+of%5C+most%5C+populations%5C+we%5C+sampled.%5C+Then%2C%5C+based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+inherited%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+genetic%5C+diversity%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii%5C+and%5C+factors%5C+affecting%5C+them.%5C+The%5C+demographic%5C+history%5C+and%5C+potential%5C+refugia%5C+of%5C+this%5C+speices%5C+were%5C+investigated%5C+and%5C+the%5C+genetic%5C+relationship%5C+among%5C+three%5C+varieties%5C+was%5C+also%5C+clarified.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Cytogeography%EF%BC%8CThe%5C+chromosome%5C+number%5C+and%5C+karyotypes%5C+of%5C+14%5C+S.%5C+davidii%5C+populations%5C+have%5C+been%5C+studied.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+choromosome%5C+number%5C+of%5C+all%5C+the%5C+populations%5C+is%5C+2n%5C+%3D%5C+18.%5C+The%5C+interphase%5C+nuclei%5C+and%5C+prophase%5C+chromosomes%5C+of%5C+the%5C+species%5C+were%5C+found%5C+to%5C+be%5C+of%5C+the%5C+complex%5C+chromosome%5C+type%5C+and%5C+interstitial%5C+type.%5C+The%5C+results%5C+of%5C+karyotype%5C+analysis%5C+showed%5C+that%5C+7%5C+of%5C+14%5C+materials%5C+has%5C+satellites%2C%5C+and%5C+the%5C+number%5C+and%5C+position%5C+of%5C+satellites%5C+differ%5C+among%5C+populations%2C%5C+and%5C+thus%5C+revealed%5C+a%5C+series%5C+of%5C+diversified%5C+karyotypes.%5C+With%5C+most%5C+populations%5C+being%5C+of%5C+ploidy%2C%5C+cytogenetical%5C+divergence%5C+within%5C+the%5C+species%5C+lied%5C+mainly%5C+in%5C+chromosome%5C+size%5C+and%5C+structure.%5C+The%5C+fact%5C+that%5C+polyploidization%5C+did%5C+not%5C+occur%5C+very%5C+often%5C+for%5C+variations%5C+in%5C+Southwest%5C+China%5C+was%5C+against%5C+viewpoint%5C+that%5C+polyploidization%5C+level%5C+in%5C+this%5C+area%5C+is%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+distribution%5C+areas%5C+due%5C+to%5C+the%5C+elevation%5C+of%5C+mountains%5C+and%5C+plateau.%5C+2.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+chloroplast%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+two%5C+cpDNA%5C+fragments%5C+rpl32%5C-trnL%5C%28UAG%5C%29intergenic%5C+spacer%5C+and%5C+trnH%5C-psbA%5C+spacer%5C+in%5C+40%5C+populations%5C+sampled%2C%5C+recovering%5C+22%5C+chlorotypes.%5C+The%5C+average%5C+with%5C-in%5C+population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.171%5C%29%5C+was%5C+much%5C+lower%5C+than%5C+total%5C+genetic%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.857%5C%29.%5C+Population%5C+differentiation%5C+was%5C+high%5C+%5C%28NST%5C+%3D%5C+0.924%2C%5C+GST%5C+%3D%5C+0.801%5C%29%5C+indicating%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow%5C+and%5C+significant%5C+phylogeographical%5C+stucture%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+P%5C+%3C%5C+0.05%5C%29%5C+were%5C+exhibited%5C+by%5C+this%5C+species.%5C+The%5C+SAMOVA%5C+revealed%5C+seven%5C+diverging%5C+groups%5C+of%5C+related%5C+chlorotypes%2C%5C+six%5C+of%5C+them%5C+had%5C+distinct%5C+nonoverlapping%5C+geographical%5C+ranges%5C%3A%5C+one%5C+in%5C+the%5C+northeast%5C+comprising%5C+10%5C+populations%2C%5C+a%5C+second%5C+with%5C+a%5C+southeast%5C+distribution%5C+comprising%5C+22%5C+populations%2C%5C+and%5C+the%5C+remaning%5C+four%5C+groups%5C+comprising%5C+15%5C+populations%5C+located%5C+in%5C+the%5C+west%5C+part%5C+of%5C+the%5C+species%E2%80%99%5C+range%5C+along%5C+different%5C+river%5C+valleys.%5C+The%5C+genetic%5C+clustering%5C+of%5C+populations%5C+into%5C+three%5C+regions%5C+was%5C+also%5C+supported%5C+by%5C+analysis%5C+of%5C+molecular%5C+variance%2C%5C+which%5C+showed%5C+that%5C+most%5C+genetic%5C+variation%5C+%5C%2882.43%25%5C%29%5C+was%5C+found%5C+among%5C+these%5C+three%5C+regions.%5C+Two%5C+clusters%5C+were%5C+distinguished%5C+by%5C+both%5C+phylogenetic%5C+analysis%5C+and%5C+genealogical%5C+analysis%5C+of%5C+chlorotypes%2C%5C+one%5C+consisting%5C+of%5C+chlorotypes%5C+from%5C+the%5C+western%5C+region%5C+and%5C+the%5C+second%5C+consisting%5C+of%5C+those%5C+from%5C+the%5C+eastern%5C+region.%5C+Significant%5C+genetic%5C+differences%5C+between%5C+the%5C+two%5C+regions%5C+might%5C+be%5C+attributed%5C+to%5C+vicariance%5C+and%5C+restricted%5C+gene%5C+flow%2C%5C+and%5C+this%5C+vicariance%5C+could%5C+be%5C+explained%5C+by%5C+the%5C+physical%5C+environmental%5C+heterogeneity%5C+on%5C+each%5C+side%5C+of%5C+the%5C+Tanaka%5C-Kaiyong%5C+Line.%5C+Following%5C+the%5C+uplift%5C+of%5C+the%5C+Tibetan%5C+Plateau%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+These%5C+historical%5C+events%5C+could%5C+change%5C+the%5C+distribution%5C+of%5C+S.%5C+davidii%5C+from%5C+fragmented%5C+to%5C+continuous%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%2FDaduhe%5C%29%2C%5C+and%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Nujiang%5C+and%5C+Jinshajiang%5C%2FHonghe%5C%29.%5C+However%2C%5C+spatial%5C+and%5C+temporal%5C+patterns%5C+of%5C+phylogeographic%5C+divergence%5C+are%5C+strongly%5C+associated%5C+with%5C+historical%5C+disjunction%5C+rather%5C+than%5C+modern%5C+drainage%5C+connections.%5C+Moreover%2C%5C+the%5C+following%5C+north%5C-south%5C+split%5C+in%5C+the%5C+eastern%5C+region%5C+and%5C+effective%5C+isolation%5C+with%5C+their%5C+genetic%5C+diversity%5C+were%5C+essentially%5C+modelled%5C+by%5C+genetic%5C+drift.%5C+The%5C+higher%5C+chlorotype%5C+richness%5C+and%5C+genetic%5C+divergence%5C+for%5C+populations%5C+in%5C+western%5C+region%5C+compared%5C+with%5C+other%5C+two%5C+regions%5C+suggests%5C+that%5C+there%5C+were%5C+multipe%5C+refugia%5C+or%5C+in%5C+situ%5C+survival%5C+of%5C+S.%5C+davidii%5C+in%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+region.%5C+Fixation%5C+of%5C+chlorotypes%5C+in%5C+the%5C+northeastern%5C+region%5C+and%5C+near%5C+fixation%5C+in%5C+the%5C+southeastern%5C+region%5C+suggest%5C+a%5C+recent%5C+colonization%5C+of%5C+these%5C+areas.%5C+We%5C+further%5C+found%5C+that%5C+this%5C+species%5C+underwent%5C+past%5C+range%5C+expansion%5C+around%5C+37%5C-303%5C+thousand%5C+years%5C+ago%5C+%5C%28kya%5C%29.%5C+The%5C+southeastern%5C+populations%5C+likely%5C+experienced%5C+a%5C+demographic%5C+expansion%5C+via%5C+unidirectional%5C+gene%5C+flow%5C+along%5C+rivers%2C%5C+while%5C+northeastern%5C+populations%5C+underwent%5C+a%5C+more%5C+northward%5C+expansion%2C%5C+both%5C+from%5C+initial%5C+populations%5C+%5C%28s%5C%29%5C+%5C%2821%2C%5C+22%2C%5C+23%5C%29%5C+preserved%5C+on%5C+eastern%5C+refugia%5C+%5C%28Jinshajiang%5C%29.%5C+This%5C+process%5C+might%5C+have%5C+been%5C+accompanied%5C+with%5C+a%5C+series%5C+of%5C+founder%5C+effects%5C+or%5C+bottlenecks%5C+making%5C+populations%5C+genetically%5C+impoverished.%5C+3.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+nuclear%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+the%5C+nuclear%5C+%5C%28ncpGS%5C%29%5C+region%5C+in%5C+all%5C+populations%5C+sampled%2C%5C+recovering%5C+23%5C+nuclear%5C+haplotypes.%5C+Compared%5C+to%5C+cpDNA%2C%5C+both%5C+NST%5C+%5C%280.470%5C%29%5C+and%5C+GST%5C+%5C%280.338%5C%29%5C+were%5C+relatively%5C+lower%2C%5C+but%5C+NST%5C+was%5C+also%5C+significantly%5C+larger%5C+than%5C+GST.%5C+37.10%25%5C+of%5C+the%5C+total%5C+variation%5C+was%5C+distributed%5C+among%5C+regions%5C+which%5C+was%5C+much%5C+lower%5C+than%5C+that%5C+shown%5C+by%5C+chlorotypes.%5C+Thus%2C%5C+more%5C+extensive%5C+distribution%5C+of%5C+nuclear%5C+haplotypes%5C+was%5C+exhibited%5C+across%5C+the%5C+geographical%5C+range%5C+instead%5C+of%5C+the%5C+strong%5C+population%5C+subdivision%5C+observed%5C+in%5C+chlorotypes.