×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
昆明植物所硕博研... [266]
中国科学院东亚植物... [65]
资源植物与生物技术... [46]
植物分类与资源学报 [31]
共享文献 [23]
管理部门 [23]
More...
Authors
杨祝良 [7]
李德铢 [4]
Wang Yuhua [3]
刘培贵 [3]
彭华 [3]
税玉民 [3]
More...
Document Type
Thesis [266]
Journal ... [203]
Other [9]
Conference... [6]
Presentati... [6]
Book [5]
More...
Date Issued
2022 [14]
2020 [29]
2019 [14]
2018 [24]
2017 [29]
2016 [19]
More...
Language
中文 [373]
英语 [9]
Source Publication
植物分类与资源学报 [53]
云南植物研究 [18]
生物多样性 [13]
生态学报 [8]
广西植物 [6]
生态学杂志 [6]
More...
Funding Project
GST, P < 0.05) were exhibited by this species. The SAMOVA revealed seven diverging groups of related chlorotypes, six of them had distinct nonoverlapping geographical ranges: one in the northeast comprising 10 populations, a second with a southeast distribution comprising 22 populations, and the remaning four groups comprising 15 populations located in the west part of the species’ range along different river valleys. The genetic clustering of populations into three regions was also supported by analysis of molecular variance, which showed that most genetic variation (82.43%) was found among these three regions. Two clusters were distinguished by both phylogenetic analysis and genealogical analysis of chlorotypes, one consisting of chlorotypes from the western region and the second consisting of those from the eastern region. Significant genetic differences between the two regions might be attributed to vicariance and restricted gene flow, and this vicariance could be explained by the physical environmental heterogeneity on each side of the Tanaka-Kaiyong Line. Following the uplift of the Tibetan Plateau, the reorganization of the major river drainages was primarily caused by river separation and capture events. These historical events could change the distribution of S. davidii from fragmented to continuous (Upper/Lower Jinshajiang and Yalongjiang/Daduhe), and from continuous to fragmented (Nujiang and Jinshajiang/Honghe). However, spatial and temporal patterns of phylogeographic divergence are strongly associated with historical disjunction rather than modern drainage connections. Moreover, the following north-south split in the eastern region and effective isolation with their genetic diversity were essentially modelled by genetic drift. The higher chlorotype richness and genetic divergence for populations in western region compared with other two regions suggests that there were multipe refugia or in situ survival of S. davidii in the Himalayan-Hengduan Mountain region. Fixation of chlorotypes in the northeastern region and near fixation in the southeastern region suggest a recent colonization of these areas. We further found that this species underwent past range expansion around 37-303 thousand years ago (kya). The southeastern populations likely experienced a demographic expansion via unidirectional gene flow along rivers, while northeastern populations underwent a more northward expansion, both from initial populations (s) (21, 22, 23) preserved on eastern refugia (Jinshajiang). This process might have been accompanied with a series of founder effects or bottlenecks making populations genetically impoverished. 3. Phylogeographic analysisbased on nuclear sequence,We sequenced the nuclear (ncpGS) region in all populations sampled, recovering 23 nuclear haplotypes. Compared to cpDNA, both NST (0.470) and GST (0.338) were relatively lower, but NST was also significantly larger than GST. 37.10% of the total variation was distributed among regions which was much lower than that shown by chlorotypes. Thus, more extensive distribution of nuclear haplotypes was exhibited across the geographical range instead of the strong population subdivision observed in chlorotypes. Similarly to the chloroplast data, we found that genetic differentiation of nDNA was positively correlated with the geographical distance, but the increase in the geographical distance between populations did not increase the genetic differentiation of nDNA as rapidly as that of cpDNA. These contrasting levels between the chloroplast and nuclear genomes of S. davidii are likely due to limited gene flow of cpDNA by seeds vs. the extensive gene flow of nDNA by wind-mediated pollen in the population history. We also determined from nuclear markers that haplotype diversity was reduced in the southeastern and northeastern regions due to the loss of rare haplotypes in western region. This reduction of gene diversity is also a signature of founder events or recent bottleneck during post-glacial colonization. However, nuclear diversity within populations remains high. This provides evidence that regionally pollen flow might be sufficiently high to blur the genetic identity of founder populations over a reasonably large spatial scale.3. Relationships among three varieties,The phylogenetic analysis identified two phylogroups of chlorotypes, corresponding to S. davidii var. davidii and var. chuansinesis. The former was distinguished by the abscence of predonminant nuclear haplotype H1 of the latter. The monophyletic group of chlorotypes in var. davidii and var. liangshanesis showed their relatively close relationship. And their genetic divergence from the third variety appears to be relative to their slight morphological difference in leaf size and the divergent environmental niche spaces they occupy. Thus, the observed differences in morphological characters between var. chuansinesis and other two varieties can be explained by the seed dispersal limitation illustrated above (as inferred by geographical separation) and by environmental heterogeneity (as inferred by precipitation or elevation) or by a combination of both. After all, the geological changes, drainage reorganization, and floristic differences following the Himalayan uplift have been suggested to affect the genetic structure of S. davidii. These results provide new insights into the phylogeographic pattern of plants in China. In addition, the unique population genetic structure found in S. davidii has provided important insights into the evolutionary history of this species. The genetic profile uncovered in this study is also critical for its conservation management. Our study has uncovered the existence of at least two ‘evolutionary significant units’ independent units within S. davidii, corresponding to var. davidii from eastern region and var. chuansinensis from western region. The conservation efforts should first focus on most western populations and on the southeastern ones exhibiting high levels of genetic diversity, while the genetically homogeneous northeastern populations located in the degraded Loess Plateau should require much greater conservation efforts.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3ASophora%5C+davidii%5C+%5C%28Franch.%5C%29%5C+Skeels%5C+is%5C+an%5C+endemic%5C+species%5C+to%5C+China%2C%5C+and%5C+widely%5C+distributed%5C+in%5C+the%5C+dry%5C+valleys%5C+of%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+Systems%2C%5C+the%5C+Yungui%5C+Plateau%2C%5C+the%5C+Qinling%5C+Mountain%2C%5C+the%5C+Loess%5C+Plateau%5C+and%5C+other%5C+places%5C+of%5C+China.%5C+Previous%5C+studies%5C+of%5C+plant%5C+phylogeography%5C+have%5C+focused%5C+mainly%5C+on%5C+some%5C+taxa%5C+from%5C+the%5C+mountainous%5C+areas%5C+of%5C+China%2C%5C+relatively%5C+few%5C+studies%5C+have%5C+been%5C+conducted%5C+on%5C+plant%5C+taxa%5C+from%5C+the%5C+river%5C+valleys.%5C+The%5C+population%5C+dynamics%5C+and%5C+evolutionary%5C+history%5C+of%5C+species%5C+in%5C+such%5C+habitat%5C+remain%5C+less%5C+unknown%2C%5C+including%5C+the%5C+factors%5C+affecting%5C+the%5C+population%5C+genetic%5C+structure%5C+and%5C+its%5C+potential%5C+refugia%5C+in%5C+glaciation.%5C+In%5C+this%5C+study%2C%5C+we%5C+first%5C+determine%5C+the%5C+chromosome%5C+number%2C%5C+ploidy%5C+and%5C+karyotype%5C+of%5C+most%5C+populations%5C+we%5C+sampled.%5C+Then%2C%5C+based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+inherited%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+genetic%5C+diversity%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii%5C+and%5C+factors%5C+affecting%5C+them.%5C+The%5C+demographic%5C+history%5C+and%5C+potential%5C+refugia%5C+of%5C+this%5C+speices%5C+were%5C+investigated%5C+and%5C+the%5C+genetic%5C+relationship%5C+among%5C+three%5C+varieties%5C+was%5C+also%5C+clarified.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Cytogeography%EF%BC%8CThe%5C+chromosome%5C+number%5C+and%5C+karyotypes%5C+of%5C+14%5C+S.%5C+davidii%5C+populations%5C+have%5C+been%5C+studied.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+choromosome%5C+number%5C+of%5C+all%5C+the%5C+populations%5C+is%5C+2n%5C+%3D%5C+18.%5C+The%5C+interphase%5C+nuclei%5C+and%5C+prophase%5C+chromosomes%5C+of%5C+the%5C+species%5C+were%5C+found%5C+to%5C+be%5C+of%5C+the%5C+complex%5C+chromosome%5C+type%5C+and%5C+interstitial%5C+type.%5C+The%5C+results%5C+of%5C+karyotype%5C+analysis%5C+showed%5C+that%5C+7%5C+of%5C+14%5C+materials%5C+has%5C+satellites%2C%5C+and%5C+the%5C+number%5C+and%5C+position%5C+of%5C+satellites%5C+differ%5C+among%5C+populations%2C%5C+and%5C+thus%5C+revealed%5C+a%5C+series%5C+of%5C+diversified%5C+karyotypes.%5C+With%5C+most%5C+populations%5C+being%5C+of%5C+ploidy%2C%5C+cytogenetical%5C+divergence%5C+within%5C+the%5C+species%5C+lied%5C+mainly%5C+in%5C+chromosome%5C+size%5C+and%5C+structure.%5C+The%5C+fact%5C+that%5C+polyploidization%5C+did%5C+not%5C+occur%5C+very%5C+often%5C+for%5C+variations%5C+in%5C+Southwest%5C+China%5C+was%5C+against%5C+viewpoint%5C+that%5C+polyploidization%5C+level%5C+in%5C+this%5C+area%5C+is%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+distribution%5C+areas%5C+due%5C+to%5C+the%5C+elevation%5C+of%5C+mountains%5C+and%5C+plateau.%5C+2.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+chloroplast%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+two%5C+cpDNA%5C+fragments%5C+rpl32%5C-trnL%5C%28UAG%5C%29intergenic%5C+spacer%5C+and%5C+trnH%5C-psbA%5C+spacer%5C+in%5C+40%5C+populations%5C+sampled%2C%5C+recovering%5C+22%5C+chlorotypes.