×
验证码:
换一张
忘记密码?
记住我
×
登录
中文版
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
登录
注册
ALL
ORCID
题名
作者
学科领域
关键词
资助项目
文献类型
出处
收录类别
出版者
发表日期
存缴日期
学科门类
学习讨论厅
图片搜索
粘贴图片网址
首页
研究单元&专题
作者
文献类型
学科分类
知识图谱
新闻&公告
在结果中检索
研究单元&专题
昆明植物所硕博研... [353]
作者
张雁云 [2]
葛佳 [2]
杜宁 [1]
张宪智 [1]
刘杰 [1]
胡茜 [1]
更多...
文献类型
学位论文 [353]
发表日期
2022 [6]
2021 [4]
2020 [31]
2019 [17]
2018 [21]
2017 [29]
更多...
语种
中文 [263]
英语 [13]
出处
资助项目
GST, P < 0.05) were exhibited by this species. The SAMOVA revealed seven diverging groups of related chlorotypes, six of them had distinct nonoverlapping geographical ranges: one in the northeast comprising 10 populations, a second with a southeast distribution comprising 22 populations, and the remaning four groups comprising 15 populations located in the west part of the species’ range along different river valleys. The genetic clustering of populations into three regions was also supported by analysis of molecular variance, which showed that most genetic variation (82.43%) was found among these three regions. Two clusters were distinguished by both phylogenetic analysis and genealogical analysis of chlorotypes, one consisting of chlorotypes from the western region and the second consisting of those from the eastern region. Significant genetic differences between the two regions might be attributed to vicariance and restricted gene flow, and this vicariance could be explained by the physical environmental heterogeneity on each side of the Tanaka-Kaiyong Line. Following the uplift of the Tibetan Plateau, the reorganization of the major river drainages was primarily caused by river separation and capture events. These historical events could change the distribution of S. davidii from fragmented to continuous (Upper/Lower Jinshajiang and Yalongjiang/Daduhe), and from continuous to fragmented (Nujiang and Jinshajiang/Honghe). However, spatial and temporal patterns of phylogeographic divergence are strongly associated with historical disjunction rather than modern drainage connections. Moreover, the following north-south split in the eastern region and effective isolation with their genetic diversity were essentially modelled by genetic drift. The higher chlorotype richness and genetic divergence for populations in western region compared with other two regions suggests that there were multipe refugia or in situ survival of S. davidii in the Himalayan-Hengduan Mountain region. Fixation of chlorotypes in the northeastern region and near fixation in the southeastern region suggest a recent colonization of these areas. We further found that this species underwent past range expansion around 37-303 thousand years ago (kya). The southeastern populations likely experienced a demographic expansion via unidirectional gene flow along rivers, while northeastern populations underwent a more northward expansion, both from initial populations (s) (21, 22, 23) preserved on eastern refugia (Jinshajiang). This process might have been accompanied with a series of founder effects or bottlenecks making populations genetically impoverished. 3. Phylogeographic analysisbased on nuclear sequence,We sequenced the nuclear (ncpGS) region in all populations sampled, recovering 23 nuclear haplotypes. Compared to cpDNA, both NST (0.470) and GST (0.338) were relatively lower, but NST was also significantly larger than GST. 37.10% of the total variation was distributed among regions which was much lower than that shown by chlorotypes. Thus, more extensive distribution of nuclear haplotypes was exhibited across the geographical range instead of the strong population subdivision observed in chlorotypes. Similarly to the chloroplast data, we found that genetic