%5C+Similarly%5C+to%5C+the%5C+chloroplast%5C+data%2C%5C+we%5C+found%5C+that%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+was%5C+positively%5C+correlated%5C+with%5C+the%5C+geographical%5C+distance%2C%5C+but%5C+the%5C+increase%5C+in%5C+the%5C+geographical%5C+distance%5C+between%5C+populations%5C+did%5C+not%5C+increase%5C+the%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+as%5C+rapidly%5C+as%5C+that%5C+of%5C+cpDNA.%5C+These%5C+contrasting%5C+levels%5C+between%5C+the%5C+chloroplast%5C+and%5C+nuclear%5C+genomes%5C+of%5C+S.%5C+davidii%5C+are%5C+likely%5C+due%5C+to%5C+limited%5C+gene%5C+flow%5C+of%5C+cpDNA%5C+by%5C+seeds%5C+vs.%5C+the%5C+extensive%5C+gene%5C+flow%5C+of%5C+nDNA%5C+by%5C+wind%5C-mediated%5C+pollen%5C+in%5C+the%5C+population%5C+history.%5C+We%5C+also%5C+determined%5C+from%5C+nuclear%5C+markers%5C+that%5C+haplotype%5C+diversity%5C+was%5C+reduced%5C+in%5C+the%5C+southeastern%5C+and%5C+northeastern%5C+regions%5C+due%5C+to%5C+the%5C+loss%5C+of%5C+rare%5C+haplotypes%5C+in%5C+western%5C+region.%5C+This%5C+reduction%5C+of%5C+gene%5C+diversity%5C+is%5C+also%5C+a%5C+signature%5C+of%5C+founder%5C+events%5C+or%5C+recent%5C+bottleneck%5C+during%5C+post%5C-glacial%5C+colonization.%5C+However%2C%5C+nuclear%5C+diversity%5C+within%5C+populations%5C+remains%5C+high.%5C+This%5C+provides%5C+evidence%5C+that%5C+regionally%5C+pollen%5C+flow%5C+might%5C+be%5C+sufficiently%5C+high%5C+to%5C+blur%5C+the%5C+genetic%5C+identity%5C+of%5C+founder%5C+populations%5C+over%5C+a%5C+reasonably%5C+large%5C+spatial%5C+scale.3.%5C+Relationships%5C+among%5C+three%5C+varieties%EF%BC%8CThe%5C+phylogenetic%5C+analysis%5C+identified%5C+two%5C+phylogroups%5C+of%5C+chlorotypes%2C%5C+corresponding%5C+to%5C+S.%5C+davidii%5C+var.%5C+davidii%5C+and%5C+var.%5C+chuansinesis.%5C+The%5C+former%5C+was%5C+distinguished%5C+by%5C+the%5C+abscence%5C+of%5C+predonminant%5C+nuclear%5C+haplotype%5C+H1%5C+of%5C+the%5C+latter.%5C+The%5C+monophyletic%5C+group%5C+of%5C+chlorotypes%5C+in%5C+var.%5C+davidii%5C+and%5C+var.%5C+liangshanesis%5C+showed%5C+their%5C+relatively%5C+close%5C+relationship.%5C+And%5C+their%5C+genetic%5C+divergence%5C+from%5C+the%5C+third%5C+variety%5C+appears%5C+to%5C+be%5C+relative%5C+to%5C+their%5C+slight%5C+morphological%5C+difference%5C+in%5C+leaf%5C+size%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Thus%2C%5C+the%5C+observed%5C+differences%5C+in%5C+morphological%5C+characters%5C+between%5C+var.%5C+chuansinesis%5C+and%5C+other%5C+two%5C+varieties%5C+can%5C+be%5C+explained%5C+by%5C+the%5C+seed%5C+dispersal%5C+limitation%5C+illustrated%5C+above%5C+%5C%28as%5C+inferred%5C+by%5C+geographical%5C+separation%5C%29%5C+and%5C+by%5C+environmental%5C+heterogeneity%5C+%5C%28as%5C+inferred%5C+by%5C+precipitation%5C+or%5C+elevation%5C%29%5C+or%5C+by%5C+a%5C+combination%5C+of%5C+both.%5C+After%5C+all%2C%5C+the%5C+geological%5C+changes%2C%5C+drainage%5C+reorganization%2C%5C+and%5C+floristic%5C+differences%5C+following%5C+the%5C+Himalayan%5C+uplift%5C+have%5C+been%5C+suggested%5C+to%5C+affect%5C+the%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii.%5C+These%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+China.%5C+In%5C+addition%2C%5C+the%5C+unique%5C+population%5C+genetic%5C+structure%5C+found%5C+in%5C+S.%5C+davidii%5C+has%5C+provided%5C+important%5C+insights%5C+into%5C+the%5C+evolutionary%5C+history%5C+of%5C+this%5C+species.%5C+The%5C+genetic%5C+profile%5C+uncovered%5C+in%5C+this%5C+study%5C+is%5C+also%5C+critical%5C+for%5C+its%5C+conservation%5C+management.%5C+Our%5C+study%5C+has%5C+uncovered%5C+the%5C+existence%5C+of%5C+at%5C+least%5C+two%5C+%E2%80%98evolutionary%5C+significant%5C+units%E2%80%99%5C+independent%5C+units%5C+within%5C+S.%5C+davidii%2C%5C+corresponding%5C+to%5C+var.%5C+davidii%5C+from%5C+eastern%5C+region%5C+and%5C+var.%5C+chuansinensis%5C+from%5C+western%5C+region.%5C+The%5C+conservation%5C+efforts%5C+should%5C+first%5C+focus%5C+on%5C+most%5C+western%5C+populations%5C+and%5C+on%5C+the%5C+southeastern%5C+ones%5C+exhibiting%5C+high%5C+levels%5C+of%5C+genetic%5C+diversity%2C%5C+while%5C+the%5C+genetically%5C+homogeneous%5C+northeastern%5C+populations%5C+located%5C+in%5C+the%5C+degraded%5C+Loess%5C+Plateau%5C+should%5C+require%5C+much%5C+greater%5C+conservation%5C+efforts."},{"jsname":"Thailand Research Fund (TRF)[RSA5980068]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3AThailand%5C+Research%5C+Fund%5C+%5C%28TRF%5C%29%5C%5BRSA5980068%5C%5D"},{"jsname":"The Taxus wallichiana complex represents an old relict conifer lineage that survived through the Tertiary. It is currently distributed in the mountain forests in South and Southwest China south of the Qinling Mountains. In the present study, we explored phylogeography of the complex by using two chloroplast DNA regions, one nuclear ribosomal DNA spacer region and eight microsatellite (SSR) loci. The main conclusions can be summarized as follows:1. Phylogeographic pattern based on chloroplast haplotypes,There were 11 cpDNA haplotypes identified in the T. wallichiana complex The complex showed a high level of genetic diversity and obvious genetic differentiation. The 44 sampled populations showed obvious genetic structure, which could be divided into five groups, namely the Huanan group, the Daba group, the Emei group, the Yunnan group and the Qinling group. There was extremely high genetic differentiation among groups, but not significant within group. The divergence times of the five lineages, estimated using average mutation rates of trnL-trnF, fell in the Pliocene. 2. Phylogeographic patterns based on ITS sequences,These included 38 unique ‘haplotypes’ based on ITS data. Their analysis showed that the T. wallichiana complex possessed a high genetic diversity. These populations could be divided into four groups, namely the Huanan group, the Daba/Emei group, the Yunnan group and the Qinling group. Based on all results, it appears that the major lineages constituting the T. wallichiana complex have arisen before Quaternary glaciation cycles, and may have survived isolated in different refugia. During interglacial periods some lineages appear to have come in contact and hybridizedbut other lineages merged forming populations with mixed haplotypes without signs of hybridization. The present-day phylogeographical distribution pattern of the T. wallichiana complex might thus be the result of repeated expansion / contractions of populations during interglacial / glacial cycles.3. Population genetic analysis using microsatellite (SSR) markers,Eight SSR loci were used for population genetic analysis on the T. wallichiana complex. A lower level of genetic diversity at the population level and high genetic differentiation among population was detected. The results of structure analysis were similar to those on the ITS data, dividing the populations into four groups (lineages). According to the results here, it was deduced that each of the 4 lineages of the T. wallichiana complex may possessed respective glacial refugia, and some lineages (such as the Qinling and Huanan lineage) might have survived in multiple refugia in the Quaternay glaciations. The present distribution pattern of this complex was likely influenced by the uplift of the QTP and Quaternary glaciation.