%5C+The%5C+average%5C+with%5C-in%5C+population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.171%5C%29%5C+was%5C+much%5C+lower%5C+than%5C+total%5C+genetic%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.857%5C%29.%5C+Population%5C+differentiation%5C+was%5C+high%5C+%5C%28NST%5C+%3D%5C+0.924%2C%5C+GST%5C+%3D%5C+0.801%5C%29%5C+indicating%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow%5C+and%5C+significant%5C+phylogeographical%5C+stucture%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+P%5C+%3C%5C+0.05%5C%29%5C+were%5C+exhibited%5C+by%5C+this%5C+species.%5C+The%5C+SAMOVA%5C+revealed%5C+seven%5C+diverging%5C+groups%5C+of%5C+related%5C+chlorotypes%2C%5C+six%5C+of%5C+them%5C+had%5C+distinct%5C+nonoverlapping%5C+geographical%5C+ranges%5C%3A%5C+one%5C+in%5C+the%5C+northeast%5C+comprising%5C+10%5C+populations%2C%5C+a%5C+second%5C+with%5C+a%5C+southeast%5C+distribution%5C+comprising%5C+22%5C+populations%2C%5C+and%5C+the%5C+remaning%5C+four%5C+groups%5C+comprising%5C+15%5C+populations%5C+located%5C+in%5C+the%5C+west%5C+part%5C+of%5C+the%5C+species%E2%80%99%5C+range%5C+along%5C+different%5C+river%5C+valleys.%5C+The%5C+genetic%5C+clustering%5C+of%5C+populations%5C+into%5C+three%5C+regions%5C+was%5C+also%5C+supported%5C+by%5C+analysis%5C+of%5C+molecular%5C+variance%2C%5C+which%5C+showed%5C+that%5C+most%5C+genetic%5C+variation%5C+%5C%2882.43%25%5C%29%5C+was%5C+found%5C+among%5C+these%5C+three%5C+regions.%5C+Two%5C+clusters%5C+were%5C+distinguished%5C+by%5C+both%5C+phylogenetic%5C+analysis%5C+and%5C+genealogical%5C+analysis%5C+of%5C+chlorotypes%2C%5C+one%5C+consisting%5C+of%5C+chlorotypes%5C+from%5C+the%5C+western%5C+region%5C+and%5C+the%5C+second%5C+consisting%5C+of%5C+those%5C+from%5C+the%5C+eastern%5C+region.%5C+Significant%5C+genetic%5C+differences%5C+between%5C+the%5C+two%5C+regions%5C+might%5C+be%5C+attributed%5C+to%5C+vicariance%5C+and%5C+restricted%5C+gene%5C+flow%2C%5C+and%5C+this%5C+vicariance%5C+could%5C+be%5C+explained%5C+by%5C+the%5C+physical%5C+environmental%5C+heterogeneity%5C+on%5C+each%5C+side%5C+of%5C+the%5C+Tanaka%5C-Kaiyong%5C+Line.%5C+Following%5C+the%5C+uplift%5C+of%5C+the%5C+Tibetan%5C+Plateau%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+These%5C+historical%5C+events%5C+could%5C+change%5C+the%5C+distribution%5C+of%5C+S.%5C+davidii%5C+from%5C+fragmented%5C+to%5C+continuous%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%2FDaduhe%5C%29%2C%5C+and%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Nujiang%5C+and%5C+Jinshajiang%5C%2FHonghe%5C%29.%5C+However%2C%5C+spatial%5C+and%5C+temporal%5C+patterns%5C+of%5C+phylogeographic%5C+divergence%5C+are%5C+strongly%5C+associated%5C+with%5C+historical%5C+disjunction%5C+rather%5C+than%5C+modern%5C+drainage%5C+connections.%5C+Moreover%2C%5C+the%5C+following%5C+north%5C-south%5C+split%5C+in%5C+the%5C+eastern%5C+region%5C+and%5C+effective%5C+isolation%5C+with%5C+their%5C+genetic%5C+diversity%5C+were%5C+essentially%5C+modelled%5C+by%5C+genetic%5C+drift.%5C+The%5C+higher%5C+chlorotype%5C+richness%5C+and%5C+genetic%5C+divergence%5C+for%5C+populations%5C+in%5C+western%5C+region%5C+compared%5C+with%5C+other%5C+two%5C+regions%5C+suggests%5C+that%5C+there%5C+were%5C+multipe%5C+refugia%5C+or%5C+in%5C+situ%5C+survival%5C+of%5C+S.%5C+davidii%5C+in%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+region.%5C+Fixation%5C+of%5C+chlorotypes%5C+in%5C+the%5C+northeastern%5C+region%5C+and%5C+near%5C+fixation%5C+in%5C+the%5C+southeastern%5C+region%5C+suggest%5C+a%5C+recent%5C+colonization%5C+of%5C+these%5C+areas.%5C+We%5C+further%5C+found%5C+that%5C+this%5C+species%5C+underwent%5C+past%5C+range%5C+expansion%5C+around%5C+37%5C-303%5C+thousand%5C+years%5C+ago%5C+%5C%28kya%5C%29.%5C+The%5C+southeastern%5C+populations%5C+likely%5C+experienced%5C+a%5C+demographic%5C+expansion%5C+via%5C+unidirectional%5C+gene%5C+flow%5C+along%5C+rivers%2C%5C+while%5C+northeastern%5C+populations%5C+underwent%5C+a%5C+more%5C+northward%5C+expansion%2C%5C+both%5C+from%5C+initial%5C+populations%5C+%5C%28s%5C%29%5C+%5C%2821%2C%5C+22%2C%5C+23%5C%29%5C+preserved%5C+on%5C+eastern%5C+refugia%5C+%5C%28Jinshajiang%5C%29.%5C+This%5C+process%5C+might%5C+have%5C+been%5C+accompanied%5C+with%5C+a%5C+series%5C+of%5C+founder%5C+effects%5C+or%5C+bottlenecks%5C+making%5C+populations%5C+genetically%5C+impoverished.%5C+3.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+nuclear%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+the%5C+nuclear%5C+%5C%28ncpGS%5C%29%5C+region%5C+in%5C+all%5C+populations%5C+sampled%2C%5C+recovering%5C+23%5C+nuclear%5C+haplotypes.%5C+Compared%5C+to%5C+cpDNA%2C%5C+both%5C+NST%5C+%5C%280.470%5C%29%5C+and%5C+GST%5C+%5C%280.338%5C%29%5C+were%5C+relatively%5C+lower%2C%5C+but%5C+NST%5C+was%5C+also%5C+significantly%5C+larger%5C+than%5C+GST.%5C+37.10%25%5C+of%5C+the%5C+total%5C+variation%5C+was%5C+distributed%5C+among%5C+regions%5C+which%5C+was%5C+much%5C+lower%5C+than%5C+that%5C+shown%5C+by%5C+chlorotypes.%5C+Thus%2C%5C+more%5C+extensive%5C+distribution%5C+of%5C+nuclear%5C+haplotypes%5C+was%5C+exhibited%5C+across%5C+the%5C+geographical%5C+range%5C+instead%5C+of%5C+the%5C+strong%5C+population%5C+subdivision%5C+observed%5C+in%5C+chlorotypes.%5C+Similarly%5C+to%5C+the%5C+chloroplast%5C+data%2C%5C+we%5C+found%5C+that%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+was%5C+positively%5C+correlated%5C+with%5C+the%5C+geographical%5C+distance%2C%5C+but%5C+the%5C+increase%5C+in%5C+the%5C+geographical%5C+distance%5C+between%5C+populations%5C+did%5C+not%5C+increase%5C+the%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+as%5C+rapidly%5C+as%5C+that%5C+of%5C+cpDNA.%5C+These%5C+contrasting%5C+levels%5C+between%5C+the%5C+chloroplast%5C+and%5C+nuclear%5C+genomes%5C+of%5C+S.%5C+davidii%5C+are%5C+likely%5C+due%5C+to%5C+limited%5C+gene%5C+flow%5C+of%5C+cpDNA%5C+by%5C+seeds%5C+vs.%5C+the%5C+extensive%5C+gene%5C+flow%5C+of%5C+nDNA%5C+by%5C+wind%5C-mediated%5C+pollen%5C+in%5C+the%5C+population%5C+history.%5C+We%5C+also%5C+determined%5C+from%5C+nuclear%5C+markers%5C+that%5C+haplotype%5C+diversity%5C+was%5C+reduced%5C+in%5C+the%5C+southeastern%5C+and%5C+northeastern%5C+regions%5C+due%5C+to%5C+the%5C+loss%5C+of%5C+rare%5C+haplotypes%5C+in%5C+western%5C+region.%5C+This%5C+reduction%5C+of%5C+gene%5C+diversity%5C+is%5C+also%5C+a%5C+signature%5C+of%5C+founder%5C+events%5C+or%5C+recent%5C+bottleneck%5C+during%5C+post%5C-glacial%5C+colonization.%5C+However%2C%5C+nuclear%5C+diversity%5C+within%5C+populations%5C+remains%5C+high.%5C+This%5C+provides%5C+evidence%5C+that%5C+regionally%5C+pollen%5C+flow%5C+might%5C+be%5C+sufficiently%5C+high%5C+to%5C+blur%5C+the%5C+genetic%5C+identity%5C+of%5C+founder%5C+populations%5C+over%5C+a%5C+reasonably%5C+large%5C+spatial%5C+scale.3.%5C+Relationships%5C+among%5C+three%5C+varieties%EF%BC%8CThe%5C+phylogenetic%5C+analysis%5C+identified%5C+two%5C+phylogroups%5C+of%5C+chlorotypes%2C%5C+corresponding%5C+to%5C+S.%5C+davidii%5C+var.%5C+davidii%5C+and%5C+var.%5C+chuansinesis.%5C+The%5C+former%5C+was%5C+distinguished%5C+by%5C+the%5C+abscence%5C+of%5C+predonminant%5C+nuclear%5C+haplotype%5C+H1%5C+of%5C+the%5C+latter.%5C+The%5C+monophyletic%5C+group%5C+of%5C+chlorotypes%5C+in%5C+var.%5C+davidii%5C+and%5C+var.%5C+liangshanesis%5C+showed%5C+their%5C+relatively%5C+close%5C+relationship.%5C+And%5C+their%5C+genetic%5C+divergence%5C+from%5C+the%5C+third%5C+variety%5C+appears%5C+to%5C+be%5C+relative%5C+to%5C+their%5C+slight%5C+morphological%5C+difference%5C+in%5C+leaf%5C+size%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Thus%2C%5C+the%5C+observed%5C+differences%5C+in%5C+morphological%5C+characters%5C+between%5C+var.%5C+chuansinesis%5C+and%5C+other%5C+two%5C+varieties%5C+can%5C+be%5C+explained%5C+by%5C+the%5C+seed%5C+dispersal%5C+limitation%5C+illustrated%5C+above%5C+%5C%28as%5C+inferred%5C+by%5C+geographical%5C+separation%5C%29%5C+and%5C+by%5C+environmental%5C+heterogeneity%5C+%5C%28as%5C+inferred%5C+by%5C+precipitation%5C+or%5C+elevation%5C%29%5C+or%5C+by%5C+a%5C+combination%5C+of%5C+both.%5C+After%5C+all%2C%5C+the%5C+geological%5C+changes%2C%5C+drainage%5C+reorganization%2C%5C+and%5C+floristic%5C+differences%5C+following%5C+the%5C+Himalayan%5C+uplift%5C+have%5C+been%5C+suggested%5C+to%5C+affect%5C+the%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii.%5C+These%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+China.%5C+In%5C+addition%2C%5C+the%5C+unique%5C+population%5C+genetic%5C+structure%5C+found%5C+in%5C+S.%5C+davidii%5C+has%5C+provided%5C+important%5C+insights%5C+into%5C+the%5C+evolutionary%5C+history%5C+of%5C+this%5C+species.%5C+The%5C+genetic%5C+profile%5C+uncovered%5C+in%5C+this%5C+study%5C+is%5C+also%5C+critical%5C+for%5C+its%5C+conservation%5C+management.%5C+Our%5C+study%5C+has%5C+uncovered%5C+the%5C+existence%5C+of%5C+at%5C+least%5C+two%5C+%E2%80%98evolutionary%5C+significant%5C+units%E2%80%99%5C+independent%5C+units%5C+within%5C+S.%5C+davidii%2C%5C+corresponding%5C+to%5C+var.%5C+davidii%5C+from%5C+eastern%5C+region%5C+and%5C+var.%5C+chuansinensis%5C+from%5C+western%5C+region.%5C+The%5C+conservation%5C+efforts%5C+should%5C+first%5C+focus%5C+on%5C+most%5C+western%5C+populations%5C+and%5C+on%5C+the%5C+southeastern%5C+ones%5C+exhibiting%5C+high%5C+levels%5C+of%5C+genetic%5C+diversity%2C%5C+while%5C+the%5C+genetically%5C+homogeneous%5C+northeastern%5C+populations%5C+located%5C+in%5C+the%5C+degraded%5C+Loess%5C+Plateau%5C+should%5C+require%5C+much%5C+greater%5C+conservation%5C+efforts."