differentiation of nDNA was positively correlated with the geographical distance, but the increase in the geographical distance between populations did not increase the genetic differentiation of nDNA as rapidly as that of cpDNA. These contrasting levels between the chloroplast and nuclear genomes of S. davidii are likely due to limited gene flow of cpDNA by seeds vs. the extensive gene flow of nDNA by wind-mediated pollen in the population history. We also determined from nuclear markers that haplotype diversity was reduced in the southeastern and northeastern regions due to the loss of rare haplotypes in western region. This reduction of gene diversity is also a signature of founder events or recent bottleneck during post-glacial colonization. However, nuclear diversity within populations remains high. This provides evidence that regionally pollen flow might be sufficiently high to blur the genetic identity of founder populations over a reasonably large spatial scale.3. Relationships among three varieties,The phylogenetic analysis identified two phylogroups of chlorotypes, corresponding to S. davidii var. davidii and var. chuansinesis. The former was distinguished by the abscence of predonminant nuclear haplotype H1 of the latter. The monophyletic group of chlorotypes in var. davidii and var. liangshanesis showed their relatively close relationship. And their genetic divergence from the third variety appears to be relative to their slight morphological difference in leaf size and the divergent environmental niche spaces they occupy. Thus, the observed differences in morphological characters between var. chuansinesis and other two varieties can be explained by the seed dispersal limitation illustrated above (as inferred by geographical separation) and by environmental heterogeneity (as inferred by precipitation or elevation) or by a combination of both. After all, the geological changes, drainage reorganization, and floristic differences following the Himalayan uplift have been suggested to affect the genetic structure of S. davidii. These results provide new insights into the phylogeographic pattern of plants in China. In addition, the unique population genetic structure found in S. davidii has provided important insights into the evolutionary history of this species. The genetic profile uncovered in this study is also critical for its conservation management. Our study has uncovered the existence of at least two ‘evolutionary significant units’ independent units within S. davidii, corresponding to var. davidii from eastern region and var. chuansinensis from western region. The conservation efforts should first focus on most western populations and on the southeastern ones exhibiting high levels of genetic diversity, while the genetically homogeneous northeastern populations located in the degraded Loess Plateau should require much greater conservation efforts.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&fq=dc.type_filter%3A%E5%AD%A6%E4%BD%8D%E8%AE%BA%E6%96%87&sort_by=2&isNonaffiliated=false&search_type=-1&query1=taxonomy&order=desc&&fq=dc.project.title_filter%3ASophora%5C+davidii%5C+%5C%28Franch.%5C%29%5C+Skeels%5C+is%5C+an%5C+endemic%5C+species%5C+to%5C+China%2C%5C+and%5C+widely%5C+distributed%5C+in%5C+the%5C+dry%5C+valleys%5C+of%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+Systems%2C%5C+the%5C+Yungui%5C+Plateau%2C%5C+the%5C+Qinling%5C+Mountain%2C%5C+the%5C+Loess%5C+Plateau%5C+and%5C+other%5C+places%5C+of%5C+China.%5C+Previous%5C+studies%5C+of%5C+plant%5C+phylogeography%5C+have%5C+focused%5C+mainly%5C+on%5C+some%5C+taxa%5C+from%5C+the%5C+mountainous%5C+areas%5C+of%5C+China%2C%5C+relatively%5C+few%5C+studies%5C+have%5C+been%5C+conducted%5C+on%5C+plant%5C+taxa%5C+from%5C+the%5C+river%5C+valleys.