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3AThe%5C+Taxus%5C+wallichiana%5C+complex%5C+represents%5C+an%5C+old%5C+relict%5C+conifer%5C+lineage%5C+that%5C+survived%5C+through%5C+the%5C+Tertiary.%5C+It%5C+is%5C+currently%5C+distributed%5C+in%5C+the%5C+mountain%5C+forests%5C+in%5C+South%5C+and%5C+Southwest%5C+China%5C+south%5C+of%5C+the%5C+Qinling%5C+Mountains.%C2%A0In%5C+the%5C+present%5C+study%2C%5C+we%5C+explored%5C+phylogeography%5C+of%5C+the%5C+complex%5C+by%5C+using%5C+two%5C+chloroplast%5C+DNA%5C+regions%2C%5C+one%5C+nuclear%5C+ribosomal%5C+DNA%5C+spacer%5C+region%5C+and%5C+eight%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+loci.%5C+The%5C+main%5C+conclusions%5C+can%5C+be%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Phylogeographic%5C+pattern%5C+based%5C+on%5C+chloroplast%5C+haplotypes%EF%BC%8CThere%5C+were%5C+11%5C+cpDNA%5C+haplotypes%5C+identified%5C+in%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+The%5C+complex%5C+showed%5C+a%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+and%5C+obvious%5C+genetic%5C+differentiation.%5C+The%5C+44%5C+sampled%5C+populations%5C+showed%5C+obvious%5C+genetic%5C+structure%2C%5C+which%5C+could%5C+be%5C+divided%5C+into%5C+five%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C+group%2C%5C+the%5C+Emei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+There%5C+was%5C+extremely%5C+high%5C+genetic%5C+differentiation%5C+among%5C+groups%2C%5C+but%5C+not%5C+significant%5C+within%5C+group.%5C+The%5C+divergence%5C+times%5C+of%5C+the%5C+five%5C+lineages%2C%5C+estimated%5C+using%5C+average%5C+mutation%5C+rates%5C+of%5C+trnL%5C-trnF%2C%5C+fell%5C+in%5C+the%5C+Pliocene.%C2%A02.%5C+Phylogeographic%5C+patterns%5C+based%5C+on%5C+ITS%5C+sequences%EF%BC%8CThese%5C+included%5C+38%5C+unique%5C+%E2%80%98haplotypes%E2%80%99%5C+based%5C+on%5C+ITS%5C+data.%5C+Their%5C+analysis%5C+showed%5C+that%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+possessed%5C+a%5C+high%5C+genetic%5C+diversity.%C2%A0These%5C+populations%5C+could%5C+be%5C+divided%5C+into%5C+four%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C%2FEmei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+Based%5C+on%5C+all%5C+results%2C%5C+it%5C+appears%5C+that%5C+the%5C+major%5C+lineages%5C+constituting%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+have%5C+arisen%5C+before%5C+Quaternary%5C+glaciation%5C+cycles%2C%5C+and%5C+may%5C+have%5C+survived%5C+isolated%5C+in%5C+different%5C+refugia.%5C+During%5C+interglacial%5C+periods%5C+some%5C+lineages%5C+appear%5C+to%5C+have%5C+come%5C+in%5C+contact%5C+and%5C+hybridizedbut%5C+other%5C+lineages%5C+merged%5C+forming%5C+populations%5C+with%5C+mixed%5C+haplotypes%5C+without%5C+signs%5C+of%5C+hybridization.%5C+The%5C+present%5C-day%5C+phylogeographical%5C+distribution%5C+pattern%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+might%5C+thus%5C+be%5C+the%5C+result%5C+of%5C+repeated%5C+expansion%5C+%5C%2F%5C+contractions%5C+of%5C+populations%5C+during%5C+interglacial%5C+%5C%2F%5C+glacial%5C+cycles.3.%5C+Population%5C+genetic%5C+analysis%5C+using%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+markers%EF%BC%8CEight%5C+SSR%5C+loci%5C+were%5C+used%5C+for%5C+population%5C+genetic%5C+analysis%5C+on%5C+the%5C+T.%5C+wallichiana%5C+complex.%5C+A%5C+lower%5C+level%5C+of%5C+genetic%5C+diversity%5C+at%5C+the%5C+population%5C+level%5C+and%5C+high%5C+genetic%5C+differentiation%5C+among%5C+population%5C+was%5C+detected.%5C+The%5C+results%5C+of%5C+structure%5C+analysis%5C+were%5C+similar%5C+to%5C+those%5C+on%5C+the%5C+ITS%5C+data%2C%5C+dividing%5C+the%5C+populations%5C+into%5C+four%5C+groups%5C+%5C%28lineages%5C%29.%C2%A0According%5C+to%5C+the%5C+results%5C+here%2C%5C+it%5C+was%5C+deduced%5C+that%5C+each%5C+of%5C+the%5C+4%5C+lineages%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+may%5C+possessed%5C+respective%5C+glacial%5C+refugia%2C%5C+and%5C+some%5C+lineages%5C+%5C%28such%5C+as%5C+the%5C+Qinling%5C+and%5C+Huanan%5C+lineage%5C%29%5C+might%5C+have%5C+survived%5C+in%5C+multiple%5C+refugia%5C+in%5C+the%5C+Quaternay%5C+glaciations.%5C+The%5C+present%5C+distribution%5C+pattern%5C+of%5C+this%5C+complex%5C+was%5C+likely%5C+influenced%5C+by%5C+the%5C+uplift%5C+of%5C+the%5C+QTP%5C+and%5C+Quaternary%5C+glaciation."},{"jsname":"The origin center and diversity center of the genus Ligularia were considered to be central China and Hengduan Mountains Region (HMR) of China, respectively. In this research, we studied the phylogeographic pattern of L. hodgsonii and L. tongolensis, which was distributed in the origin center and diversity center, respectively. We aimed to infer the evolutionary process of Ligularia species. 1. The phylogeography of L. hodgsonii,Here, we investigated the phylogeographic history of L. hodgsonii disjunctively distributed in China and Japan. Two hundred and eighty individuals were collected from 29 natural populations, 23 located in China and 6 in Japan. A total of 19 haplotypes were identified with the combination of three chloroplast DNA (cpDNA) sequences variations (trnQ-5’rps16, trnL-rpl32 and psbA-trnH). At the species level, a high level of haplotype diversity (Hd) and total genetic diversity (HT) was detected. However, the average intrapopulation diversity (HS) was very low. Consequently, the population differentiation(NST = 0.989, GST = 0.933 ) was pronounced with a significant phylogeographic structure (NST > GST, p < 0.01). At the regional level, Chinese and Japanese L. hodgsonii had a similar estimate of genetic diversity (China: Hd = 0.847, HT = 0.869; Japan: Hd = 0.766, HT = 0.867). Populations from China and Japan possess unique sets of haplotypes, and no haplotypes were shared between the regions. Furthermore, both the phyloegenetic and network analyses recovered the haplotypes of China and Japan as two distinct clades. Thus, we suggested the disjunct distribution of L. hodgsonii in China and Japan may present the climatic vicariant relicts of the ancient widely distributed populations. After divergence, this species within each region experienced independent evolutionary process. In China, L. hodgsonii was distributed around the Sichuan Basin. This distribution range can be divided into five regions. They were Jiajin Mountain region, E’mei Mountain region, Yunnan-Guizhou Plateau region, Wushan-Wuling Mountain region and Qinling Mountain region. Twelve haplotypes were indentified within these regions. Each region had its own specific haplotypes, which had different ancestry in the network. We deduced that Chinese L. hodgsonii might survive the LGM in multiple isolated refugia around the Sichuan Basin. In Japan, L. hodgsonii was disjunctively distributed in northern Honshu and Hokkaido. Seven haplotypes were identified within this region. However, the genetic diversity in Honshu (Hd = 0.821) was much higher than that in Hokkaido (Hd = 0.513). And all haplotypes in Hokkaido were derived from Honshu. This haplotype distribution suggested that the northern Honshu could have served as refuge in Japan. Nested clade analysis (NCA) indicated multiple forces including the vicariance and long-distance dispersal affected the disjunctive distribution among populations of L. hodgsonii in