},{"jsname":"The Taxus wallichiana complex represents an old relict conifer lineage that survived through the Tertiary. It is currently distributed in the mountain forests in South and Southwest China south of the Qinling Mountains. In the present study, we explored phylogeography of the complex by using two chloroplast DNA regions, one nuclear ribosomal DNA spacer region and eight microsatellite (SSR) loci. The main conclusions can be summarized as follows:1. Phylogeographic pattern based on chloroplast haplotypes,There were 11 cpDNA haplotypes identified in the T. wallichiana complex The complex showed a high level of genetic diversity and obvious genetic differentiation. The 44 sampled populations showed obvious genetic structure, which could be divided into five groups, namely the Huanan group, the Daba group, the Emei group, the Yunnan group and the Qinling group. There was extremely high genetic differentiation among groups, but not significant within group. The divergence times of the five lineages, estimated using average mutation rates of trnL-trnF, fell in the Pliocene. 2. Phylogeographic patterns based on ITS sequences,These included 38 unique ‘haplotypes’ based on ITS data. Their analysis showed that the T. wallichiana complex possessed a high genetic diversity. These populations could be divided into four groups, namely the Huanan group, the Daba/Emei group, the Yunnan group and the Qinling group. Based on all results, it appears that the major lineages constituting the T. wallichiana complex have arisen before Quaternary glaciation cycles, and may have survived isolated in different refugia. During interglacial periods some lineages appear to have come in contact and hybridizedbut other lineages merged forming populations with mixed haplotypes without signs of hybridization. The present-day phylogeographical distribution pattern of the T. wallichiana complex might thus be the result of repeated expansion / contractions of populations during interglacial / glacial cycles.3. Population genetic analysis using microsatellite (SSR) markers,Eight SSR loci were used for population genetic analysis on the T. wallichiana complex. A lower level of genetic diversity at the population level and high genetic differentiation among population was detected. The results of structure analysis were similar to those on the ITS data, dividing the populations into four groups (lineages). According to the results here, it was deduced that each of the 4 lineages of the T. wallichiana complex may possessed respective glacial refugia, and some lineages (such as the Qinling and Huanan lineage) might have survived in multiple refugia in the Quaternay glaciations. The present distribution pattern of this complex was likely influenced by the uplift of the QTP and Quaternary glaciation.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3AThe%5C+Taxus%5C+wallichiana%5C+complex%5C+represents%5C+an%5C+old%5C+relict%5C+conifer%5C+lineage%5C+that%5C+survived%5C+through%5C+the%5C+Tertiary.%5C+It%5C+is%5C+currently%5C+distributed%5C+in%5C+the%5C+mountain%5C+forests%5C+in%5C+South%5C+and%5C+Southwest%5C+China%5C+south%5C+of%5C+the%5C+Qinling%5C+Mountains.%C2%A0In%5C+the%5C+present%5C+study%2C%5C+we%5C+explored%5C+phylogeography%5C+of%5C+the%5C+complex%5C+by%5C+using%5C+two%5C+chloroplast%5C+DNA%5C+regions%2C%5C+one%5C+nuclear%5C+ribosomal%5C+DNA%5C+spacer%5C+region%5C+and%5C+eight%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+loci.%5C+The%5C+main%5C+conclusions%5C+can%5C+be%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Phylogeographic%5C+pattern%5C+based%5C+on%5C+chloroplast%5C+haplotypes%EF%BC%8CThere%5C+were%5C+11%5C+cpDNA%5C+haplotypes%5C+identified%5C+in%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+The%5C+complex%5C+showed%5C+a%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+and%5C+obvious%5C+genetic%5C+differentiation.%5C+The%5C+44%5C+sampled%5C+populations%5C+showed%5C+obvious%5C+genetic%5C+structure%2C%5C+which%5C+could%5C+be%5C+divided%5C+into%5C+five%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C+group%2C%5C+the%5C+Emei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+There%5C+was%5C+extremely%5C+high%5C+genetic%5C+differentiation%5C+among%5C+groups%2C%5C+but%5C+not%5C+significant%5C+within%5C+group.%5C+The%5C+divergence%5C+times%5C+of%5C+the%5C+five%5C+lineages%2C%5C+estimated%5C+using%5C+average%5C+mutation%5C+rates%5C+of%5C+trnL%5C-trnF%2C%5C+fell%5C+in%5C+the%5C+Pliocene.%C2%A02.%5C+Phylogeographic%5C+patterns%5C+based%5C+on%5C+ITS%5C+sequences%EF%BC%8CThese%5C+included%5C+38%5C+unique%5C+%E2%80%98haplotypes%E2%80%99%5C+based%5C+on%5C+ITS%5C+data.%5C+Their%5C+analysis%5C+showed%5C+that%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+possessed%5C+a%5C+high%5C+genetic%5C+diversity.%C2%A0These%5C+populations%5C+could%5C+be%5C+divided%5C+into%5C+four%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C%2FEmei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+Based%5C+on%5C+all%5C+results%2C%5C+it%5C+appears%5C+that%5C+the%5C+major%5C+lineages%5C+constituting%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+have%5C+arisen%5C+before%5C+Quaternary%5C+glaciation%5C+cycles%2C%5C+and%5C+may%5C+have%5C+survived%5C+isolated%5C+in%5C+different%5C+refugia.%5C+During%5C+interglacial%5C+periods%5C+some%5C+lineages%5C+appear%5C+to%5C+have%5C+come%5C+in%5C+contact%5C+and%5C+hybridizedbut%5C+other%5C+lineages%5C+merged%5C+forming%5C+populations%5C+with%5C+mixed%5C+haplotypes%5C+without%5C+signs%5C+of%5C+hybridization.%5C+The%5C+present%5C-day%5C+phylogeographical%5C+distribution%5C+pattern%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+might%5C+thus%5C+be%5C+the%5C+result%5C+of%5C+repeated%5C+expansion%5C+%5C%2F%5C+contractions%5C+of%5C+populations%5C+during%5C+interglacial%5C+%5C%2F%5C+glacial%5C+cycles.3.%5C+Population%5C+genetic%5C+analysis%5C+using%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+markers%EF%BC%8CEight%5C+SSR%5C+loci%5C+were%5C+used%5C+for%5C+population%5C+genetic%5C+analysis%5C+on%5C+the%5C+T.%5C+wallichiana%5C+complex.%5C+A%5C+lower%5C+level%5C+of%5C+genetic%5C+diversity%5C+at%5C+the%5C+population%5C+level%5C+and%5C+high%5C+genetic%5C+differentiation%5C+among%5C+population%5C+was%5C+detected.%5C+The%5C+results%5C+of%5C+structure%5C+analysis%5C+were%5C+similar%5C+to%5C+those%5C+on%5C+the%5C+ITS%5C+data%2C%5C+dividing%5C+the%5C+populations%5C+into%5C+four%5C+groups%5C+%5C%28lineages%5C%29.%C2%A0According%5C+to%5C+the%5C+results%5C+here%2C%5C+it%5C+was%5C+deduced%5C+that%5C+each%5C+of%5C+the%5C+4%5C+lineages%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+may%5C+possessed%5C+respective%5C+glacial%5C+refugia%2C%5C+and%5C+some%5C+lineages%5C+%5C%28such%5C+as%5C+the%5C+Qinling%5C+and%5C+Huanan%5C+lineage%5C%29%5C+might%5C+have%5C+survived%5C+in%5C+multiple%5C+refugia%5C+in%5C+the%5C+Quaternay%5C+glaciations.%5C+The%5C+present%5C+distribution%5C+pattern%5C+of%5C+this%5C+complex%5C+was%5C+likely%5C+influenced%5C+by%5C+the%5C+uplift%5C+of%5C+the%5C+QTP%5C+and%5C+Quaternary%5C+glaciation."},{"jsname":"The chemical constituents of eight higher fungi and one medicinal plant were investigated. The fungi included Trametes corrugate, Campanella junghuhnii, Craterellus cornucopioides, Phlebia radiate, Laccaria amethystea, Hydnochaete sp., Nidula sp. and Rhodophyllus ater, which are all collected from Yunnan province, P. R. China. The leaves of Cynara scolymus L. (Artichoke) were collected from south of Vietnam. 119 compounds, including 91 different compounds and 9 new ones, have been obtained using varied chromatographic methods, and the structures of new metabolites were elucidated on the basis of extensive spectroscopic analysis including IR, UV, MS, 1D- and 2D-NMR experiments.Two unusual diterpenes (13-14) with neodolastane skeletons were isolated and identified from the culture broth of Trametes corrugate. This type of diterpene was obtained for the first time from higer fungi. A new tricyclo[6.3.1.02,5]dodecane sesquiterpene (1) was isolated from the culture broth of Campanella junghuhnii. Three new keto esters (65-67) and a series of illudine sesquiterpenes (4-10) were isolated and identified from the culture broth of the basidiomycete Craterellus cornucopioides. A new fatty acid ester (48) was isolated from the culture broth of Phlebia radiate.A new isoprenyl phenyl ether riboside (68) was isolated from culture broth of Laccaria amethystea. During our studies on chemical constituents of the culture broth of Hydnochaete sp., a conjugate lactone (71) was obtained. Preliminary biological assay showed that the lactone exhibited inhibitory activity against the11b-hydroxysteroid dehydrogenase (11β-HSD1) of human and mouse with IC50 value of 53.338 mg/mL and 95.950 mg/mL, respectively. A new guaiane-type sesquiterpene lactone (2) and a new phenolic glucoside gallate (69) were isolated and identified from the leaves of Cynara scolymus (Artichoke). A review summarized their structures, biological activities, and the producing species of naturally occurring triterpenes from higher fungi. The paper provides 433 structurally diverse compounds published between 1985~2010, and 114 references.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3AThe%5C+chemical%5C+constituents%5C+of%5C+eight%5C+higher%5C+fungi%5C+and%5C+one%5C+medicinal%5C+plant%5C+were%5C+investigated.%5C+The%5C+fungi%5C+included%5C+Trametes%5C+corrugate%2C%5C+Campanella%5C+junghuhnii%2C%5C+Craterellus%5C+cornucopioides%2C%5C+Phlebia%5C+radiate%2C%5C+Laccaria%5C+amethystea%2C%5C+Hydnochaete%5C+sp.%2C%5C+Nidula%5C+sp.%5C+and%5C+Rhodophyllus%5C+ater%2C%5C+which%5C+are%5C+all%5C+collected%5C+from%5C+Yunnan%5C+province%2C%5C+P.%5C+R.%5C+China.%5C+The%5C+leaves%5C+of%5C+Cynara%5C+scolymus%5C+L.%5C+%5C%28Artichoke%5C%29%5C+were%5C+collected%5C+from%5C+south%5C+of%5C+Vietnam.%5C+119%5C+compounds%2C%5C+including%5C+91%5C+different%5C+compounds%5C+and%5C+9%5C+new%5C+ones%2C%5C+have%5C+been%5C+obtained%5C+using%5C+varied%5C+chromatographic%5C+methods%2C%5C+and%5C+the%5C+structures%5C+of%5C+new%5C+metabolites%5C+were%5C+elucidated%5C+on%5C+the%5C+basis%5C+of%5C+extensive%5C+spectroscopic%5C+analysis%5C+including%5C+IR%2C%5C+UV%2C%5C+MS%2C%5C+1D%5C-%5C+and%5C+2D%5C-NMR%5C+experiments.Two%5C+unusual%5C+diterpenes%5C+%5C%2813%5C-14%5C%29%5C+with%5C+neodolastane%5C+skeletons%5C+were%5C+isolated%5C+and%5C+identified%5C+from%5C+the%5C+culture%5C+broth%5C+of%5C+Trametes%5C+corrugate.