%5C+The%5C+population%5C+dynamics%5C+and%5C+evolutionary%5C+history%5C+of%5C+species%5C+in%5C+such%5C+habitat%5C+remain%5C+less%5C+unknown%2C%5C+including%5C+the%5C+factors%5C+affecting%5C+the%5C+population%5C+genetic%5C+structure%5C+and%5C+its%5C+potential%5C+refugia%5C+in%5C+glaciation.%5C+In%5C+this%5C+study%2C%5C+we%5C+first%5C+determine%5C+the%5C+chromosome%5C+number%2C%5C+ploidy%5C+and%5C+karyotype%5C+of%5C+most%5C+populations%5C+we%5C+sampled.%5C+Then%2C%5C+based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+inherited%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+genetic%5C+diversity%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii%5C+and%5C+factors%5C+affecting%5C+them.%5C+The%5C+demographic%5C+history%5C+and%5C+potential%5C+refugia%5C+of%5C+this%5C+speices%5C+were%5C+investigated%5C+and%5C+the%5C+genetic%5C+relationship%5C+among%5C+three%5C+varieties%5C+was%5C+also%5C+clarified.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Cytogeography%EF%BC%8CThe%5C+chromosome%5C+number%5C+and%5C+karyotypes%5C+of%5C+14%5C+S.%5C+davidii%5C+populations%5C+have%5C+been%5C+studied.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+choromosome%5C+number%5C+of%5C+all%5C+the%5C+populations%5C+is%5C+2n%5C+%3D%5C+18.%5C+The%5C+interphase%5C+nuclei%5C+and%5C+prophase%5C+chromosomes%5C+of%5C+the%5C+species%5C+were%5C+found%5C+to%5C+be%5C+of%5C+the%5C+complex%5C+chromosome%5C+type%5C+and%5C+interstitial%5C+type.%5C+The%5C+results%5C+of%5C+karyotype%5C+analysis%5C+showed%5C+that%5C+7%5C+of%5C+14%5C+materials%5C+has%5C+satellites%2C%5C+and%5C+the%5C+number%5C+and%5C+position%5C+of%5C+satellites%5C+differ%5C+among%5C+populations%2C%5C+and%5C+thus%5C+revealed%5C+a%5C+series%5C+of%5C+diversified%5C+karyotypes.%5C+With%5C+most%5C+populations%5C+being%5C+of%5C+ploidy%2C%5C+cytogenetical%5C+divergence%5C+within%5C+the%5C+species%5C+lied%5C+mainly%5C+in%5C+chromosome%5C+size%5C+and%5C+structure.%5C+The%5C+fact%5C+that%5C+polyploidization%5C+did%5C+not%5C+occur%5C+very%5C+often%5C+for%5C+variations%5C+in%5C+Southwest%5C+China%5C+was%5C+against%5C+viewpoint%5C+that%5C+polyploidization%5C+level%5C+in%5C+this%5C+area%5C+is%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+distribution%5C+areas%5C+due%5C+to%5C+the%5C+elevation%5C+of%5C+mountains%5C+and%5C+plateau.%5C+2.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+chloroplast%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+two%5C+cpDNA%5C+fragments%5C+rpl32%5C-trnL%5C%28UAG%5C%29intergenic%5C+spacer%5C+and%5C+trnH%5C-psbA%5C+spacer%5C+in%5C+40%5C+populations%5C+sampled%2C%5C+recovering%5C+22%5C+chlorotypes.%5C+The%5C+average%5C+with%5C-in%5C+population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.171%5C%29%5C+was%5C+much%5C+lower%5C+than%5C+total%5C+genetic%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.857%5C%29.%5C+Population%5C+differentiation%5C+was%5C+high%5C+%5C%28NST%5C+%3D%5C+0.924%2C%5C+GST%5C+%3D%5C+0.801%5C%29%5C+indicating%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow%5C+and%5C+significant%5C+phylogeographical%5C+stucture%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+P%5C+%3C%5C+0.05%5C%29%5C+were%5C+exhibited%5C+by%5C+this%5C+species.%5C+The%5C+SAMOVA%5C+revealed%5C+seven%5C+diverging%5C+groups%5C+of%5C+related%5C+chlorotypes%2C%5C+six%5C+of%5C+them%5C+had%5C+distinct%5C+nonoverlapping%5C+geographical%5C+ranges%5C%3A%5C+one%5C+in%5C+the%5C+northeast%5C+comprising%5C+10%5C+populations%2C%5C+a%5C+second%5C+with%5C+a%5C+southeast%5C+distribution%5C+comprising%5C+22%5C+populations%2C%5C+and%5C+the%5C+remaning%5C+four%5C+groups%5C+comprising%5C+15%5C+populations%5C+located%5C+in%5C+the%5C+west%5C+part%5C+of%5C+the%5C+species%E2%80%99%5C+range%5C+along%5C+different%5C+river%5C+valleys.