Japan.2. The phylogeography of L. tongolensis,Ligularia tongolensis was distributed along the Jinshajiang watershed, Yalongjiang watershed and Wumeng Mountain. In order to deduce the demographic history of this species, we sequenced two chloroplast DNA (cpDNA) intergenic spacers (trnQ-5’rps16, trnL-rpl32) in 140 individuals from 14 populations of three groups (Jinshajiang vs. Yalongjiang vs. Wumeng) within this species range. High levels of haplotype diversity (Hd = 0.814) and total genetic diversity (HT = 0.862) were detected at the species level, based on a total oftwelve haplotypes identified. However, the intrapopulation diversity (HS = 0.349) was low, which led to the high levels of genetic divergence (GST = 0.595, NST = 0.614, FST = 0.597). In consideration of the speciation of L. tongolensis resulting from the uplifts of the Qinghai-Tibetan Plateau (QTP), we thought the present genetic structure of L. tongolensis was shaped by the fragmentation of ancestral populations during the courses of QTP uplifts. This was further supported by the absence of IBD tests (r = –0.291, p = 0.964), which suggest that the differentiation had not occurred in accordance with the isolation by distance model. The genetic differentiation in L. tongolensis appears to be associated with historical events. Meanwhile, H2 and H5, the dominant haplotypes that located on internal nodes and deviated from extinct ancestral haplotype in the network, were detected to be shared between Jinshajiang and Yalongjiang groups. We deduced that ancestral populations of this species might have had a continuous distribution range, which was then fragmented and isolated by the following tectonic events. Finally, the ancestral polymorphism, H2 and H5, were randomly allocated in Jinshajiang watershed and Yalongjiang watershed. Meanwhile, H5 was the dominant haplotype in Jinshajiang watershed; H7 was the domiant haplotype in Yalongjiang watershed and Wumeng Mountain. This haplotype distribution pattern indicated that each group might have served as a refuge for L. tongolensis during the Quaternary Glaciation. Postglacial demographic expansion was supported by unimodal mismatch distribution and star-like phylogenies, with expansion ages of 274 ka B. P. for this species","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3AThe%5C+origin%5C+center%5C+and%5C+diversity%5C+center%5C+of%5C+the%5C+genus%5C+Ligularia%5C+were%5C+considered%5C+to%5C+be%5C+central%5C+China%5C+and%5C+Hengduan%5C+Mountains%5C+Region%5C+%5C%28HMR%5C%29%5C+of%5C+China%2C%5C+respectively.%5C+In%5C+this%5C+research%2C%5C+we%5C+studied%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+L.%5C+hodgsonii%5C+and%5C+L.%5C+tongolensis%2C%5C+which%5C+was%5C+distributed%5C+in%5C+the%5C+origin%5C+center%5C+and%5C+diversity%5C+center%2C%5C+respectively.%5C+We%5C+aimed%5C+to%5C+infer%5C+the%5C+evolutionary%5C+process%5C+of%5C+Ligularia%5C+species.%5C+1.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+hodgsonii%EF%BC%8CHere%2C%5C+we%5C+investigated%5C+the%5C+phylogeographic%5C+history%5C+of%5C+L.%5C+hodgsonii%5C+disjunctively%5C+distributed%5C+in%5C+China%5C+and%5C+Japan.%5C+Two%5C+hundred%5C+and%5C+eighty%5C+individuals%5C+were%5C+collected%5C+from%5C+29%5C+natural%5C+populations%2C%5C+23%5C+located%5C+in%5C+China%5C+and%5C+6%5C+in%5C+Japan.%5C+A%5C+total%5C+of%5C+19%5C+haplotypes%5C+were%5C+identified%5C+with%5C+the%5C+combination%5C+of%5C+three%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+sequences%5C+variations%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C+and%5C+psbA%5C-trnH%5C%29.%5C+At%5C+the%5C+species%5C+level%2C%5C+a%5C+high%5C+level%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C%29%5C+and%C2%A0total%5C+genetic%5C+diversity%5C+%5C%28HT%5C%29%5C+was%5C+detected.%5C+However%2C%5C+the%5C+average%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C%29%5C+was%5C+very%5C+low.%5C+Consequently%2C%5C+the%5C+population%5C+differentiation%5C%28NST%5C+%3D%5C+0.989%2C%5C+GST%5C+%3D%5C+0.933%5C+%5C%29%5C+was%5C+pronounced%5C+with%5C+a%5C+significant%5C+phylogeographic%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+p%5C+%3C%5C+0.01%5C%29.%5C+At%5C+the%5C+regional%5C+level%2C%5C+Chinese%5C+and%5C+Japanese%5C+L.%5C+hodgsonii%5C+had%5C+a%5C+similar%5C+estimate%5C+of%5C+genetic%5C+diversity%5C+%5C%28China%5C%3A%5C+Hd%5C+%3D%5C+0.847%2C%5C+HT%5C+%3D%5C+0.869%5C%3B%5C+Japan%5C%3A%5C+Hd%5C+%3D%5C+0.766%2C%5C+HT%5C+%3D%5C+0.867%5C%29.%5C+Populations%5C+from%5C+China%5C+and%5C+Japan%5C+possess%5C+unique%5C+sets%5C+of%5C+haplotypes%2C%5C+and%5C+no%5C+haplotypes%5C+were%5C+shared%5C+between%5C+the%5C+regions.%5C+Furthermore%2C%5C+both%5C+the%5C+phyloegenetic%5C+and%5C+network%5C+analyses%5C+recovered%5C+the%5C+haplotypes%5C+of%5C+China%5C+and%5C+Japan%5C+as%5C+two%5C+distinct%5C+clades.%5C+Thus%2C%5C+we%5C+suggested%5C+the%5C+disjunct%5C+distribution%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+China%5C+and%5C+Japan%5C+may%5C+present%5C+the%5C+climatic%5C+vicariant%5C+relicts%5C+of%5C+the%5C+ancient%5C+widely%5C+distributed%5C+populations.%5C+After%5C+divergence%2C%5C+this%5C+species%5C+within%5C+each%5C+region%5C+experienced%5C+independent%5C+evolutionary%5C+process.%5C+In%5C+China%2C%5C+L.%5C+hodgsonii%5C+was%5C+distributed%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+This%5C+distribution%5C+range%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+regions.%5C+They%5C+were%5C+Jiajin%5C+Mountain%5C+region%2C%5C+E%E2%80%99mei%5C+Mountain%5C+region%2C%5C+Yunnan%5C-Guizhou%5C+Plateau%5C+region%2C%5C+Wushan%5C-Wuling%5C+Mountain%5C+region%5C+and%5C+Qinling%5C+Mountain%5C+region.%5C+Twelve%5C+haplotypes%5C+were%5C+indentified%5C+within%5C+these%5C+regions.%5C+Each%5C+region%5C+had%5C+its%5C+own%5C+specific%5C+haplotypes%2C%5C+which%5C+had%5C+different%5C+ancestry%5C+in%5C+the%5C+network.%5C+We%5C+deduced%5C+that%5C+Chinese%5C+L.%5C+hodgsonii%5C+might%5C+survive%5C+the%5C+LGM%5C+in%5C+multiple%5C+isolated%5C+refugia%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+In%5C+Japan%2C%5C+L.%5C+hodgsonii%5C+was%5C+disjunctively%5C+distributed%5C+in%5C+northern%5C+Honshu%5C+and%5C+Hokkaido.%5C+Seven%5C+haplotypes%5C+were%5C+identified%5C+within%5C+this%5C+region.%5C+However%2C%5C+the%5C+genetic%5C+diversity%5C+in%5C+Honshu%5C+%5C%28Hd%5C+%3D%5C+0.821%5C%29%5C+was%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Hokkaido%5C+%5C%28Hd%5C+%3D%5C+0.513%5C%29.%5C+And%5C+all%5C+haplotypes%5C+in%5C+Hokkaido%5C+were%5C+derived%5C+from%5C+Honshu.%5C+This%5C+haplotype%5C+distribution%5C+suggested%5C+that%5C+the%5C+northern%5C+Honshu%5C+could%5C+have%5C+served%5C+as%5C+refuge%5C+in%5C+Japan.%5C+Nested%5C+clade%5C+analysis%5C+%5C%28NCA%5C%29%5C+indicated%5C+multiple%5C+forces%5C+including%5C+the%5C+vicariance%5C+and%5C+long%5C-distance%5C+dispersal%5C+affected%5C+the%5C+disjunctive%5C+distribution%5C+among%5C+populations%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+Japan.2.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+tongolensis%EF%BC%8CLigularia%5C+tongolensis%5C+was%5C+distributed%5C+along%5C+the%5C+Jinshajiang%5C+watershed%2C%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+In%5C+order%5C+to%5C+deduce%5C+the%5C+demographic%5C+history%5C+of%5C+this%5C+species%2C%5C+we%5C+sequenced%5C+two%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+intergenic%5C+spacers%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C%29%5C+in%5C+140%5C+individuals%5C+from%5C+14%5C+populations%5C+of%5C+three%5C+groups%5C+%5C%28Jinshajiang%5C+vs.