%5C+This%5C+type%5C+of%5C+diterpene%5C+was%5C+obtained%5C+for%5C+the%5C+first%5C+time%5C+from%5C+higer%5C+fungi.%5C+A%5C+new%5C+tricyclo%5C%5B6.3.1.02%2C5%5C%5Ddodecane%5C+sesquiterpene%5C+%5C%281%5C%29%5C+was%5C+isolated%5C+from%5C+the%5C+culture%5C+broth%5C+of%5C+Campanella%5C+junghuhnii.%5C+Three%5C+new%5C+keto%5C+esters%5C+%5C%2865%5C-67%5C%29%5C+and%5C+a%5C+series%5C+of%5C+illudine%5C+sesquiterpenes%5C+%5C%284%5C-10%5C%29%5C+were%5C+isolated%5C+and%5C+identified%5C+from%5C+the%5C+culture%5C+broth%5C+of%5C+the%5C+basidiomycete%5C+Craterellus%5C+cornucopioides.%5C+A%5C+new%5C+fatty%5C+acid%5C+ester%5C+%5C%2848%5C%29%5C+was%5C+isolated%5C+from%5C+the%5C+culture%5C+broth%5C+of%5C+Phlebia%5C+radiate.A%5C+new%5C+isoprenyl%5C+phenyl%5C+ether%5C+riboside%5C+%5C%2868%5C%29%5C+was%5C+isolated%5C+from%5C+culture%5C+broth%5C+of%5C+Laccaria%5C+amethystea.%5C+During%5C+our%5C+studies%5C+on%5C+chemical%5C+constituents%5C+of%5C+the%5C+culture%5C+broth%5C+of%5C+Hydnochaete%5C+sp.%2C%5C+a%5C+conjugate%5C+lactone%5C+%5C%2871%5C%29%5C+was%5C+obtained.%5C+Preliminary%5C+biological%5C+assay%5C+showed%5C+that%5C+the%5C+lactone%5C+exhibited%5C+inhibitory%5C+activity%5C+against%5C+the11b%5C-hydroxysteroid%5C+dehydrogenase%5C+%5C%2811%CE%B2%5C-HSD1%5C%29%5C+of%5C+human%5C+and%5C+mouse%5C+with%5C+IC50%5C+value%5C+of%5C+53.338%5C+mg%5C%2FmL%5C+and%5C+95.950%5C+mg%5C%2FmL%2C%5C+respectively.%5C+A%5C+new%5C+guaiane%5C-type%5C+sesquiterpene%5C+lactone%5C+%5C%282%5C%29%5C+and%5C+a%5C+new%5C+phenolic%5C+glucoside%5C+gallate%5C+%5C%2869%5C%29%5C+were%5C+isolated%5C+and%5C+identified%5C+from%5C+the%5C+leaves%5C+of%5C+Cynara%5C+scolymus%5C+%5C%28Artichoke%5C%29.%5C+A%5C+review%5C+summarized%5C+their%5C+structures%2C%5C+biological%5C+activities%2C%5C+and%5C+the%5C+producing%5C+species%5C+of%5C+naturally%5C+occurring%5C+triterpenes%5C+from%5C+higher%5C+fungi.%5C+The%5C+paper%5C+provides%5C+433%5C+structurally%5C+diverse%5C+compounds%5C+published%5C+between%5C+1985%5C%7E2010%2C%5C+and%5C+114%5C+references."},{"jsname":"The origin center and diversity center of the genus Ligularia were considered to be central China and Hengduan Mountains Region (HMR) of China, respectively. In this research, we studied the phylogeographic pattern of L. hodgsonii and L. tongolensis, which was distributed in the origin center and diversity center, respectively. We aimed to infer the evolutionary process of Ligularia species. 1. The phylogeography of L. hodgsonii,Here, we investigated the phylogeographic history of L. hodgsonii disjunctively distributed in China and Japan. Two hundred and eighty individuals were collected from 29 natural populations, 23 located in China and 6 in Japan. A total of 19 haplotypes were identified with the combination of three chloroplast DNA (cpDNA) sequences variations (trnQ-5’rps16, trnL-rpl32 and psbA-trnH). At the species level, a high level of haplotype diversity (Hd) and total genetic diversity (HT) was detected. However, the average intrapopulation diversity (HS) was very low. Consequently, the population differentiation(NST = 0.989, GST = 0.933 ) was pronounced with a significant phylogeographic structure (NST > GST, p < 0.01). At the regional level, Chinese and Japanese L. hodgsonii had a similar estimate of genetic diversity (China: Hd = 0.847, HT = 0.869; Japan: Hd = 0.766, HT = 0.867). Populations from China and Japan possess unique sets of haplotypes, and no haplotypes were shared between the regions. Furthermore, both the phyloegenetic and network analyses recovered the haplotypes of China and Japan as two distinct clades. Thus, we suggested the disjunct distribution of L. hodgsonii in China and Japan may present the climatic vicariant relicts of the ancient widely distributed populations. After divergence, this species within each region experienced independent evolutionary process. In China, L. hodgsonii was distributed around the Sichuan Basin. This distribution range can be divided into five regions. They were Jiajin Mountain region, E’mei Mountain region, Yunnan-Guizhou Plateau region, Wushan-Wuling Mountain region and Qinling Mountain region. Twelve haplotypes were indentified within these regions. Each region had its own specific haplotypes, which had different ancestry in the network. We deduced that Chinese L. hodgsonii might survive the LGM in multiple isolated refugia around the Sichuan Basin. In Japan, L. hodgsonii was disjunctively distributed in northern Honshu and Hokkaido. Seven haplotypes were identified within this region. However, the genetic diversity in Honshu (Hd = 0.821) was much higher than that in Hokkaido (Hd = 0.513). And all haplotypes in Hokkaido were derived from Honshu. This haplotype distribution suggested that the northern Honshu could have served as refuge in Japan. Nested clade analysis (NCA) indicated multiple forces including the vicariance and long-distance dispersal affected the disjunctive distribution among populations of L. hodgsonii in Japan.2. The phylogeography of L. tongolensis,Ligularia tongolensis was distributed along the Jinshajiang watershed, Yalongjiang watershed and Wumeng Mountain. In order to deduce the demographic history of this species, we sequenced two chloroplast DNA (cpDNA) intergenic spacers (trnQ-5’rps16, trnL-rpl32) in 140 individuals from 14 populations of three groups (Jinshajiang vs. Yalongjiang vs. Wumeng) within this species range. High levels of haplotype diversity (Hd = 0.814) and total genetic diversity (HT = 0.862) were detected at the species level, based on a total oftwelve haplotypes identified. However, the intrapopulation diversity (HS = 0.349) was low, which led to the high levels of genetic divergence (GST = 0.595, NST = 0.614, FST = 0.597). In consideration of the speciation of L. tongolensis resulting from the uplifts of the Qinghai-Tibetan Plateau (QTP), we thought the present genetic structure of L. tongolensis was shaped by the fragmentation of ancestral populations during the courses of QTP uplifts. This was further supported by the absence of IBD tests (r = –0.291, p = 0.964), which suggest that the differentiation had not occurred in accordance with the isolation by distance model. The genetic differentiation in L. tongolensis appears to be associated with historical events. Meanwhile, H2 and H5, the dominant haplotypes that located on internal nodes and deviated from extinct ancestral haplotype in the network, were detected to be shared between Jinshajiang and Yalongjiang groups. We deduced that ancestral populations of this species might have had a continuous distribution range, which was then fragmented and isolated by the following tectonic events. Finally, the ancestral polymorphism, H2 and H5, were randomly allocated in Jinshajiang watershed and Yalongjiang watershed. Meanwhile, H5 was the dominant haplotype in Jinshajiang watershed; H7 was the domiant haplotype in Yalongjiang watershed and Wumeng Mountain. This haplotype distribution pattern indicated that each group might have served as a refuge for L. tongolensis during the Quaternary Glaciation. Postglacial demographic expansion was supported by unimodal mismatch distribution and star-like phylogenies, with expansion ages of 274 ka B. P. for this species","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3AThe%5C+origin%5C+center%5C+and%5C+diversity%5C+center%5C+of%5C+the%5C+genus%5C+Ligularia%5C+were%5C+considered%5C+to%5C+be%5C+central%5C+China%5C+and%5C+Hengduan%5C+Mountains%5C+Region%5C+%5C%28HMR%5C%29%5C+of%5C+China%2C%5C+respectively.%5C+In%5C+this%5C+research%2C%5C+we%5C+studied%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+L.%5C+hodgsonii%5C+and%5C+L.%5C+tongolensis%2C%5C+which%5C+was%5C+distributed%5C+in%5C+the%5C+origin%5C+center%5C+and%5C+diversity%5C+center%2C%5C+respectively.%5C+We%5C+aimed%5C+to%5C+infer%5C+the%5C+evolutionary%5C+process%5C+of%5C+Ligularia%5C+species.%5C+1.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+hodgsonii%EF%BC%8CHere%2C%5C+we%5C+investigated%5C+the%5C+phylogeographic%5C+history%5C+of%5C+L.%5C+hodgsonii%5C+disjunctively%5C+distributed%5C+in%5C+China%5C+and%5C+Japan.%5C+Two%5C+hundred%5C+and%5C+eighty%5C+individuals%5C+were%5C+collected%5C+from%5C+29%5C+natural%5C+populations%2C%5C+23%5C+located%5C+in%5C+China%5C+and%5C+6%5C+in%5C+Japan.%5C+A%5C+total%5C+of%5C+19%5C+haplotypes%5C+were%5C+identified%5C+with%5C+the%5C+combination%5C+of%5C+three%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+sequences%5C+variations%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C+and%5C+psbA%5C-trnH%5C%29.%5C+At%5C+the%5C+species%5C+level%2C%5C+a%5C+high%5C+level%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C%29%5C+and%C2%A0total%5C+genetic%5C+diversity%5C+%5C%28HT%5C%29%5C+was%5C+detected.%5C+However%2C%5C+the%5C+average%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C%29%5C+was%5C+very%5C+low.%5C+Consequently%2C%5C+the%5C+population%5C+differentiation%5C%28NST%5C+%3D%5C+0.989%2C%5C+GST%5C+%3D%5C+0.933%5C+%5C%29%5C+was%5C+pronounced%5C+with%5C+a%5C+significant%5C+phylogeographic%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+p%5C+%3C%5C+0.01%5C%29.%5C+At%5C+the%5C+regional%5C+level%2C%5C+Chinese%5C+and%5C+Japanese%5C+L.%5C+hodgsonii%5C+had%5C+a%5C+similar%5C+estimate%5C+of%5C+genetic%5C+diversity%5C+%5C%28China%5C%3A%5C+Hd%5C+%3D%5C+0.847%2C%5C+HT%5C+%3D%5C+0.869%5C%3B%5C+Japan%5C%3A%5C+Hd%5C+%3D%5C+0.766%2C%5C+HT%5C+%3D%5C+0.867%5C%29.%5C+Populations%5C+from%5C+China%5C+and%5C+Japan%5C+possess%5C+unique%5C+sets%5C+of%5C+haplotypes%2C%5C+and%5C+no%5C+haplotypes%5C+were%5C+shared%5C+between%5C+the%5C+regions.%5C+Furthermore%2C%5C+both%5C+the%5C+phyloegenetic%5C+and%5C+network%5C+analyses%5C+recovered%5C+the%5C+haplotypes%5C+of%5C+China%5C+and%5C+Japan%5C+as%5C+two%5C+distinct%5C+clades.%5C+Thus%2C%5C+we%5C+suggested%5C+the%5C+disjunct%5C+distribution%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+China%5C+and%5C+Japan%5C+may%5C+present%5C+the%5C+climatic%5C+vicariant%5C+relicts%5C+of%5C+the%5C+ancient%5C+widely%5C+distributed%5C+populations.