%5C+The%5C+genetic%5C+clustering%5C+of%5C+populations%5C+into%5C+three%5C+regions%5C+was%5C+also%5C+supported%5C+by%5C+analysis%5C+of%5C+molecular%5C+variance%2C%5C+which%5C+showed%5C+that%5C+most%5C+genetic%5C+variation%5C+%5C%2882.43%25%5C%29%5C+was%5C+found%5C+among%5C+these%5C+three%5C+regions.%5C+Two%5C+clusters%5C+were%5C+distinguished%5C+by%5C+both%5C+phylogenetic%5C+analysis%5C+and%5C+genealogical%5C+analysis%5C+of%5C+chlorotypes%2C%5C+one%5C+consisting%5C+of%5C+chlorotypes%5C+from%5C+the%5C+western%5C+region%5C+and%5C+the%5C+second%5C+consisting%5C+of%5C+those%5C+from%5C+the%5C+eastern%5C+region.%5C+Significant%5C+genetic%5C+differences%5C+between%5C+the%5C+two%5C+regions%5C+might%5C+be%5C+attributed%5C+to%5C+vicariance%5C+and%5C+restricted%5C+gene%5C+flow%2C%5C+and%5C+this%5C+vicariance%5C+could%5C+be%5C+explained%5C+by%5C+the%5C+physical%5C+environmental%5C+heterogeneity%5C+on%5C+each%5C+side%5C+of%5C+the%5C+Tanaka%5C-Kaiyong%5C+Line.%5C+Following%5C+the%5C+uplift%5C+of%5C+the%5C+Tibetan%5C+Plateau%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+These%5C+historical%5C+events%5C+could%5C+change%5C+the%5C+distribution%5C+of%5C+S.%5C+davidii%5C+from%5C+fragmented%5C+to%5C+continuous%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%2FDaduhe%5C%29%2C%5C+and%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Nujiang%5C+and%5C+Jinshajiang%5C%2FHonghe%5C%29.%5C+However%2C%5C+spatial%5C+and%5C+temporal%5C+patterns%5C+of%5C+phylogeographic%5C+divergence%5C+are%5C+strongly%5C+associated%5C+with%5C+historical%5C+disjunction%5C+rather%5C+than%5C+modern%5C+drainage%5C+connections.%5C+Moreover%2C%5C+the%5C+following%5C+north%5C-south%5C+split%5C+in%5C+the%5C+eastern%5C+region%5C+and%5C+effective%5C+isolation%5C+with%5C+their%5C+genetic%5C+diversity%5C+were%5C+essentially%5C+modelled%5C+by%5C+genetic%5C+drift.%5C+The%5C+higher%5C+chlorotype%5C+richness%5C+and%5C+genetic%5C+divergence%5C+for%5C+populations%5C+in%5C+western%5C+region%5C+compared%5C+with%5C+other%5C+two%5C+regions%5C+suggests%5C+that%5C+there%5C+were%5C+multipe%5C+refugia%5C+or%5C+in%5C+situ%5C+survival%5C+of%5C+S.%5C+davidii%5C+in%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+region.%5C+Fixation%5C+of%5C+chlorotypes%5C+in%5C+the%5C+northeastern%5C+region%5C+and%5C+near%5C+fixation%5C+in%5C+the%5C+southeastern%5C+region%5C+suggest%5C+a%5C+recent%5C+colonization%5C+of%5C+these%5C+areas.%5C+We%5C+further%5C+found%5C+that%5C+this%5C+species%5C+underwent%5C+past%5C+range%5C+expansion%5C+around%5C+37%5C-303%5C+thousand%5C+years%5C+ago%5C+%5C%28kya%5C%29.%5C+The%5C+southeastern%5C+populations%5C+likely%5C+experienced%5C+a%5C+demographic%5C+expansion%5C+via%5C+unidirectional%5C+gene%5C+flow%5C+along%5C+rivers%2C%5C+while%5C+northeastern%5C+populations%5C+underwent%5C+a%5C+more%5C+northward%5C+expansion%2C%5C+both%5C+from%5C+initial%5C+populations%5C+%5C%28s%5C%29%5C+%5C%2821%2C%5C+22%2C%5C+23%5C%29%5C+preserved%5C+on%5C+eastern%5C+refugia%5C+%5C%28Jinshajiang%5C%29.%5C+This%5C+process%5C+might%5C+have%5C+been%5C+accompanied%5C+with%5C+a%5C+series%5C+of%5C+founder%5C+effects%5C+or%5C+bottlenecks%5C+making%5C+populations%5C+genetically%5C+impoverished.%5C+3.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+nuclear%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+the%5C+nuclear%5C+%5C%28ncpGS%5C%29%5C+region%5C+in%5C+all%5C+populations%5C+sampled%2C%5C+recovering%5C+23%5C+nuclear%5C+haplotypes.