%5C+Yalongjiang%5C+vs.%5C+Wumeng%5C%29%5C+within%5C+this%5C+species%5C+range.%5C+High%5C+levels%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C+%3D%5C+0.814%5C%29%5C+and%5C+total%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.862%5C%29%5C+were%5C+detected%5C+at%5C+the%5C+species%5C+level%2C%5C+based%5C+on%5C+a%5C+total%5C+oftwelve%5C+haplotypes%5C+identified.%5C+However%2C%5C+the%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.349%5C%29%5C+was%5C+low%2C%5C+which%5C+led%5C+to%5C+the%5C+high%5C+levels%5C+of%5C+genetic%5C+divergence%5C+%5C%28GST%5C+%3D%5C+0.595%2C%5C+NST%5C+%3D%5C+0.614%2C%5C+FST%5C+%3D%5C+0.597%5C%29.%5C+In%5C+consideration%5C+of%5C+the%5C+speciation%5C+of%5C+L.%5C+tongolensis%5C+resulting%5C+from%5C+the%5C+uplifts%5C+of%5C+the%5C+Qinghai%5C-Tibetan%5C+Plateau%5C+%5C%28QTP%5C%29%2C%5C+we%5C+thought%5C+the%5C+present%5C+genetic%5C+structure%5C+of%5C+L.%5C+tongolensis%5C+was%5C+shaped%5C+by%5C+the%5C+fragmentation%5C+of%5C+ancestral%5C+populations%5C+during%5C+the%5C+courses%5C+of%5C+QTP%5C+uplifts.%5C+This%5C+was%5C+further%5C+supported%5C+by%5C+the%5C+absence%5C+of%5C+IBD%5C+tests%5C+%5C%28r%5C+%3D%5C+%E2%80%930.291%2C%5C+p%5C+%3D%5C+0.964%5C%29%2C%5C+which%5C+suggest%5C+that%5C+the%5C+differentiation%5C+had%5C+not%5C+occurred%5C+in%5C+accordance%5C+with%5C+the%5C+isolation%5C+by%5C+distance%5C+model.%5C+The%5C+genetic%5C+differentiation%5C+in%5C+L.%5C+tongolensis%5C+appears%5C+to%5C+be%5C+associated%5C+with%5C+historical%5C+events.%5C+Meanwhile%2C%5C+H2%5C+and%5C+H5%2C%5C+the%5C+dominant%5C+haplotypes%5C+that%5C+located%5C+on%5C+internal%5C+nodes%5C+and%5C+deviated%5C+from%5C+extinct%5C+ancestral%5C+haplotype%5C+in%5C+the%5C+network%2C%5C+were%5C+detected%5C+to%5C+be%5C+shared%5C+between%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C+groups.%5C+We%5C+deduced%5C+that%5C+ancestral%5C+populations%5C+of%5C+this%5C+species%5C+might%5C+have%5C+had%5C+a%5C+continuous%5C+distribution%5C+range%2C%5C+which%5C+was%5C+then%5C+fragmented%5C+and%5C+isolated%5C+by%5C+the%5C+following%5C+tectonic%5C+events.%5C+Finally%2C%5C+the%5C+ancestral%5C+polymorphism%2C%5C+H2%5C+and%5C+H5%2C%5C+were%5C+randomly%5C+allocated%5C+in%5C+Jinshajiang%5C+watershed%5C+and%5C+Yalongjiang%5C+watershed.%5C+Meanwhile%2C%5C+H5%5C+was%5C+the%5C+dominant%5C+haplotype%5C+in%5C+Jinshajiang%5C+watershed%5C%3B%5C+H7%5C+was%5C+the%5C+domiant%5C+haplotype%5C+in%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+This%5C+haplotype%5C+distribution%5C+pattern%5C+indicated%5C+that%5C+each%5C+group%5C+might%5C+have%5C+served%5C+as%5C+a%5C+refuge%5C+for%5C+L.%5C+tongolensis%5C+during%5C+the%5C+Quaternary%5C+Glaciation.%5C+Postglacial%5C+demographic%5C+expansion%5C+was%5C+supported%5C+by%5C+unimodal%5C+mismatch%5C+distribution%5C+and%5C+star%5C-like%5C+phylogenies%2C%5C+with%5C+expansion%5C+ages%5C+of%5C+274%5C+ka%5C+B.%5C+P.%5C+for%5C+this%5C+species"},{"jsname":"The relationship between leaf physiognomy and climate is widely used to reconstruct paleoclimates of Cenozoic floras. Previous works demonstrate that LMA show regional constraints. Until now, no equation has been set up directly from Chinese forests. This relationship is exhaustively studied based on 50 samples from mesic to humid forests across China. Models including Leaf Margin Analysis (LMA), Single Linear regression for Precipitation, and Climate Leaf Analysis Multivariate Program (CLAMP), are set up and used to quantitatively reconstruct paleoclimates of Chinese Neogene floras. Meanwhile, a paleoflora, i.e., Yangjie flora, which belongs to the Upper Pliocene Sanying formation in West Yunnan Province, is studied. The species assemblage, paleoclimate and paleoecology of Yangjie flora are discussed. Conclusions in this dissertation are as following: 1. Chinese leaf physiognomy-climate models based on regression analyses,LMA is a widely used method that applies present-day linear correlation between the proportion of woody dicotyledonous species with untoothed leaves (P) and mean annual temperature (MAT) to estimate paleotemperatures from fossil leaf floras. The Chinese data indicate that P shows a strong linear correlation with MAT, but the actual relationship is slightly different from those recognized from other regions. Among all currently used LMA equations, the one resulting from North and Central American and Japanese data, rather than the widely used East Asian LMA equation, yields the closest values to the actual MATs of the Chinese samples (mean absolute error = 1.9°C). A new equation derived from the Chinese forests is therefore developed, where MAT = 1.038 + 27.6 × P. This study not only demonstrates the similarity of the relationship between P and MAT in the Northern Hemisphere, but also improves the reliability of LMA for paleoclimate reconstructions of Chinese paleofloras. Besides, regression analyses are used to explore the relationship between leaf physiognomy and precipitation. In contrast to former studies, entire leaf margin shows the highest correlation with the Growing Season Precipitation (GSP). A new equation is proposed: GSP = 228.0 + 1707.0 × P. 2. The new calibrated CLAMP dataset – PHYSGCHINA,CLAMP, which is based on canonical correspondence analysis, is improved by the inclusion of 50 Chinese samples. The result indicates that, new calibrated data from 50 Chinese sample sites are situated away from the former 144 samples in the physiognomic space, which may be caused by the unique characters of leaf physiognomy under monsoon condition. Therefore, a new calibrated CLAMP dataset, i.e., PHYSGCHINA, is set up based on 50 new Chinese samples, and 144 former samples from PHYSG3BRC. This new dataset could improve the accuracy of paleoclimate reconstructions for floras under the monsoon climate condition. When it is applied to Chinese Neogene floras, PHYSGCHINA could improve the accuracy of paleoclimate parameters, especially parameters related to precipitation. 3. Paleoclimate reconstructions of Chinese Cenozoic floras,Paleoclimates of Chinese Cenozoic floras are reconstructed using leaf physiognomy- climate models being set up in this study. The Chinese paleoclimate history in Eocene is similar to the trend from worldwide record. That is, hot climate presented in early Eocene and early Middle Eocene, and then, climate cooled down from late Middle Eocene to Late Eocene in China. Moreover, paleoclimates of two Late Miocene floras from Yunnan province, i.e., Xiaolongtan flora and Bangmai flora, are reconstructed using different models. The results indicate that, temperature of Yunnan is slightly higher than that in nowadays, but the precipitation is much higher than that at present day, which may be caused by the uplift of Hengduan Mountain. 