%5C+After%5C+divergence%2C%5C+this%5C+species%5C+within%5C+each%5C+region%5C+experienced%5C+independent%5C+evolutionary%5C+process.%5C+In%5C+China%2C%5C+L.%5C+hodgsonii%5C+was%5C+distributed%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+This%5C+distribution%5C+range%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+regions.%5C+They%5C+were%5C+Jiajin%5C+Mountain%5C+region%2C%5C+E%E2%80%99mei%5C+Mountain%5C+region%2C%5C+Yunnan%5C-Guizhou%5C+Plateau%5C+region%2C%5C+Wushan%5C-Wuling%5C+Mountain%5C+region%5C+and%5C+Qinling%5C+Mountain%5C+region.%5C+Twelve%5C+haplotypes%5C+were%5C+indentified%5C+within%5C+these%5C+regions.%5C+Each%5C+region%5C+had%5C+its%5C+own%5C+specific%5C+haplotypes%2C%5C+which%5C+had%5C+different%5C+ancestry%5C+in%5C+the%5C+network.%5C+We%5C+deduced%5C+that%5C+Chinese%5C+L.%5C+hodgsonii%5C+might%5C+survive%5C+the%5C+LGM%5C+in%5C+multiple%5C+isolated%5C+refugia%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+In%5C+Japan%2C%5C+L.%5C+hodgsonii%5C+was%5C+disjunctively%5C+distributed%5C+in%5C+northern%5C+Honshu%5C+and%5C+Hokkaido.%5C+Seven%5C+haplotypes%5C+were%5C+identified%5C+within%5C+this%5C+region.%5C+However%2C%5C+the%5C+genetic%5C+diversity%5C+in%5C+Honshu%5C+%5C%28Hd%5C+%3D%5C+0.821%5C%29%5C+was%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Hokkaido%5C+%5C%28Hd%5C+%3D%5C+0.513%5C%29.%5C+And%5C+all%5C+haplotypes%5C+in%5C+Hokkaido%5C+were%5C+derived%5C+from%5C+Honshu.%5C+This%5C+haplotype%5C+distribution%5C+suggested%5C+that%5C+the%5C+northern%5C+Honshu%5C+could%5C+have%5C+served%5C+as%5C+refuge%5C+in%5C+Japan.%5C+Nested%5C+clade%5C+analysis%5C+%5C%28NCA%5C%29%5C+indicated%5C+multiple%5C+forces%5C+including%5C+the%5C+vicariance%5C+and%5C+long%5C-distance%5C+dispersal%5C+affected%5C+the%5C+disjunctive%5C+distribution%5C+among%5C+populations%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+Japan.2.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+tongolensis%EF%BC%8CLigularia%5C+tongolensis%5C+was%5C+distributed%5C+along%5C+the%5C+Jinshajiang%5C+watershed%2C%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+In%5C+order%5C+to%5C+deduce%5C+the%5C+demographic%5C+history%5C+of%5C+this%5C+species%2C%5C+we%5C+sequenced%5C+two%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+intergenic%5C+spacers%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C%29%5C+in%5C+140%5C+individuals%5C+from%5C+14%5C+populations%5C+of%5C+three%5C+groups%5C+%5C%28Jinshajiang%5C+vs.%5C+Yalongjiang%5C+vs.%5C+Wumeng%5C%29%5C+within%5C+this%5C+species%5C+range.%5C+High%5C+levels%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C+%3D%5C+0.814%5C%29%5C+and%5C+total%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.862%5C%29%5C+were%5C+detected%5C+at%5C+the%5C+species%5C+level%2C%5C+based%5C+on%5C+a%5C+total%5C+oftwelve%5C+haplotypes%5C+identified.%5C+However%2C%5C+the%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.349%5C%29%5C+was%5C+low%2C%5C+which%5C+led%5C+to%5C+the%5C+high%5C+levels%5C+of%5C+genetic%5C+divergence%5C+%5C%28GST%5C+%3D%5C+0.595%2C%5C+NST%5C+%3D%5C+0.614%2C%5C+FST%5C+%3D%5C+0.597%5C%29.%5C+In%5C+consideration%5C+of%5C+the%5C+speciation%5C+of%5C+L.%5C+tongolensis%5C+resulting%5C+from%5C+the%5C+uplifts%5C+of%5C+the%5C+Qinghai%5C-Tibetan%5C+Plateau%5C+%5C%28QTP%5C%29%2C%5C+we%5C+thought%5C+the%5C+present%5C+genetic%5C+structure%5C+of%5C+L.%5C+tongolensis%5C+was%5C+shaped%5C+by%5C+the%5C+fragmentation%5C+of%5C+ancestral%5C+populations%5C+during%5C+the%5C+courses%5C+of%5C+QTP%5C+uplifts.%5C+This%5C+was%5C+further%5C+supported%5C+by%5C+the%5C+absence%5C+of%5C+IBD%5C+tests%5C+%5C%28r%5C+%3D%5C+%E2%80%930.291%2C%5C+p%5C+%3D%5C+0.964%5C%29%2C%5C+which%5C+suggest%5C+that%5C+the%5C+differentiation%5C+had%5C+not%5C+occurred%5C+in%5C+accordance%5C+with%5C+the%5C+isolation%5C+by%5C+distance%5C+model.%5C+The%5C+genetic%5C+differentiation%5C+in%5C+L.%5C+tongolensis%5C+appears%5C+to%5C+be%5C+associated%5C+with%5C+historical%5C+events.%5C+Meanwhile%2C%5C+H2%5C+and%5C+H5%2C%5C+the%5C+dominant%5C+haplotypes%5C+that%5C+located%5C+on%5C+internal%5C+nodes%5C+and%5C+deviated%5C+from%5C+extinct%5C+ancestral%5C+haplotype%5C+in%5C+the%5C+network%2C%5C+were%5C+detected%5C+to%5C+be%5C+shared%5C+between%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C+groups.%5C+We%5C+deduced%5C+that%5C+ancestral%5C+populations%5C+of%5C+this%5C+species%5C+might%5C+have%5C+had%5C+a%5C+continuous%5C+distribution%5C+range%2C%5C+which%5C+was%5C+then%5C+fragmented%5C+and%5C+isolated%5C+by%5C+the%5C+following%5C+tectonic%5C+events.%5C+Finally%2C%5C+the%5C+ancestral%5C+polymorphism%2C%5C+H2%5C+and%5C+H5%2C%5C+were%5C+randomly%5C+allocated%5C+in%5C+Jinshajiang%5C+watershed%5C+and%5C+Yalongjiang%5C+watershed.%5C+Meanwhile%2C%5C+H5%5C+was%5C+the%5C+dominant%5C+haplotype%5C+in%5C+Jinshajiang%5C+watershed%5C%3B%5C+H7%5C+was%5C+the%5C+domiant%5C+haplotype%5C+in%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+This%5C+haplotype%5C+distribution%5C+pattern%5C+indicated%5C+that%5C+each%5C+group%5C+might%5C+have%5C+served%5C+as%5C+a%5C+refuge%5C+for%5C+L.%5C+tongolensis%5C+during%5C+the%5C+Quaternary%5C+Glaciation.%5C+Postglacial%5C+demographic%5C+expansion%5C+was%5C+supported%5C+by%5C+unimodal%5C+mismatch%5C+distribution%5C+and%5C+star%5C-like%5C+phylogenies%2C%5C+with%5C+expansion%5C+ages%5C+of%5C+274%5C+ka%5C+B.%5C+P.%5C+for%5C+this%5C+species"},{"jsname":"The relationship between leaf physiognomy and climate is widely used to reconstruct paleoclimates of Cenozoic floras. Previous works demonstrate that LMA show regional constraints. Until now, no equation has been set up directly from Chinese forests. This relationship is exhaustively studied based on 50 samples from mesic to humid forests across China. Models including Leaf Margin Analysis (LMA), Single Linear regression for Precipitation, and Climate Leaf Analysis Multivariate Program (CLAMP), are set up and used to quantitatively reconstruct paleoclimates of Chinese Neogene floras. Meanwhile, a paleoflora, i.e., Yangjie flora, which belongs to the Upper Pliocene Sanying formation in West Yunnan Province, is studied. The species assemblage, paleoclimate and paleoecology of Yangjie flora are discussed. Conclusions in this dissertation are as following: 1. Chinese leaf physiognomy-climate models based on regression analyses,LMA is a widely used method that applies present-day linear correlation between the proportion of woody dicotyledonous species with untoothed leaves (P) and mean annual temperature (MAT) to estimate paleotemperatures from fossil leaf floras. The Chinese data indicate that P shows a strong linear correlation with MAT, but the actual relationship is slightly different from those recognized from other regions. Among all currently used LMA equations, the one resulting from North and Central American and Japanese data, rather than the widely used East Asian LMA equation, yields the closest values to the actual MATs of the Chinese samples (mean absolute error = 1.9°C). A new equation derived from the Chinese forests is therefore developed, where MAT = 1.038 + 27.6 × P. This study not only demonstrates the similarity of the relationship between P and MAT in the Northern Hemisphere, but also improves the reliability of LMA for paleoclimate reconstructions of Chinese paleofloras. Besides, regression analyses are used to explore the relationship between leaf physiognomy and precipitation. In contrast to former studies, entire leaf margin shows the highest correlation with the Growing Season Precipitation (GSP). A new equation is proposed: GSP = 228.0 + 1707.0 × P. 2. The new calibrated CLAMP dataset – PHYSGCHINA,CLAMP, which is based on canonical correspondence analysis, is improved by the inclusion of 50 Chinese samples. The result indicates that, new calibrated data from 50 Chinese sample sites are situated away from the former 144 samples in the physiognomic space, which may be caused by the unique characters of leaf physiognomy under monsoon condition. Therefore, a new calibrated CLAMP dataset, i.e., PHYSGCHINA, is set up based on 50 new Chinese samples, and 144 former samples from PHYSG3BRC. This new dataset could improve the accuracy of paleoclimate reconstructions for floras under the monsoon climate condition. When it is applied to Chinese Neogene floras, PHYSGCHINA could improve the accuracy of paleoclimate parameters, especially parameters related to precipitation. 3. Paleoclimate reconstructions of Chinese Cenozoic floras,Paleoclimates of Chinese Cenozoic floras are reconstructed using leaf physiognomy- climate models being set up in this study. The Chinese paleoclimate history in Eocene is similar to the trend from worldwide record. That is, hot climate presented in early Eocene and early Middle Eocene, and then, climate cooled down from late Middle Eocene to Late Eocene in China. Moreover, paleoclimates of two Late Miocene floras from Yunnan province, i.e., Xiaolongtan flora and Bangmai flora, are reconstructed using different models. The results indicate that, temperature of Yunnan is slightly higher than that in nowadays, but the precipitation is much higher than that at present day, which may be caused by the uplift of Hengduan Mountain. 