%5C+Compared%5C+to%5C+cpDNA%2C%5C+both%5C+NST%5C+%5C%280.470%5C%29%5C+and%5C+GST%5C+%5C%280.338%5C%29%5C+were%5C+relatively%5C+lower%2C%5C+but%5C+NST%5C+was%5C+also%5C+significantly%5C+larger%5C+than%5C+GST.%5C+37.10%25%5C+of%5C+the%5C+total%5C+variation%5C+was%5C+distributed%5C+among%5C+regions%5C+which%5C+was%5C+much%5C+lower%5C+than%5C+that%5C+shown%5C+by%5C+chlorotypes.%5C+Thus%2C%5C+more%5C+extensive%5C+distribution%5C+of%5C+nuclear%5C+haplotypes%5C+was%5C+exhibited%5C+across%5C+the%5C+geographical%5C+range%5C+instead%5C+of%5C+the%5C+strong%5C+population%5C+subdivision%5C+observed%5C+in%5C+chlorotypes.%5C+Similarly%5C+to%5C+the%5C+chloroplast%5C+data%2C%5C+we%5C+found%5C+that%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+was%5C+positively%5C+correlated%5C+with%5C+the%5C+geographical%5C+distance%2C%5C+but%5C+the%5C+increase%5C+in%5C+the%5C+geographical%5C+distance%5C+between%5C+populations%5C+did%5C+not%5C+increase%5C+the%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+as%5C+rapidly%5C+as%5C+that%5C+of%5C+cpDNA.%5C+These%5C+contrasting%5C+levels%5C+between%5C+the%5C+chloroplast%5C+and%5C+nuclear%5C+genomes%5C+of%5C+S.%5C+davidii%5C+are%5C+likely%5C+due%5C+to%5C+limited%5C+gene%5C+flow%5C+of%5C+cpDNA%5C+by%5C+seeds%5C+vs.%5C+the%5C+extensive%5C+gene%5C+flow%5C+of%5C+nDNA%5C+by%5C+wind%5C-mediated%5C+pollen%5C+in%5C+the%5C+population%5C+history.%5C+We%5C+also%5C+determined%5C+from%5C+nuclear%5C+markers%5C+that%5C+haplotype%5C+diversity%5C+was%5C+reduced%5C+in%5C+the%5C+southeastern%5C+and%5C+northeastern%5C+regions%5C+due%5C+to%5C+the%5C+loss%5C+of%5C+rare%5C+haplotypes%5C+in%5C+western%5C+region.%5C+This%5C+reduction%5C+of%5C+gene%5C+diversity%5C+is%5C+also%5C+a%5C+signature%5C+of%5C+founder%5C+events%5C+or%5C+recent%5C+bottleneck%5C+during%5C+post%5C-glacial%5C+colonization.%5C+However%2C%5C+nuclear%5C+diversity%5C+within%5C+populations%5C+remains%5C+high.%5C+This%5C+provides%5C+evidence%5C+that%5C+regionally%5C+pollen%5C+flow%5C+might%5C+be%5C+sufficiently%5C+high%5C+to%5C+blur%5C+the%5C+genetic%5C+identity%5C+of%5C+founder%5C+populations%5C+over%5C+a%5C+reasonably%5C+large%5C+spatial%5C+scale.3.%5C+Relationships%5C+among%5C+three%5C+varieties%EF%BC%8CThe%5C+phylogenetic%5C+analysis%5C+identified%5C+two%5C+phylogroups%5C+of%5C+chlorotypes%2C%5C+corresponding%5C+to%5C+S.%5C+davidii%5C+var.%5C+davidii%5C+and%5C+var.%5C+chuansinesis.%5C+The%5C+former%5C+was%5C+distinguished%5C+by%5C+the%5C+abscence%5C+of%5C+predonminant%5C+nuclear%5C+haplotype%5C+H1%5C+of%5C+the%5C+latter.%5C+The%5C+monophyletic%5C+group%5C+of%5C+chlorotypes%5C+in%5C+var.%5C+davidii%5C+and%5C+var.%5C+liangshanesis%5C+showed%5C+their%5C+relatively%5C+close%5C+relationship.%5C+And%5C+their%5C+genetic%5C+divergence%5C+from%5C+the%5C+third%5C+variety%5C+appears%5C+to%5C+be%5C+relative%5C+to%5C+their%5C+slight%5C+morphological%5C+difference%5C+in%5C+leaf%5C+size%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Thus%2C%5C+the%5C+observed%5C+differences%5C+in%5C+morphological%5C+characters%5C+between%5C+var.%5C+chuansinesis%5C+and%5C+other%5C+two%5C+varieties%5C+can%5C+be%5C+explained%5C+by%5C+the%5C+seed%5C+dispersal%5C+limitation%5C+illustrated%5C+above%5C+%5C%28as%5C+inferred%5C+by%5C+geographical%5C+separation%5C%29%5C+and%5C+by%5C+environmental%5C+heterogeneity%5C+%5C%28as%5C+inferred%5C+by%5C+precipitation%5C+or%5C+elevation%5C%29%5C+or%5C+by%5C+a%5C+combination%5C+of%5C+both.%5C+After%5C+all%2C%5C+the%5C+geological%5C+changes%2C%5C+drainage%5C+reorganization%2C%5C+and%5C+floristic%5C+differences%5C+following%5C+the%5C+Himalayan%5C+uplift%5C+have%5C+been%5C+suggested%5C+to%5C+affect%5C+the%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii.%5C+These%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+China.