4. Late Pliocene Yangjie flora in West Yunnan Province, China,A Late Pliocene Yangjie flora form Yongping County, western Yunnan province, which belongs to Sanying formation, is studied in this dissertation. Yangjie flora is dominated by Quercus sect. Heterobalanus (Oerst.) Menits. (evergreen sclerophyllous oaks), and this forest type is quite common in SW China at present. The discovery of Yangjie flora provides evidence that, vegetations of Yunnan in Miocene were dominated by evergreen forests, and the dominant families were Fabaceae, Fagaceae and Lauraceae. In Pliocene, this vegetation type changed gradually to evergreen sclerophyllous oak forests. This vegetation change may have been caused by the uplift of Hengduan Mountain in Neogene. A polypodiaceous fern, Drynaria callispora sp. nov., is described from the upper Pliocene Sanying Formation in western Yunnan Province, southwestern China. The species with well-preserved pinnae and in situ spores is the first convincing Drynaria fossil record. Detailed morphological investigation reveals that D. callispora is characterized by 1) pinnatifid fronds with entire-margined pinnae having straight or zigzag secondary veins; 2) finer venation showing void quadrangular areoles, but occasionally with one unbranched veinlet; 3) one row of circular sori on each side of the strong primary vein; and 4) in situ spores with verrucate exospores elliptical in polar view and bean-shaped in equatorial view. A morphological comparison shows that D. callispora is significantly different from all the fossil species previously identified as drynarioids. A phylogenetic analysis of D. callispora supports that the fossil is closely related to D. sinica Diels and D. mollis Bedd., two extant species distributing in the Himalayas. The discovery of the new fern indicates that the genus Drynaria became diversified in its modern distribution region no later than the late Pliocene and had retained the similar ecology to that of many modern drynarioid ferns ever since. 5. Paleoclimate reconstruction of Yangjie flora,LMA, Single Linear Regression for Precipitation and PHYSGCHINA are applied to reconstruct paleoclimate of Yangjie flora. MAT calculated by LMA and CLAMP is 22.0 ± 2.4°C and 20.0 ± 1.4°C, respectively, and GSP calculated by Single Linear Regression for Precipitation and PHYSGCHINA is 1521.9 ± 131.3 mm and 2084.7 ± 223.1 mm, respectively All methods agree that, both temperature and precipitation were higher in Late Pliocene than in nowadays. Meanwhile, precipitation parameters calculated by CLAMP gets high values. 6. Preliminary study of insect herbivory in Yangjie flora,Insect herbivory on leaves of Quercus preguyavaefolia Tao and Q. presenescens Zhou, two dominant species in Yangjie flora, is reported by the preliminary research. Each of these two species has a high diversity of insect damage. Among all damage types, margin feeding and surface feeding are most common, and skeletonization, piercing and sucking, and galling are less found. Most of these damage types belonge to the high host specialization (HS = 1). However, the proportion of leaves without insect damage in Q. presenescens is much higher than that in Q. preguyavaefolia. According to the log-log linear regression model, both Quercus preguyavaefolia and Q. presenescens have very high leaf mass per area (with 184.8 ± 6.7 g/m2 and 155.3 ± 10.7 g/m2, respectively). The high diversity of insect herbivory demonstrates a warm climate in the Late Pliocene of West Yunnan Province.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Last%2BGlacial%2BMaximum&order=desc&&fq=dc.project.title_filter%3AThe%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+climate%5C+is%5C+widely%5C+used%5C+to%5C+reconstruct%5C+paleoclimates%5C+of%5C+Cenozoic%5C+floras.%5C+Previous%5C+works%5C+demonstrate%5C+that%5C+LMA%5C+show%5C+regional%5C+constraints.%5C+Until%5C+now%2C%5C+no%5C+equation%5C+has%5C+been%5C+set%5C+up%5C+directly%5C+from%5C+Chinese%5C+forests.%5C+This%5C+relationship%5C+is%5C+exhaustively%5C+studied%5C+based%5C+on%5C+50%5C+samples%5C+from%5C+mesic%5C+to%5C+humid%5C+forests%5C+across%5C+China.%5C+Models%5C+including%5C+Leaf%5C+Margin%5C+Analysis%5C+%5C%28LMA%5C%29%2C%5C+Single%5C+Linear%5C+regression%5C+for%5C+Precipitation%2C%5C+and%5C+Climate%5C+Leaf%5C+Analysis%5C+Multivariate%5C+Program%5C+%5C%28CLAMP%5C%29%2C%5C+are%5C+set%5C+up%5C+and%5C+used%5C+to%5C+quantitatively%5C+reconstruct%5C+paleoclimates%5C+of%5C+Chinese%5C+Neogene%5C+floras.%5C+Meanwhile%2C%5C+a%5C+paleoflora%2C%5C+i.e.%2C%5C+Yangjie%5C+flora%2C%5C+which%5C+belongs%5C+to%5C+the%5C+Upper%5C+Pliocene%5C+Sanying%5C+formation%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+is%5C+studied.%5C+The%5C+species%5C+assemblage%2C%5C+paleoclimate%5C+and%5C+paleoecology%5C+of%5C+Yangjie%5C+flora%5C+are%5C+discussed.%5C+Conclusions%5C+in%5C+this%5C+dissertation%5C+are%5C+as%5C+following%5C%3A%5C+1.%5C+Chinese%5C+leaf%5C+physiognomy%5C-climate%5C+models%5C+based%5C+on%5C+regression%5C+analyses%EF%BC%8CLMA%5C+is%5C+a%5C+widely%5C+used%5C+method%5C+that%5C+applies%5C+present%5C-day%5C+linear%5C+correlation%5C+between%5C+the%5C+proportion%5C+of%5C+woody%5C+dicotyledonous%5C+species%5C+with%5C+untoothed%5C+leaves%5C+%5C%28P%5C%29%5C+and%5C+mean%5C+annual%5C+temperature%5C+%5C%28MAT%5C%29%5C+to%5C+estimate%5C+paleotemperatures%5C+from%5C+fossil%5C+leaf%5C+floras.%5C+The%5C+Chinese%5C+data%5C+indicate%5C+that%5C+P%5C+shows%5C+a%5C+strong%5C+linear%5C+correlation%5C+with%5C+MAT%2C%5C+but%5C+the%5C+actual%5C+relationship%5C+is%5C+slightly%5C+different%5C+from%5C+those%5C+recognized%5C+from%5C+other%5C+regions.%5C+Among%5C+all%5C+currently%5C+used%5C+LMA%5C+equations%2C%5C+the%5C+one%5C+resulting%5C+from%5C+North%5C+and%5C+Central%5C+American%5C+and%5C+Japanese%5C+data%2C%5C+rather%5C+than%5C+the%5C+widely%5C+used%5C+East%5C+Asian%5C+LMA%5C+equation%2C%5C+yields%5C+the%5C+closest%5C+values%5C+to%5C+the%5C+actual%5C+MATs%5C+of%5C+the%5C+Chinese%5C+samples%5C+%5C%28mean%5C+absolute%5C+error%5C+%3D%5C+1.9%C2%B0C%5C%29.%5C+A%5C+new%5C+equation%5C+derived%5C+from%5C+the%5C+Chinese%5C+forests%5C+is%5C+therefore%5C+developed%2C%5C+where%5C+MAT%5C+%3D%5C+1.038%5C+%5C%2B%5C+27.6%5C+%C3%97%5C+P.%5C+This%5C+study%5C+not%5C+only%5C+demonstrates%5C+the%5C+similarity%5C+of%5C+the%5C+relationship%5C+between%5C+P%5C+and%5C+MAT%5C+in%5C+the%5C+Northern%5C+Hemisphere%2C%5C+but%5C+also%5C+improves%5C+the%5C+reliability%5C+of%5C+LMA%5C+for%5C+paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+paleofloras.%5C+Besides%2C%5C+regression%5C+analyses%5C+are%5C+used%5C+to%5C+explore%5C+the%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+precipitation.%5C+In%5C+contrast%5C+to%5C+former%5C+studies%2C%5C+entire%5C+leaf%5C+margin%5C+shows%5C+the%5C+highest%5C+correlation%5C+with%5C+the%5C+Growing%5C+Season%5C+Precipitation%5C+%5C%28GSP%5C%29.%5C+A%5C+new%5C+equation%5C+is%5C+proposed%5C%3A%5C+GSP%5C+%3D%5C+228.0%5C+%5C%2B%5C+1707.0%5C+%C3%97%5C+P.%5C+2.%5C+The%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%5C+%E2%80%93%5C+PHYSGCHINA%EF%BC%8CCLAMP%2C%5C+which%5C+is%5C+based%5C+on%5C+canonical%5C+correspondence%5C+analysis%2C%5C+is%5C+improved%5C+by%5C+the%5C+inclusion%5C+of%5C+50%5C+Chinese%5C+samples.%5C+The%5C+result%5C+indicates%5C+that%2C%5C+new%5C+calibrated%5C+data%5C+from%5C+50%5C+Chinese%5C+sample%5C+sites%5C+are%5C+situated%5C+away%5C+from%5C+the%5C+former%5C+144%5C+samples%5C+in%5C+the%5C+physiognomic%5C+space%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+unique%5C+characters%5C+of%5C+leaf%5C+physiognomy%5C+under%5C+monsoon%5C+condition.