4. Late Pliocene Yangjie flora in West Yunnan Province, China,A Late Pliocene Yangjie flora form Yongping County, western Yunnan province, which belongs to Sanying formation, is studied in this dissertation. Yangjie flora is dominated by Quercus sect. Heterobalanus (Oerst.) Menits. (evergreen sclerophyllous oaks), and this forest type is quite common in SW China at present. The discovery of Yangjie flora provides evidence that, vegetations of Yunnan in Miocene were dominated by evergreen forests, and the dominant families were Fabaceae, Fagaceae and Lauraceae. In Pliocene, this vegetation type changed gradually to evergreen sclerophyllous oak forests. This vegetation change may have been caused by the uplift of Hengduan Mountain in Neogene. A polypodiaceous fern, Drynaria callispora sp. nov., is described from the upper Pliocene Sanying Formation in western Yunnan Province, southwestern China. The species with well-preserved pinnae and in situ spores is the first convincing Drynaria fossil record. Detailed morphological investigation reveals that D. callispora is characterized by 1) pinnatifid fronds with entire-margined pinnae having straight or zigzag secondary veins; 2) finer venation showing void quadrangular areoles, but occasionally with one unbranched veinlet; 3) one row of circular sori on each side of the strong primary vein; and 4) in situ spores with verrucate exospores elliptical in polar view and bean-shaped in equatorial view. A morphological comparison shows that D. callispora is significantly different from all the fossil species previously identified as drynarioids. A phylogenetic analysis of D. callispora supports that the fossil is closely related to D. sinica Diels and D. mollis Bedd., two extant species distributing in the Himalayas. The discovery of the new fern indicates that the genus Drynaria became diversified in its modern distribution region no later than the late Pliocene and had retained the similar ecology to that of many modern drynarioid ferns ever since. 5. Paleoclimate reconstruction of Yangjie flora,LMA, Single Linear Regression for Precipitation and PHYSGCHINA are applied to reconstruct paleoclimate of Yangjie flora. MAT calculated by LMA and CLAMP is 22.0 ± 2.4°C and 20.0 ± 1.4°C, respectively, and GSP calculated by Single Linear Regression for Precipitation and PHYSGCHINA is 1521.9 ± 131.3 mm and 2084.7 ± 223.1 mm, respectively All methods agree that, both temperature and precipitation were higher in Late Pliocene than in nowadays. Meanwhile, precipitation parameters calculated by CLAMP gets high values. 6. Preliminary study of insect herbivory in Yangjie flora,Insect herbivory on leaves of Quercus preguyavaefolia Tao and Q. presenescens Zhou, two dominant species in Yangjie flora, is reported by the preliminary research. Each of these two species has a high diversity of insect damage. Among all damage types, margin feeding and surface feeding are most common, and skeletonization, piercing and sucking, and galling are less found. Most of these damage types belonge to the high host specialization (HS = 1). However, the proportion of leaves without insect damage in Q. presenescens is much higher than that in Q. preguyavaefolia. According to the log-log linear regression model, both Quercus preguyavaefolia and Q. presenescens have very high leaf mass per area (with 184.8 ± 6.7 g/m2 and 155.3 ± 10.7 g/m2, respectively). The high diversity of insect herbivory demonstrates a warm climate in the Late Pliocene of West Yunnan Province.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3AThe%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+climate%5C+is%5C+widely%5C+used%5C+to%5C+reconstruct%5C+paleoclimates%5C+of%5C+Cenozoic%5C+floras.%5C+Previous%5C+works%5C+demonstrate%5C+that%5C+LMA%5C+show%5C+regional%5C+constraints.%5C+Until%5C+now%2C%5C+no%5C+equation%5C+has%5C+been%5C+set%5C+up%5C+directly%5C+from%5C+Chinese%5C+forests.%5C+This%5C+relationship%5C+is%5C+exhaustively%5C+studied%5C+based%5C+on%5C+50%5C+samples%5C+from%5C+mesic%5C+to%5C+humid%5C+forests%5C+across%5C+China.%5C+Models%5C+including%5C+Leaf%5C+Margin%5C+Analysis%5C+%5C%28LMA%5C%29%2C%5C+Single%5C+Linear%5C+regression%5C+for%5C+Precipitation%2C%5C+and%5C+Climate%5C+Leaf%5C+Analysis%5C+Multivariate%5C+Program%5C+%5C%28CLAMP%5C%29%2C%5C+are%5C+set%5C+up%5C+and%5C+used%5C+to%5C+quantitatively%5C+reconstruct%5C+paleoclimates%5C+of%5C+Chinese%5C+Neogene%5C+floras.%5C+Meanwhile%2C%5C+a%5C+paleoflora%2C%5C+i.e.%2C%5C+Yangjie%5C+flora%2C%5C+which%5C+belongs%5C+to%5C+the%5C+Upper%5C+Pliocene%5C+Sanying%5C+formation%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+is%5C+studied.%5C+The%5C+species%5C+assemblage%2C%5C+paleoclimate%5C+and%5C+paleoecology%5C+of%5C+Yangjie%5C+flora%5C+are%5C+discussed.%5C+Conclusions%5C+in%5C+this%5C+dissertation%5C+are%5C+as%5C+following%5C%3A%5C+1.%5C+Chinese%5C+leaf%5C+physiognomy%5C-climate%5C+models%5C+based%5C+on%5C+regression%5C+analyses%EF%BC%8CLMA%5C+is%5C+a%5C+widely%5C+used%5C+method%5C+that%5C+applies%5C+present%5C-day%5C+linear%5C+correlation%5C+between%5C+the%5C+proportion%5C+of%5C+woody%5C+dicotyledonous%5C+species%5C+with%5C+untoothed%5C+leaves%5C+%5C%28P%5C%29%5C+and%5C+mean%5C+annual%5C+temperature%5C+%5C%28MAT%5C%29%5C+to%5C+estimate%5C+paleotemperatures%5C+from%5C+fossil%5C+leaf%5C+floras.%5C+The%5C+Chinese%5C+data%5C+indicate%5C+that%5C+P%5C+shows%5C+a%5C+strong%5C+linear%5C+correlation%5C+with%5C+MAT%2C%5C+but%5C+the%5C+actual%5C+relationship%5C+is%5C+slightly%5C+different%5C+from%5C+those%5C+recognized%5C+from%5C+other%5C+regions.%5C+Among%5C+all%5C+currently%5C+used%5C+LMA%5C+equations%2C%5C+the%5C+one%5C+resulting%5C+from%5C+North%5C+and%5C+Central%5C+American%5C+and%5C+Japanese%5C+data%2C%5C+rather%5C+than%5C+the%5C+widely%5C+used%5C+East%5C+Asian%5C+LMA%5C+equation%2C%5C+yields%5C+the%5C+closest%5C+values%5C+to%5C+the%5C+actual%5C+MATs%5C+of%5C+the%5C+Chinese%5C+samples%5C+%5C%28mean%5C+absolute%5C+error%5C+%3D%5C+1.9%C2%B0C%5C%29.%5C+A%5C+new%5C+equation%5C+derived%5C+from%5C+the%5C+Chinese%5C+forests%5C+is%5C+therefore%5C+developed%2C%5C+where%5C+MAT%5C+%3D%5C+1.038%5C+%5C%2B%5C+27.6%5C+%C3%97%5C+P.%5C+This%5C+study%5C+not%5C+only%5C+demonstrates%5C+the%5C+similarity%5C+of%5C+the%5C+relationship%5C+between%5C+P%5C+and%5C+MAT%5C+in%5C+the%5C+Northern%5C+Hemisphere%2C%5C+but%5C+also%5C+improves%5C+the%5C+reliability%5C+of%5C+LMA%5C+for%5C+paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+paleofloras.%5C+Besides%2C%5C+regression%5C+analyses%5C+are%5C+used%5C+to%5C+explore%5C+the%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+precipitation.%5C+In%5C+contrast%5C+to%5C+former%5C+studies%2C%5C+entire%5C+leaf%5C+margin%5C+shows%5C+the%5C+highest%5C+correlation%5C+with%5C+the%5C+Growing%5C+Season%5C+Precipitation%5C+%5C%28GSP%5C%29.%5C+A%5C+new%5C+equation%5C+is%5C+proposed%5C%3A%5C+GSP%5C+%3D%5C+228.0%5C+%5C%2B%5C+1707.0%5C+%C3%97%5C+P.%5C+2.%5C+The%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%5C+%E2%80%93%5C+PHYSGCHINA%EF%BC%8CCLAMP%2C%5C+which%5C+is%5C+based%5C+on%5C+canonical%5C+correspondence%5C+analysis%2C%5C+is%5C+improved%5C+by%5C+the%5C+inclusion%5C+of%5C+50%5C+Chinese%5C+samples.%5C+The%5C+result%5C+indicates%5C+that%2C%5C+new%5C+calibrated%5C+data%5C+from%5C+50%5C+Chinese%5C+sample%5C+sites%5C+are%5C+situated%5C+away%5C+from%5C+the%5C+former%5C+144%5C+samples%5C+in%5C+the%5C+physiognomic%5C+space%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+unique%5C+characters%5C+of%5C+leaf%5C+physiognomy%5C+under%5C+monsoon%5C+condition.%5C+Therefore%2C%5C+a%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%2C%5C+i.e.%2C%5C+PHYSGCHINA%2C%5C+is%5C+set%5C+up%5C+based%5C+on%5C+50%5C+new%5C+Chinese%5C+samples%2C%5C+and%5C+144%5C+former%5C+samples%5C+from%5C+PHYSG3BRC.%5C+This%5C+new%5C+dataset%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+reconstructions%5C+for%5C+floras%5C+under%5C+the%5C+monsoon%5C+climate%5C+condition.%5C+When%5C+it%5C+is%5C+applied%5C+to%5C+Chinese%5C+Neogene%5C+floras%2C%5C+PHYSGCHINA%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+parameters%2C%5C+especially%5C+parameters%5C+related%5C+to%5C+precipitation.%5C+3.%5C+Paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%EF%BC%8CPaleoclimates%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%5C+are%5C+reconstructed%5C+using%5C+leaf%5C+physiognomy%5C-%5C+climate%5C+models%5C+being%5C+set%5C+up%5C+in%5C+this%5C+study.%5C+The%5C+Chinese%5C+paleoclimate%5C+history%5C+in%5C+Eocene%5C+is%5C+similar%5C+to%5C+the%5C+trend%5C+from%5C+worldwide%5C+record.%5C+That%5C+is%2C%5C+hot%5C+climate%5C+presented%5C+in%5C+early%5C+Eocene%5C+and%5C+early%5C+Middle%5C+Eocene%2C%5C+and%5C+then%2C%5C+climate%5C+cooled%5C+down%5C+from%5C+late%5C+Middle%5C+Eocene%5C+to%5C+Late%5C+Eocene%5C+in%5C+China.%5C+Moreover%2C%5C+paleoclimates%5C+of%5C+two%5C+Late%5C+Miocene%5C+floras%5C+from%5C+Yunnan%5C+province%2C%5C+i.e.%2C%5C+Xiaolongtan%5C+flora%5C+and%5C+Bangmai%5C+flora%2C%5C+are%5C+reconstructed%5C+using%5C+different%5C+models.%5C+The%5C+results%5C+indicate%5C+that%2C%5C+temperature%5C+of%5C+Yunnan%5C+is%5C+slightly%5C+higher%5C+than%5C+that%5C+in%5C+nowadays%2C%5C+but%5C+the%5C+precipitation%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+at%5C+present%5C+day%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain.%5C+4.%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+China%EF%BC%8CA%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+form%5C+Yongping%5C+County%2C%5C+western%5C+Yunnan%5C+province%2C%5C+which%5C+belongs%5C+to%5C+Sanying%5C+formation%2C%5C+is%5C+studied%5C+in%5C+this%5C+dissertation.%5C+Yangjie%5C+flora%5C+is%5C+dominated%5C+by%5C+Quercus%5C+sect.%5C+Heterobalanus%5C+%5C%28Oerst.%5C%29%5C+Menits.%5C+%5C%28evergreen%5C+sclerophyllous%5C+oaks%5C%29%2C%5C+and%5C+this%5C+forest%5C+type%5C+is%5C+quite%5C+common%5C+in%5C+SW%5C+China%5C+at%5C+present.%5C+The%5C+discovery%5C+of%5C+Yangjie%5C+flora%5C+provides%5C+evidence%5C+that%2C%5C+vegetations%5C+of%5C+Yunnan%5C+in%5C+Miocene%5C+were%5C+dominated%5C+by%5C+evergreen%5C+forests%2C%5C+and%5C+the%5C+dominant%5C+families%5C+were%5C+Fabaceae%2C%5C+Fagaceae%5C+and%5C+Lauraceae.%5C+In%5C+Pliocene%2C%5C+this%5C+vegetation%5C+type%5C+changed%5C+gradually%5C+to%5C+evergreen%5C+sclerophyllous%5C+oak%5C+forests.%5C+This%5C+vegetation%5C+change%5C+may%5C+have%5C+been%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain%5C+in%5C+Neogene.%5C+A%5C+polypodiaceous%5C+fern%2C%5C+Drynaria%5C+callispora%5C+sp.%5C+nov.%2C%5C+is%5C+described%5C+from%5C+the%5C+upper%5C+Pliocene%5C+Sanying%5C+Formation%5C+in%5C+western%5C+Yunnan%5C+Province%2C%5C+southwestern%5C+China.