%5C+In%5C+addition%2C%5C+the%5C+unique%5C+population%5C+genetic%5C+structure%5C+found%5C+in%5C+S.%5C+davidii%5C+has%5C+provided%5C+important%5C+insights%5C+into%5C+the%5C+evolutionary%5C+history%5C+of%5C+this%5C+species.%5C+The%5C+genetic%5C+profile%5C+uncovered%5C+in%5C+this%5C+study%5C+is%5C+also%5C+critical%5C+for%5C+its%5C+conservation%5C+management.%5C+Our%5C+study%5C+has%5C+uncovered%5C+the%5C+existence%5C+of%5C+at%5C+least%5C+two%5C+%E2%80%98evolutionary%5C+significant%5C+units%E2%80%99%5C+independent%5C+units%5C+within%5C+S.%5C+davidii%2C%5C+corresponding%5C+to%5C+var.%5C+davidii%5C+from%5C+eastern%5C+region%5C+and%5C+var.%5C+chuansinensis%5C+from%5C+western%5C+region.%5C+The%5C+conservation%5C+efforts%5C+should%5C+first%5C+focus%5C+on%5C+most%5C+western%5C+populations%5C+and%5C+on%5C+the%5C+southeastern%5C+ones%5C+exhibiting%5C+high%5C+levels%5C+of%5C+genetic%5C+diversity%2C%5C+while%5C+the%5C+genetically%5C+homogeneous%5C+northeastern%5C+populations%5C+located%5C+in%5C+the%5C+degraded%5C+Loess%5C+Plateau%5C+should%5C+require%5C+much%5C+greater%5C+conservation%5C+efforts."},{"jsname":"The Taxus wallichiana complex represents an old relict conifer lineage that survived through the Tertiary. It is currently distributed in the mountain forests in South and Southwest China south of the Qinling Mountains. In the present study, we explored phylogeography of the complex by using two chloroplast DNA regions, one nuclear ribosomal DNA spacer region and eight microsatellite (SSR) loci. The main conclusions can be summarized as follows:1. Phylogeographic pattern based on chloroplast haplotypes,There were 11 cpDNA haplotypes identified in the T. wallichiana complex The complex showed a high level of genetic diversity and obvious genetic differentiation. The 44 sampled populations showed obvious genetic structure, which could be divided into five groups, namely the Huanan group, the Daba group, the Emei group, the Yunnan group and the Qinling group. There was extremely high genetic differentiation among groups, but not significant within group. The divergence times of the five lineages, estimated using average mutation rates of trnL-trnF, fell in the Pliocene. 2. Phylogeographic patterns based on ITS sequences,These included 38 unique ‘haplotypes’ based on ITS data. Their analysis showed that the T. wallichiana complex possessed a high genetic diversity. These populations could be divided into four groups, namely the Huanan group, the Daba/Emei group, the Yunnan group and the Qinling group. Based on all results, it appears that the major lineages constituting the T. wallichiana complex have arisen before Quaternary glaciation cycles, and may have survived isolated in different refugia. During interglacial periods some lineages appear to have come in contact and hybridizedbut other lineages merged forming populations with mixed haplotypes without signs of hybridization. The present-day phylogeographical distribution pattern of the T. wallichiana complex might thus be the result of repeated expansion / contractions of populations during interglacial / glacial cycles.3. Population genetic analysis using microsatellite (SSR) markers,Eight SSR loci were used for population genetic analysis on the T. wallichiana complex. A lower level of genetic diversity at the population level and high genetic differentiation among population was detected. The results of structure analysis were similar to those on the ITS data, dividing the populations into four groups (lineages). According to the results here, it was deduced that each of the 4 lineages of the T. wallichiana complex may possessed respective glacial refugia, and some lineages (such as the Qinling and Huanan lineage) might have survived in multiple refugia in the Quaternay glaciations. The present distribution pattern of this complex was likely influenced by the uplift of the QTP and Quaternary glaciation.