%5C+Therefore%2C%5C+a%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%2C%5C+i.e.%2C%5C+PHYSGCHINA%2C%5C+is%5C+set%5C+up%5C+based%5C+on%5C+50%5C+new%5C+Chinese%5C+samples%2C%5C+and%5C+144%5C+former%5C+samples%5C+from%5C+PHYSG3BRC.%5C+This%5C+new%5C+dataset%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+reconstructions%5C+for%5C+floras%5C+under%5C+the%5C+monsoon%5C+climate%5C+condition.%5C+When%5C+it%5C+is%5C+applied%5C+to%5C+Chinese%5C+Neogene%5C+floras%2C%5C+PHYSGCHINA%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+parameters%2C%5C+especially%5C+parameters%5C+related%5C+to%5C+precipitation.%5C+3.%5C+Paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%EF%BC%8CPaleoclimates%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%5C+are%5C+reconstructed%5C+using%5C+leaf%5C+physiognomy%5C-%5C+climate%5C+models%5C+being%5C+set%5C+up%5C+in%5C+this%5C+study.%5C+The%5C+Chinese%5C+paleoclimate%5C+history%5C+in%5C+Eocene%5C+is%5C+similar%5C+to%5C+the%5C+trend%5C+from%5C+worldwide%5C+record.%5C+That%5C+is%2C%5C+hot%5C+climate%5C+presented%5C+in%5C+early%5C+Eocene%5C+and%5C+early%5C+Middle%5C+Eocene%2C%5C+and%5C+then%2C%5C+climate%5C+cooled%5C+down%5C+from%5C+late%5C+Middle%5C+Eocene%5C+to%5C+Late%5C+Eocene%5C+in%5C+China.%5C+Moreover%2C%5C+paleoclimates%5C+of%5C+two%5C+Late%5C+Miocene%5C+floras%5C+from%5C+Yunnan%5C+province%2C%5C+i.e.%2C%5C+Xiaolongtan%5C+flora%5C+and%5C+Bangmai%5C+flora%2C%5C+are%5C+reconstructed%5C+using%5C+different%5C+models.%5C+The%5C+results%5C+indicate%5C+that%2C%5C+temperature%5C+of%5C+Yunnan%5C+is%5C+slightly%5C+higher%5C+than%5C+that%5C+in%5C+nowadays%2C%5C+but%5C+the%5C+precipitation%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+at%5C+present%5C+day%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain.%5C+4.%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+China%EF%BC%8CA%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+form%5C+Yongping%5C+County%2C%5C+western%5C+Yunnan%5C+province%2C%5C+which%5C+belongs%5C+to%5C+Sanying%5C+formation%2C%5C+is%5C+studied%5C+in%5C+this%5C+dissertation.%5C+Yangjie%5C+flora%5C+is%5C+dominated%5C+by%5C+Quercus%5C+sect.%5C+Heterobalanus%5C+%5C%28Oerst.%5C%29%5C+Menits.%5C+%5C%28evergreen%5C+sclerophyllous%5C+oaks%5C%29%2C%5C+and%5C+this%5C+forest%5C+type%5C+is%5C+quite%5C+common%5C+in%5C+SW%5C+China%5C+at%5C+present.%5C+The%5C+discovery%5C+of%5C+Yangjie%5C+flora%5C+provides%5C+evidence%5C+that%2C%5C+vegetations%5C+of%5C+Yunnan%5C+in%5C+Miocene%5C+were%5C+dominated%5C+by%5C+evergreen%5C+forests%2C%5C+and%5C+the%5C+dominant%5C+families%5C+were%5C+Fabaceae%2C%5C+Fagaceae%5C+and%5C+Lauraceae.%5C+In%5C+Pliocene%2C%5C+this%5C+vegetation%5C+type%5C+changed%5C+gradually%5C+to%5C+evergreen%5C+sclerophyllous%5C+oak%5C+forests.%5C+This%5C+vegetation%5C+change%5C+may%5C+have%5C+been%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain%5C+in%5C+Neogene.%5C+A%5C+polypodiaceous%5C+fern%2C%5C+Drynaria%5C+callispora%5C+sp.%5C+nov.%2C%5C+is%5C+described%5C+from%5C+the%5C+upper%5C+Pliocene%5C+Sanying%5C+Formation%5C+in%5C+western%5C+Yunnan%5C+Province%2C%5C+southwestern%5C+China.%5C+The%5C+species%5C+with%5C+well%5C-preserved%5C+pinnae%5C+and%5C+in%5C+situ%5C+spores%5C+is%5C+the%5C+first%5C+convincing%5C+Drynaria%5C+fossil%5C+record.%5C+Detailed%5C+morphological%5C+investigation%5C+reveals%5C+that%5C+D.%5C+callispora%5C+is%5C+characterized%5C+by%5C+1%5C%29%5C+pinnatifid%5C+fronds%5C+with%5C+entire%5C-margined%5C+pinnae%5C+having%5C+straight%5C+or%5C+zigzag%5C+secondary%5C+veins%5C%3B%5C+2%5C%29%5C+finer%5C+venation%5C+showing%5C+void%5C+quadrangular%5C+areoles%2C%5C+but%5C+occasionally%5C+with%5C+one%5C+unbranched%5C+veinlet%5C%3B%5C+3%5C%29%5C+one%5C+row%5C+of%5C+circular%5C+sori%5C+on%5C+each%5C+side%5C+of%5C+the%5C+strong%5C+primary%5C+vein%5C%3B%5C+and%5C+4%5C%29%5C+in%5C+situ%5C+spores%5C+with%5C+verrucate%5C+exospores%5C+elliptical%5C+in%5C+polar%5C+view%5C+and%5C+bean%5C-shaped%5C+in%5C+equatorial%5C+view.%5C+A%5C+morphological%5C+comparison%5C+shows%5C+that%5C+D.%5C+callispora%5C+is%5C+significantly%5C+different%5C+from%5C+all%5C+the%5C+fossil%5C+species%5C+previously%5C+identified%5C+as%5C+drynarioids.%5C+A%5C+phylogenetic%5C+analysis%5C+of%5C+D.%5C+callispora%5C+supports%5C+that%5C+the%5C+fossil%5C+is%5C+closely%5C+related%5C+to%5C+D.%5C+sinica%5C+Diels%5C+and%5C+D.%5C+mollis%5C+Bedd.%2C%5C+two%5C+extant%5C+species%5C+distributing%5C+in%5C+the%5C+Himalayas.%5C+The%5C+discovery%5C+of%5C+the%5C+new%5C+fern%5C+indicates%5C+that%5C+the%5C+genus%5C+Drynaria%5C+became%5C+diversified%5C+in%5C+its%5C+modern%5C+distribution%5C+region%5C+no%5C+later%5C+than%5C+the%5C+late%5C+Pliocene%5C+and%5C+had%5C+retained%5C+the%5C+similar%5C+ecology%5C+to%5C+that%5C+of%5C+many%5C+modern%5C+drynarioid%5C+ferns%5C+ever%5C+since.%5C+5.%5C+Paleoclimate%5C+reconstruction%5C+of%5C+Yangjie%5C+flora%EF%BC%8CLMA%2C%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+are%5C+applied%5C+to%5C+reconstruct%5C+paleoclimate%5C+of%5C+Yangjie%5C+flora.%5C+MAT%5C+calculated%5C+by%5C+LMA%5C+and%5C+CLAMP%5C+is%5C+22.0%5C+%C2%B1%5C+2.4%C2%B0C%5C+and%5C+20.0%5C+%C2%B1%5C+1.4%C2%B0C%2C%5C+respectively%2C%5C+and%5C+GSP%5C+calculated%5C+by%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+is%5C+1521.9%5C+%C2%B1%5C+131.3%5C+mm%5C+and%5C+2084.7%5C+%C2%B1%5C+223.1%5C+mm%2C%5C+respectively%5C+All%5C+methods%5C+agree%5C+that%2C%5C+both%5C+temperature%5C+and%5C+precipitation%5C+were%5C+higher%5C+in%5C+Late%5C+Pliocene%5C+than%5C+in%5C+nowadays.%5C+Meanwhile%2C%5C+precipitation%5C+parameters%5C+calculated%5C+by%5C+CLAMP%5C+gets%5C+high%5C+values.%5C+6.%5C+Preliminary%5C+study%5C+of%5C+insect%5C+herbivory%5C+in%5C+Yangjie%5C+flora%EF%BC%8CInsect%5C+herbivory%5C+on%5C+leaves%5C+of%5C+Quercus%5C+preguyavaefolia%5C+Tao%5C+and%5C+Q.%5C+presenescens%5C+Zhou%2C%5C+two%5C+dominant%5C+species%5C+in%5C+Yangjie%5C+flora%2C%5C+is%5C+reported%5C+by%5C+the%5C+preliminary%5C+research.%5C+Each%5C+of%5C+these%5C+two%5C+species%5C+has%5C+a%5C+high%5C+diversity%5C+of%5C+insect%5C+damage.%5C+Among%5C+all%5C+damage%5C+types%2C%5C+margin%5C+feeding%5C+and%5C+surface%5C+feeding%5C+are%5C+most%5C+common%2C%5C+and%5C+skeletonization%2C%5C+piercing%5C+and%5C+sucking%2C%5C+and%5C+galling%5C+are%5C+less%5C+found.%5C+Most%5C+of%5C+these%5C+damage%5C+types%5C+belonge%5C+to%5C+the%5C+high%5C+host%5C+specialization%5C+%5C%28HS%5C+%3D%5C+1%5C%29.%5C+However%2C%5C+the%5C+proportion%5C+of%5C+leaves%5C+without%5C+insect%5C+damage%5C+in%5C+Q.%5C+presenescens%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Q.%5C+preguyavaefolia.%5C+According%5C+to%5C+the%5C+log%5C-log%5C+linear%5C+regression%5C+model%2C%5C+both%5C+Quercus%5C+preguyavaefolia%5C+and%5C+Q.%5C+presenescens%5C+have%5C+very%5C+high%5C+leaf%5C+mass%5C+per%5C+area%5C+%5C%28with%5C+184.8%5C+%C2%B1%5C+6.7%5C+g%5C%2Fm2%5C+and%5C+155.3%5C+%C2%B1%5C+10.7%5C+g%5C%2Fm2%2C%5C+respectively%5C%29.%5C+The%5C+high%5C+diversity%5C+of%5C+insect%5C+herbivory%5C+demonstrates%5C+a%5C+warm%5C+climate%5C+in%5C+the%5C+Late%5C+Pliocene%5C+of%5C+West%5C+Yunnan%5C+Province."},{"jsname":"lastIndexed","jscount":"2024-10-06"}],"Funding Project","dc.project.title_filter")'>
Aconitum c... [1]
CAS Presid... [1]
Chinese Ac... [1]
Cycas mich... [1]
Following ... [1]
National N... [1]
More...