%5C+The%5C+species%5C+with%5C+well%5C-preserved%5C+pinnae%5C+and%5C+in%5C+situ%5C+spores%5C+is%5C+the%5C+first%5C+convincing%5C+Drynaria%5C+fossil%5C+record.%5C+Detailed%5C+morphological%5C+investigation%5C+reveals%5C+that%5C+D.%5C+callispora%5C+is%5C+characterized%5C+by%5C+1%5C%29%5C+pinnatifid%5C+fronds%5C+with%5C+entire%5C-margined%5C+pinnae%5C+having%5C+straight%5C+or%5C+zigzag%5C+secondary%5C+veins%5C%3B%5C+2%5C%29%5C+finer%5C+venation%5C+showing%5C+void%5C+quadrangular%5C+areoles%2C%5C+but%5C+occasionally%5C+with%5C+one%5C+unbranched%5C+veinlet%5C%3B%5C+3%5C%29%5C+one%5C+row%5C+of%5C+circular%5C+sori%5C+on%5C+each%5C+side%5C+of%5C+the%5C+strong%5C+primary%5C+vein%5C%3B%5C+and%5C+4%5C%29%5C+in%5C+situ%5C+spores%5C+with%5C+verrucate%5C+exospores%5C+elliptical%5C+in%5C+polar%5C+view%5C+and%5C+bean%5C-shaped%5C+in%5C+equatorial%5C+view.%5C+A%5C+morphological%5C+comparison%5C+shows%5C+that%5C+D.%5C+callispora%5C+is%5C+significantly%5C+different%5C+from%5C+all%5C+the%5C+fossil%5C+species%5C+previously%5C+identified%5C+as%5C+drynarioids.%5C+A%5C+phylogenetic%5C+analysis%5C+of%5C+D.%5C+callispora%5C+supports%5C+that%5C+the%5C+fossil%5C+is%5C+closely%5C+related%5C+to%5C+D.%5C+sinica%5C+Diels%5C+and%5C+D.%5C+mollis%5C+Bedd.%2C%5C+two%5C+extant%5C+species%5C+distributing%5C+in%5C+the%5C+Himalayas.%5C+The%5C+discovery%5C+of%5C+the%5C+new%5C+fern%5C+indicates%5C+that%5C+the%5C+genus%5C+Drynaria%5C+became%5C+diversified%5C+in%5C+its%5C+modern%5C+distribution%5C+region%5C+no%5C+later%5C+than%5C+the%5C+late%5C+Pliocene%5C+and%5C+had%5C+retained%5C+the%5C+similar%5C+ecology%5C+to%5C+that%5C+of%5C+many%5C+modern%5C+drynarioid%5C+ferns%5C+ever%5C+since.%5C+5.%5C+Paleoclimate%5C+reconstruction%5C+of%5C+Yangjie%5C+flora%EF%BC%8CLMA%2C%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+are%5C+applied%5C+to%5C+reconstruct%5C+paleoclimate%5C+of%5C+Yangjie%5C+flora.%5C+MAT%5C+calculated%5C+by%5C+LMA%5C+and%5C+CLAMP%5C+is%5C+22.0%5C+%C2%B1%5C+2.4%C2%B0C%5C+and%5C+20.0%5C+%C2%B1%5C+1.4%C2%B0C%2C%5C+respectively%2C%5C+and%5C+GSP%5C+calculated%5C+by%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+is%5C+1521.9%5C+%C2%B1%5C+131.3%5C+mm%5C+and%5C+2084.7%5C+%C2%B1%5C+223.1%5C+mm%2C%5C+respectively%5C+All%5C+methods%5C+agree%5C+that%2C%5C+both%5C+temperature%5C+and%5C+precipitation%5C+were%5C+higher%5C+in%5C+Late%5C+Pliocene%5C+than%5C+in%5C+nowadays.%5C+Meanwhile%2C%5C+precipitation%5C+parameters%5C+calculated%5C+by%5C+CLAMP%5C+gets%5C+high%5C+values.%5C+6.%5C+Preliminary%5C+study%5C+of%5C+insect%5C+herbivory%5C+in%5C+Yangjie%5C+flora%EF%BC%8CInsect%5C+herbivory%5C+on%5C+leaves%5C+of%5C+Quercus%5C+preguyavaefolia%5C+Tao%5C+and%5C+Q.%5C+presenescens%5C+Zhou%2C%5C+two%5C+dominant%5C+species%5C+in%5C+Yangjie%5C+flora%2C%5C+is%5C+reported%5C+by%5C+the%5C+preliminary%5C+research.%5C+Each%5C+of%5C+these%5C+two%5C+species%5C+has%5C+a%5C+high%5C+diversity%5C+of%5C+insect%5C+damage.%5C+Among%5C+all%5C+damage%5C+types%2C%5C+margin%5C+feeding%5C+and%5C+surface%5C+feeding%5C+are%5C+most%5C+common%2C%5C+and%5C+skeletonization%2C%5C+piercing%5C+and%5C+sucking%2C%5C+and%5C+galling%5C+are%5C+less%5C+found.%5C+Most%5C+of%5C+these%5C+damage%5C+types%5C+belonge%5C+to%5C+the%5C+high%5C+host%5C+specialization%5C+%5C%28HS%5C+%3D%5C+1%5C%29.%5C+However%2C%5C+the%5C+proportion%5C+of%5C+leaves%5C+without%5C+insect%5C+damage%5C+in%5C+Q.%5C+presenescens%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Q.%5C+preguyavaefolia.%5C+According%5C+to%5C+the%5C+log%5C-log%5C+linear%5C+regression%5C+model%2C%5C+both%5C+Quercus%5C+preguyavaefolia%5C+and%5C+Q.%5C+presenescens%5C+have%5C+very%5C+high%5C+leaf%5C+mass%5C+per%5C+area%5C+%5C%28with%5C+184.8%5C+%C2%B1%5C+6.7%5C+g%5C%2Fm2%5C+and%5C+155.3%5C+%C2%B1%5C+10.7%5C+g%5C%2Fm2%2C%5C+respectively%5C%29.%5C+The%5C+high%5C+diversity%5C+of%5C+insect%5C+herbivory%5C+demonstrates%5C+a%5C+warm%5C+climate%5C+in%5C+the%5C+Late%5C+Pliocene%5C+of%5C+West%5C+Yunnan%5C+Province."},{"jsname":"Trigonobalanus doichangensis is an endangered plant. In this paper, the megasporogenesis and development of female gametophyte, seed morphological traits and seed germination, seed conservation, micropropagation and acclimatization of this species were studied. Combined with the published results of cytology, molecular genetics and other researches,the mechanisms of extinction, basic biology and technology of germplasm conservation and acclimatization of T. doichangensis were discussed. The main results are summarized as follows:1. Megasporogenesis and development of female gametophyte,Stamens exist under the stigma of T. doichangensis, and the pollen is aborted on the later development stage of pistil, therefore, the pistillate flower in function is hermaphrodite flower in morphology. The ovule is anatropous, bitegmic and crassinucellate. The primary archesporium is hypodermal and single-celled and the sporogenous cell of the nucellus functions directly as a megaspore mother cell which goes meiosis to form a linear tetrad. The chalazal megaspore of the tetrad is functional. The development of embryo sac conforms to the polygonum type. There are six ovules in the ovary of T. doichangensis, and only one develops into a seed in normal fruits. In the process of megasporogenesis and development of female gametophyte, there are several links of abortion, and 93.3% of mature embryo sacs is aborted.2. Morphological characters and germination of seeds,Most of the variation occurred among individual trees within populations in seed morphological traits (length, width and 1000-seed weight) and germination-related indices (germination percentage, germination index and vigor index). In addition, the variation in percentage of well-developed seeds among populations and among individual trees within populations is equal, each accounting for 48%. Each of seed morphological traits has significantly positive correlation with each other (p < 0.01), but they have no significant correlation with percentage of well-developed seeds and germination-related indices. In the same batch of seeds of T. doichangensis, there are light-colored and dark-colored seed coats, and development of light-colored seeds is significantly poorer than that of dark-colored seeds.The sensitivity of seeds to high temperature varys in different stages of seed imbibition. In each stage, heat acclimatization don’t increase germination percentage, germination index and fresh weight of seedlings. If the distilled water is substituted by solution of SA during seed imbibition, seed germination and germination index after heat shock are not significantly different from control, but they are significantly higher than that of other treatments. Moreover, when the seeds are treatmented with SA, the fresh weight of seedlings is significantly higher than that of control and other treatments.3. Seed conservation,Seeds of T. doichangensis belong to orthodox seeds which can tolerate certain level of dehydration. The condition of low temperature and low water content of seeds is conducive to seed conservation.Germination of fresh seeds shows significant variation among populations, howerer, germination of the seeds after storage for one year in room temperature shows no significant variation among populations.High temperature and high relative humidity damages the seeds more severely than high temperature does. In addition, low water content of seeds enable the seeds to be more tolerant to high temperature.The electrical conductivity, dehydrogenase activity and germination percentage have no significant correlation with each other.4. Micropropagation and in vitro conservation,Cotyledonary nodes are a kind of efficient explants. Low salt media are conducive to shoot propagation and root induction.The maximum multiplication rate (20-25 shoots/explant within 4 months) is achieved on quarter-strength Murashige and Skoog (1/4 MS) medium supplemented with 1 mg·L-1 6-benzyladenine (6-BA) and 0.05 mg·L-1 α-naphthaleneacetic acid (NAA).Rooting is promoted by auxins, however, IBA alone or low concentrations of NAA are preferable due to small amount of callus induced. The research has established an efficient protocol for micropropagation of T. doichangensis, and it provides technology support for in vitro conservation of special germplasm of the species.5. Acclimatization,Quercus variabilis, Cyclobalanopsis glaucoides and T. doichangensis belong to the family of Fagaceae, and the natural distribution ranges of the 3 species are decreasing in turn. The research suggests that the ranges of temperature tolerance of the 3 species are decreasing corresponding to their distribution ranges.The high and low semi-lethal temperature of one-year old T. doichangensis is 49.5℃ and -5℃ respectively. It suggests that T. doichangensis has a wide range of basic temperature tolerance. Short-term heat and cold acclimatization cannot expand the range of temperature tolerance. It can be inferred that T. doichangensis may lack induced tolerance to temperature. Under proper conditions, ABA can increase the cold tolerance, and SA can increase the heat tolerance of leaf discs of T. doichangensis.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=%25E7%2589%25A9%25E7%25A7%258D%25E5%25A4%259A%25E6%25A0%25B7%25E6%2580%25A7&order=desc&&fq=dc.project.title_filter%3ATrigonobalanus%5C+doichangensis%5C+is%5C+an%5C+endangered%5C+plant.%5C+In%5C+this%5C+paper%2C%5C+the%5C+megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%2C%5C+seed%5C+morphological%5C+traits%5C+and%5C+seed%5C+germination%2C%5C+seed%5C+conservation%2C%5C+micropropagation%5C+and%5C+acclimatization%5C+of%5C+this%5C+species%5C+were%5C+studied.%5C+Combined%5C+with%5C+the%5C+published%5C+results%5C+of%5C+cytology%2C%5C+molecular%5C+genetics%5C+and%5C+other%5C+researches%2Cthe%5C+mechanisms%5C+of%5C+extinction%2C%5C+basic%5C+biology%5C+and%5C+technology%5C+of%5C+germplasm%5C+conservation%5C+and%5C+acclimatization%5C+of%5C+T.