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&fq=dc.type_filter%3A%E5%AD%A6%E4%BD%8D%E8%AE%BA%E6%96%87&sort_by=2&isNonaffiliated=false&search_type=-1&query1=taxonomy&order=desc&&fq=dc.project.title_filter%3AThe%5C+Taxus%5C+wallichiana%5C+complex%5C+represents%5C+an%5C+old%5C+relict%5C+conifer%5C+lineage%5C+that%5C+survived%5C+through%5C+the%5C+Tertiary.%5C+It%5C+is%5C+currently%5C+distributed%5C+in%5C+the%5C+mountain%5C+forests%5C+in%5C+South%5C+and%5C+Southwest%5C+China%5C+south%5C+of%5C+the%5C+Qinling%5C+Mountains.%C2%A0In%5C+the%5C+present%5C+study%2C%5C+we%5C+explored%5C+phylogeography%5C+of%5C+the%5C+complex%5C+by%5C+using%5C+two%5C+chloroplast%5C+DNA%5C+regions%2C%5C+one%5C+nuclear%5C+ribosomal%5C+DNA%5C+spacer%5C+region%5C+and%5C+eight%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+loci.%5C+The%5C+main%5C+conclusions%5C+can%5C+be%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Phylogeographic%5C+pattern%5C+based%5C+on%5C+chloroplast%5C+haplotypes%EF%BC%8CThere%5C+were%5C+11%5C+cpDNA%5C+haplotypes%5C+identified%5C+in%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+The%5C+complex%5C+showed%5C+a%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+and%5C+obvious%5C+genetic%5C+differentiation.%5C+The%5C+44%5C+sampled%5C+populations%5C+showed%5C+obvious%5C+genetic%5C+structure%2C%5C+which%5C+could%5C+be%5C+divided%5C+into%5C+five%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C+group%2C%5C+the%5C+Emei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+There%5C+was%5C+extremely%5C+high%5C+genetic%5C+differentiation%5C+among%5C+groups%2C%5C+but%5C+not%5C+significant%5C+within%5C+group.%5C+The%5C+divergence%5C+times%5C+of%5C+the%5C+five%5C+lineages%2C%5C+estimated%5C+using%5C+average%5C+mutation%5C+rates%5C+of%5C+trnL%5C-trnF%2C%5C+fell%5C+in%5C+the%5C+Pliocene.%C2%A02.%5C+Phylogeographic%5C+patterns%5C+based%5C+on%5C+ITS%5C+sequences%EF%BC%8CThese%5C+included%5C+38%5C+unique%5C+%E2%80%98haplotypes%E2%80%99%5C+based%5C+on%5C+ITS%5C+data.%5C+Their%5C+analysis%5C+showed%5C+that%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+possessed%5C+a%5C+high%5C+genetic%5C+diversity.%C2%A0These%5C+populations%5C+could%5C+be%5C+divided%5C+into%5C+four%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C%2FEmei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+Based%5C+on%5C+all%5C+results%2C%5C+it%5C+appears%5C+that%5C+the%5C+major%5C+lineages%5C+constituting%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+have%5C+arisen%5C+before%5C+Quaternary%5C+glaciation%5C+cycles%2C%5C+and%5C+may%5C+have%5C+survived%5C+isolated%5C+in%5C+different%5C+refugia.%5C+During%5C+interglacial%5C+periods%5C+some%5C+lineages%5C+appear%5C+to%5C+have%5C+come%5C+in%5C+contact%5C+and%5C+hybridizedbut%5C+other%5C+lineages%5C+merged%5C+forming%5C+populations%5C+with%5C+mixed%5C+haplotypes%5C+without%5C+signs%5C+of%5C+hybridization.%5C+The%5C+present%5C-day%5C+phylogeographical%5C+distribution%5C+pattern%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+might%5C+thus%5C+be%5C+the%5C+result%5C+of%5C+repeated%5C+expansion%5C+%5C%2F%5C+contractions%5C+of%5C+populations%5C+during%5C+interglacial%5C+%5C%2F%5C+glacial%5C+cycles.3.%5C+Population%5C+genetic%5C+analysis%5C+using%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+markers%EF%BC%8CEight%5C+SSR%5C+loci%5C+were%5C+used%5C+for%5C+population%5C+genetic%5C+analysis%5C+on%5C+the%5C+T.%5C+wallichiana%5C+complex.