Indexed By
SCI [143]
CSCD [4]
SSCI [2]
Funding Organization
CAS/SAFEA ... [3]
National B... [3]
Yunnan Nat... [3]
NSFC [2]
National N... [2]
National N... [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 352
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Data Analysisin Vegetation Ecology
期刊论文
出版物, 3111, 期号: 0, 页码: 1-297
Authors:
Otto Wildi
Adobe PDF(3432Kb)
  |  
Favorite
  |  
View/Download:175/2
  |  
Submit date:2017/07/24
A clue to the evolutionary history of modern East Asian flora: Insights from phylogeography and diterpenoid alkaloid distribution pattern of the Spiraea japonica complex
期刊论文
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2023, 卷号: 184, 页码: 107772
Authors:
Luo,Dong
;
Song,Min-shu
;
Xu,Bo
;
Zhang,Yu
;
Zhang,Jian-wen
;
Ma,Xiang-guang
;
Hao,Xiao jiang
;
Sun,Hang
View
  |  
Adobe PDF(12334Kb)
  |  
Favorite
  |  
View/Download:51/15
  |  
Submit date:2024/07/25
ampliative Spiraea japonica complex
East Asian flora
Transition belt
Phylogeography
Diterpenoid alkaloids
MOLECULAR PHYLOGEOGRAPHY
SECONDARY METABOLITES
HENGDUAN MOUNTAINS
QUATERNARY CLIMATE
PLANT DIVERSITY
ROSACEAE
DNA
CHLOROPLAST
COALESCENT
CHINA
RAD-sequencing improves the genetic characterization of a threatened tree peony (Paeonia ludlowii) endemic to China: Implications for conservation
期刊论文
PLANT DIVERSITY, 2023, 卷号: 45, 期号: 5, 页码: 513-522
Authors:
Zhao,Yu-Juan
;
Yin,Gen-Shen
;
Gong,Xun
View
  |  
Adobe PDF(1067Kb)
  |  
Favorite
  |  
View/Download:52/6
  |  
Submit date:2024/05/09
Conservation
Fragmentation
Genetic structure
Genetic variation
Paeonia
RAD-sequencing
HABITAT FRAGMENTATION
POPULATION-STRUCTURE
GENOMICS
CONSEQUENCES
DIVERSITY
SOFTWARE
FLOW
CHALLENGES
INFERENCE
DISTANCE
极小种群野生植物显脉木兰的保护遗传学研究
学位论文
: 中国科学院大学, 2022
Authors:
杨丰懋
Adobe PDF(2114Kb)
  |  
Favorite
  |  
View/Download:34/0
  |  
Submit date:2024/05/14
保护遗传学,简化基因组,种群历史动态,极小种群野生植物,显脉木兰
Conservation genetics, RAD-seq, Demographic history, Plant Species with Extremely Small Populations, Magnolia fistulosa
中国红豆杉属物种的生态位分析与保护策略
学位论文
, 2021
Authors:
钟大吕
Adobe PDF(20049Kb)
  |  
Favorite
  |  
View/Download:203/0
  |  
Submit date:2024/03/20
Biogeographical divides delineated by the three-step landforms of China and the East China Sea: Insights from the phylogeography of Kerria japonica
期刊论文
JOURNAL OF BIOGEOGRAPHY, 2021, 卷号: 48, 期号: 2, 页码: 372-385
Authors:
Luo,Dong
;
Xu,Bo
;
Li,Zhi-Min
;
Sun,Hang
Favorite
  |  
View/Download:95/0
  |  
Submit date:2022/04/02
biogeographical divides
East Asia
East China Sea
floristic regionalization
Kerria japonica
three‐
step landforms of China
TIBETAN PLATEAU
MOLECULAR PHYLOGEOGRAPHY
QUATERNARY CLIMATE
ASIA
DNA
CHLOROPLAST
ENDEMISM
HISTORY
PLANTS
DIVERSIFICATION
Introgression between Betula tianshanica and Betula microphylla and its implications for conservation
期刊论文
PLANTS PEOPLE PLANET, 2021, 卷号: 3, 期号: 4, 页码: 363-374
Authors:
Ding,Junyi
;
Hua,Donglai
;
Borrell,James S.
;
Buggs,Richard J. A.
;
Wang,Luwei
;
Wang,Feifei
;
Li,Zheng
;
Wang,Nian
Favorite
  |  
View/Download:84/0
  |  
Submit date:2022/04/02
Betula microphylla
birch
conservation
ecological niche modelling
genetic structure
hybridization
introgression
species record
MICROSATELLITE MARKERS
DWARF BIRCH
HYBRIDIZATION
EVOLUTION
FRAMEWORK
SPECIATION
DISCOVERY
PUBESCENS
TRANSPORT
SEQUENCE
Insights Into the Significance of the Chinense Loess Plateau for Preserving Biodiversity From the Phylogeography of Speranskia tuberculata (Euphorbiaceae)
期刊论文
FRONTIERS IN PLANT SCIENCE, 2021, 卷号: 12, 页码: 604251
Authors:
Ye,Jun-Wei
;
Wu,Hai-Yang
;
Fu,Meng-Jiao
;
Zhang,Pei
;
Tian,Bin
Favorite
  |  
View/Download:83/0
  |  
Submit date:2022/04/02
Chinese Loess Plateau
refugia
nuclear microsatellites
Quaternary
Speranskia tuberculata
MOLECULAR PHYLOGEOGRAPHY
GENETIC CONSEQUENCES
DIVERSITY
FOREST
CHINA
PALAEOVEGETATION
INFERENCE
SOFTWARE
CLIMATE
PLANTS
Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation
期刊论文
PLANT JOURNAL, 2021, 卷号: 107, 期号: 5, 页码: 1533-1545
Authors:
Ma,Hong
;
Liu,Yongbo
;
Liu,Detuan
;
Sun,Weibang
;
Liu,Xiongfang
;
Wan,Youming
;
Zhang,Xiujiao
;
Zhang,Rengang
;
Yun,Quanzheng
;
Wang,Jihua
;
Li,Zhenghong
;
Ma,Yongpeng
Favorite
  |  
View/Download:121/0
  |  
Submit date:2022/04/02
genome sequencing
rhododendrons
deleterious mutation
population demography
conservation
HI-C
ANNOTATION
YUNNAN
TOOL
SELECTION
SEQUENCE
PROGRAM
SYSTEM
TREE
Geoclimatic factors influence the population genetic connectivity of Incarvillea arguta (Bignoniaceae) in the Himalaya-Hengduan Mountains biodiversity hotspot
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 卷号: 59, 期号: 1, 页码: 151-168
Authors:
Rana,Santosh Kumar
;
Luo,Dong
;
Rana,Hum Kala
;
O'Neill,Alexander Robert
;
Sun,Hang
Favorite
  |  
View/Download:110/0
  |  
Submit date:2022/04/02
geoclimatic factors
Himalaya-Hengduan Mountains
Incarvillea arguta
phylogeography
population genetic connectivity
species distribution modelling
TIBETAN PLATEAU
MOLECULAR PHYLOGENY
CLIMATE-CHANGE
DISTRIBUTION MODELS
QUATERNARY CLIMATE
PHYLOGEOGRAPHY
UPLIFT
GROWTH
EVOLUTION
RISE