%5C+doichangensis%5C+were%5C+discussed.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%EF%BC%8CStamens%5C+exist%5C+under%5C+the%5C+stigma%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+the%5C+pollen%5C+is%5C+aborted%5C+on%5C+the%5C+later%5C+development%5C+stage%5C+of%5C+pistil%2C%5C+therefore%2C%5C+the%5C+pistillate%5C+flower%5C+in%5C+function%5C+is%5C+hermaphrodite%5C+flower%5C+in%5C+morphology.%5C+The%5C+ovule%5C+is%5C+anatropous%2C%5C+bitegmic%5C+and%5C+crassinucellate.%5C+The%5C+primary%5C+archesporium%5C+is%5C+hypodermal%5C+and%5C+single%5C-celled%5C+and%5C+the%5C+sporogenous%5C+cell%5C+of%5C+the%5C+nucellus%5C+functions%5C+directly%5C+as%5C+a%5C+megaspore%5C+mother%5C+cell%5C+which%5C+goes%5C+meiosis%5C+to%5C+form%5C+a%5C+linear%5C+tetrad.%5C+The%5C+chalazal%5C+megaspore%5C+of%5C+the%5C+tetrad%5C+is%5C+functional.%5C+The%5C+development%5C+of%5C+embryo%5C+sac%5C+conforms%5C+to%5C+the%5C+polygonum%5C+type.%5C+There%5C+are%5C+six%5C+ovules%5C+in%5C+the%5C+ovary%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+only%5C+one%5C+develops%5C+into%5C+a%5C+seed%5C+in%5C+normal%5C+fruits.%5C+In%5C+the%5C+process%5C+of%5C+megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%2C%5C+there%5C+are%5C+several%5C+links%5C+of%5C+abortion%2C%5C+and%5C+93.3%25%5C+of%5C+mature%5C+embryo%5C+sacs%5C+is%5C+aborted.2.%5C+Morphological%5C+characters%5C+and%5C+germination%5C+of%5C+seeds%EF%BC%8CMost%5C+of%5C+the%5C+variation%5C+occurred%5C+among%5C+individual%5C+trees%5C+within%5C+populations%5C+in%5C+seed%5C+morphological%5C+traits%5C+%5C%28length%2C%5C+width%5C+and%5C+1000%5C-seed%5C+weight%5C%29%5C+and%5C+germination%5C-related%5C+indices%5C+%5C%28germination%5C+percentage%2C%5C+germination%5C+index%5C+and%5C+vigor%5C+index%5C%29.%5C+In%5C+addition%2C%5C+the%5C+variation%5C+in%5C+percentage%5C+of%5C+well%5C-developed%5C+seeds%5C+among%5C+populations%5C+and%5C+among%5C+individual%5C+trees%5C+within%5C+populations%5C+is%5C+equal%2C%5C+each%5C+accounting%5C+for%5C+48%25.%5C+Each%5C+of%5C+seed%5C+morphological%5C+traits%5C+has%5C+significantly%5C+positive%5C+correlation%5C+with%5C+each%5C+other%5C+%5C%28p%5C+%3C%5C+0.01%5C%29%2C%5C+but%5C+they%5C+have%5C+no%5C+significant%5C+correlation%5C+with%5C+percentage%5C+of%5C+well%5C-developed%5C+seeds%5C+and%5C+germination%5C-related%5C+indices.%5C+In%5C+the%5C+same%5C+batch%5C+of%5C+seeds%5C+of%5C+T.%5C+doichangensis%2C%5C+there%5C+are%5C+light%5C-colored%5C+and%5C+dark%5C-colored%5C+seed%5C+coats%2C%5C+and%5C+development%5C+of%5C+light%5C-colored%5C+seeds%5C+is%5C+significantly%5C+poorer%5C+than%5C+that%5C+of%5C+dark%5C-colored%5C+seeds.The%5C+sensitivity%5C+of%5C+seeds%5C+to%5C+high%5C+temperature%5C+varys%5C+in%5C+different%5C+stages%5C+of%5C+seed%5C+imbibition.%5C+In%5C+each%5C+stage%2C%5C+heat%5C+acclimatization%5C+don%E2%80%99t%5C+increase%5C+germination%5C+percentage%2C%5C+germination%5C+index%5C+and%5C+fresh%5C+weight%5C+of%5C+seedlings.%5C+If%5C+the%5C+distilled%5C+water%5C+is%5C+substituted%5C+by%5C+solution%5C+of%5C+SA%5C+during%5C+seed%5C+imbibition%2C%5C+seed%5C+germination%5C+and%5C+germination%5C+index%5C+after%5C+heat%5C+shock%5C+are%5C+not%5C+significantly%5C+different%5C+from%5C+control%2C%5C+but%5C+they%5C+are%5C+significantly%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+treatments.%5C+Moreover%2C%5C+when%5C+the%5C+seeds%5C+are%5C+treatmented%5C+with%5C+SA%2C%5C+the%5C+fresh%5C+weight%5C+of%5C+seedlings%5C+is%5C+significantly%5C+higher%5C+than%5C+that%5C+of%5C+control%5C+and%5C+other%5C+treatments.3.%5C+Seed%5C+conservation%EF%BC%8CSeeds%5C+of%5C+T.%5C+doichangensis%5C+belong%5C+to%5C+orthodox%5C+seeds%5C+which%5C+can%5C+tolerate%5C+certain%5C+level%5C+of%5C+dehydration.%5C+The%5C+condition%5C+of%5C+low%5C+temperature%5C+and%5C+low%5C+water%5C+content%5C+of%5C+seeds%5C+is%5C+conducive%5C+to%5C+seed%5C+conservation.Germination%5C+of%5C+fresh%5C+seeds%5C+shows%5C+significant%5C+variation%5C+among%5C+populations%2C%5C+howerer%2C%5C+germination%5C+of%5C+the%5C+seeds%5C+after%5C+storage%5C+for%5C+one%5C+year%5C+in%5C+room%5C+temperature%5C+shows%5C+no%5C+significant%5C+variation%5C+among%5C+populations.High%5C+temperature%5C+and%5C+high%5C+relative%5C+humidity%5C+damages%5C+the%5C+seeds%5C+more%5C+severely%5C+than%5C+high%5C+temperature%5C+does.%5C+In%5C+addition%2C%5C+low%5C+water%5C+content%5C+of%5C+seeds%5C+enable%5C+the%5C+seeds%5C+to%5C+be%5C+more%5C+tolerant%5C+to%5C+high%5C+temperature.The%5C+electrical%5C+conductivity%2C%5C+dehydrogenase%5C+activity%5C+and%5C+germination%5C+percentage%5C+have%5C+no%5C+significant%5C+correlation%5C+with%5C+each%5C+other.4.%5C+Micropropagation%5C+and%5C+in%5C+vitro%5C+conservation%EF%BC%8CCotyledonary%5C+nodes%5C+are%5C+a%5C+kind%5C+of%5C+efficient%5C+explants.%5C+Low%5C+salt%5C+media%5C+are%5C+conducive%5C+to%5C+shoot%5C+propagation%5C+and%5C+root%5C+induction.The%5C+maximum%5C+multiplication%5C+rate%5C+%5C%2820%5C-25%5C+shoots%5C%2Fexplant%5C+within%5C+4%5C+months%5C%29%5C+is%5C+achieved%5C+on%5C+quarter%5C-strength%5C+Murashige%5C+and%5C+Skoog%5C+%5C%281%5C%2F4%5C+MS%5C%29%5C+medium%5C+supplemented%5C+with%5C+1%5C+mg%C2%B7L%5C-1%5C+6%5C-benzyladenine%5C+%5C%286%5C-BA%5C%29%5C+and%5C+0.05%5C+mg%C2%B7L%5C-1%5C+%CE%B1%5C-naphthaleneacetic%5C+acid%5C+%5C%28NAA%5C%29.Rooting%5C+is%5C+promoted%5C+by%5C+auxins%2C%5C+however%2C%5C+IBA%5C+alone%5C+or%5C+low%5C+concentrations%5C+of%5C+NAA%5C+are%5C+preferable%5C+due%5C+to%5C+small%5C+amount%5C+of%5C+callus%5C+induced.%5C+The%5C+research%5C+has%5C+established%5C+an%5C+efficient%5C+protocol%5C+for%5C+micropropagation%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+it%5C+provides%5C+technology%5C+support%5C+for%5C+in%5C+vitro%5C+conservation%5C+of%5C+special%5C+germplasm%5C+of%5C+the%5C+species.5.%5C+Acclimatization%EF%BC%8CQuercus%5C+variabilis%2C%5C+Cyclobalanopsis%5C+glaucoides%5C+and%5C+T.%5C+doichangensis%5C+belong%5C+to%5C+the%5C+family%5C+of%5C+Fagaceae%2C%5C+and%5C+the%5C+natural%5C+distribution%5C+ranges%5C+of%5C+the%5C+3%5C+species%5C+are%5C+decreasing%5C+in%5C+turn.%5C+The%5C+research%5C+suggests%5C+that%5C+the%5C+ranges%5C+of%5C+temperature%5C+tolerance%5C+of%5C+the%5C+3%5C+species%5C+are%5C+decreasing%5C+corresponding%5C+to%5C+their%5C+distribution%5C+ranges.The%5C+high%5C+and%5C+low%5C+semi%5C-lethal%5C+temperature%5C+of%5C+one%5C-year%5C+old%5C+T.%5C+doichangensis%5C+is%5C+49.5%E2%84%83%5C+and%5C+%5C-5%E2%84%83%5C+respectively.%5C+It%5C+suggests%5C+that%5C+T.%5C+doichangensis%5C+has%5C+a%5C+wide%5C+range%5C+of%5C+basic%5C+temperature%5C+tolerance.%5C+Short%5C-term%5C+heat%5C+and%5C+cold%5C+acclimatization%5C+cannot%5C+expand%5C+the%5C+range%5C+of%5C+temperature%5C+tolerance.%5C+It%5C+can%5C+be%5C+inferred%5C+that%5C+T.%5C+doichangensis%5C+may%5C+lack%5C+induced%5C+tolerance%5C+to%5C+temperature.%5C+Under%5C+proper%5C+conditions%2C%5C+ABA%5C+can%5C+increase%5C+the%5C+cold%5C+tolerance%2C%5C+and%5C+SA%5C+can%5C+increase%5C+the%5C+heat%5C+tolerance%5C+of%5C+leaf%5C+discs%5C+of%5C+T.%5C+doichangensis."},{"jsname":"lastIndexed","jscount":"2024-10-06"}],"Funding Project","dc.project.title_filter")'>
Below-grou... [1]
Camellia t... [1]
Cyatheacea... [1]
Cycas mich... [1]
Flower sce... [1]
Following ... [1]
More...
Indexed By
CSCD [105]
SCI [1]
Funding Organization
国家科技基础性工作专... [2]
Knowledge ... [1]
NSFC-新疆联合基... [1]
NSFC314600... [1]
中国科学院生物多样性... [1]
中央民族大学一流大学... [1]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 498
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
生物群落梯度分析方法及其计算软件的比较
期刊论文
出版物, 3111, 页码: 1—22
Authors:
高琼
;
李霞
Adobe PDF(76Kb)
  |  
Favorite
  |  
View/Download:142/4
  |  
Submit date:2017/07/19
口蘑属的系统学及我国该属的物种多样性研究
学位论文
: 中国科学院大学, 2022
Authors:
崔杨洋
Adobe PDF(69097Kb)
  |  
Favorite
  |  
View/Download:265/0
  |  
Submit date:2024/05/14
口蘑,共衍征,系统,物种多样性,菌褶变色
Tricholoma, synapomorphy, system, species diversity, the discoloration of the lamellae
唇形科叶绿体系统发育基因组学研究 ——兼论假野芝麻属的系统学位置
学位论文
: 中国科学院大学, 2022
Authors:
赵飞
Adobe PDF(10432Kb)
  |  
Favorite
  |  
View/Download:213/0
  |  
Submit date:2024/05/14
唇形科,野芝麻亚科,假野芝麻属,族间关系,系统发育基因组学
Lamiaceae, Lamioideae, Paralamium, tribe relationships, phylogenomic
梅里雪山植物多样性的垂直梯度格局及群落构建机制
学位论文
: 中国科学院大学, 2022
Authors:
钱栎屾
Adobe PDF(11773Kb)
  |  
Favorite
  |  
View/Download:260/0
  |  
Submit date:2024/05/14
物种多样性, 系统发育多样性, 功能多样性, 群落构建, 尺度效应
Species diversity, Phylogenetic diversity, Functional diversity, Community assembly, Scale effect
二倍体草莓基因组图谱构建与S位点演化研究
学位论文
: 中国科学院大学, 2022
Authors:
陈武
Adobe PDF(5072Kb)
  |  
Favorite
  |  
View/Download:155/0
  |  
Submit date:2024/05/14
草莓属,基因组,自交不亲和,核糖核酸酶T2,S位点
Fragaria, Genome, Self-incompatible, RNase T2, S-locus
喜马拉雅-横断山区代表类群的进化历史
学位论文
: 中国科学院大学, 2022
Authors:
Hum Kala Rana
Adobe PDF(24700Kb)
  |  
Favorite
  |  
View/Download:55/0
  |  
Submit date:2024/05/14
生物地理分界线
Biogeographical barriers
遗传-环境相关性
Genetic-environment association
古河流演变
Paleo-drainage evolution
青藏高原
Qinghai-Tibetan Plateau s.l.
RAD-seq
RAD-seq
天空岛,物种分布区模拟
Sky Island
Species distribution modeling
滇西北高山冰缘带关键垫状植物团状福禄草种群动态研究
学位论文
: 中国科学院大学, 2022
Authors:
陈序昉
Adobe PDF(2822Kb)
  |  
Favorite
  |  
View/Download:52/0
  |  
Submit date:2024/05/14
团状福禄草,种群更新,气候变化,化感作用
Arenaria polytrichoides, Population recruitment, Climate change, Allelopathy
云南被子植物菊类分支的演化历史研究
学位论文
: 中国科学院大学, 2022
Authors:
周韩洁
Adobe PDF(3037Kb)
  |  
Favorite
  |  
View/Download:45/0
  |  
Submit date:2024/05/14
物种丰富度,系统发育多样性,系统发育结构,演化历史,菊类分支
Species richness, Phylogenetic diversity, Phylogenetic structure, Evolutionary history, Asterids
中国-喜马拉雅地区鳞毛蕨属物种分化格局和成因的研究
学位论文
: 中国科学院大学, 2022
Authors:
左政裕
Adobe PDF(27467Kb)
  |  
Favorite
  |  
View/Download:12/0
  |  
Submit date:2024/05/14
系统发育基因组学,无融合生殖,杂交,晚中新世,南亚季风
Phylogenomics, Apomixis, Hybridization, Late Miocene, South Asia monsoon
世界紫堇属(罂粟科)的分子系统学与生物地理学研究
学位论文
: 中国科学院大学, 2022
Authors:
陈俊通
Adobe PDF(13289Kb)
  |  
Favorite
  |  
View/Download:29/0
  |  
Submit date:2024/05/14
紫堇亚科,紫堇属,系统发育,生物地理,组级新分类系统
Fumarioideae, Corydalis, Phylogeny, Biogeography, New classification