%5C+A%5C+lower%5C+level%5C+of%5C+genetic%5C+diversity%5C+at%5C+the%5C+population%5C+level%5C+and%5C+high%5C+genetic%5C+differentiation%5C+among%5C+population%5C+was%5C+detected.%5C+The%5C+results%5C+of%5C+structure%5C+analysis%5C+were%5C+similar%5C+to%5C+those%5C+on%5C+the%5C+ITS%5C+data%2C%5C+dividing%5C+the%5C+populations%5C+into%5C+four%5C+groups%5C+%5C%28lineages%5C%29.%C2%A0According%5C+to%5C+the%5C+results%5C+here%2C%5C+it%5C+was%5C+deduced%5C+that%5C+each%5C+of%5C+the%5C+4%5C+lineages%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+may%5C+possessed%5C+respective%5C+glacial%5C+refugia%2C%5C+and%5C+some%5C+lineages%5C+%5C%28such%5C+as%5C+the%5C+Qinling%5C+and%5C+Huanan%5C+lineage%5C%29%5C+might%5C+have%5C+survived%5C+in%5C+multiple%5C+refugia%5C+in%5C+the%5C+Quaternay%5C+glaciations.%5C+The%5C+present%5C+distribution%5C+pattern%5C+of%5C+this%5C+complex%5C+was%5C+likely%5C+influenced%5C+by%5C+the%5C+uplift%5C+of%5C+the%5C+QTP%5C+and%5C+Quaternary%5C+glaciation."},{"jsname":"The relationship between leaf physiognomy and climate is widely used to reconstruct paleoclimates of Cenozoic floras. Previous works demonstrate that LMA show regional constraints. Until now, no equation has been set up directly from Chinese forests. This relationship is exhaustively studied based on 50 samples from mesic to humid forests across China. Models including Leaf Margin Analysis (LMA), Single Linear regression for Precipitation, and Climate Leaf Analysis Multivariate Program (CLAMP), are set up and used to quantitatively reconstruct paleoclimates of Chinese Neogene floras. Meanwhile, a paleoflora, i.e., Yangjie flora, which belongs to the Upper Pliocene Sanying formation in West Yunnan Province, is studied. The species assemblage, paleoclimate and paleoecology of Yangjie flora are discussed. Conclusions in this dissertation are as following: 1. Chinese leaf physiognomy-climate models based on regression analyses,LMA is a widely used method that applies present-day linear correlation between the proportion of woody dicotyledonous species with untoothed leaves (P) and mean annual temperature (MAT) to estimate paleotemperatures from fossil leaf floras. The Chinese data indicate that P shows a strong linear correlation with MAT, but the actual relationship is slightly different from those recognized from other regions. Among all currently used LMA equations, the one resulting from North and Central American and Japanese data, rather than the widely used East Asian LMA equation, yields the closest values to the actual MATs of the Chinese samples (mean absolute error = 1.9°C). A new equation derived from the Chinese forests is therefore developed, where MAT = 1.038 + 27.6 × P. This study not only demonstrates the similarity of the relationship between P and MAT in the Northern Hemisphere, but also improves the reliability of LMA for paleoclimate reconstructions of Chinese paleofloras. Besides, regression analyses are used to explore the relationship between leaf physiognomy and precipitation. In contrast to former studies, entire leaf margin shows the highest correlation with the Growing Season Precipitation (GSP). A new equation is proposed: GSP = 228.0 + 1707.0 × P. 2. The new calibrated CLAMP dataset – PHYSGCHINA,CLAMP, which is based on canonical correspondence analysis, is improved by the inclusion of 50 Chinese samples. The result indicates that, new calibrated data from 50 Chinese sample sites are situated away from the former 144 samples in the physiognomic space, which may be caused by the unique characters of leaf physiognomy under monsoon condition. Therefore, a new calibrated CLAMP dataset, i.e., PHYSGCHINA, is set up based on 50 new Chinese samples, and 144 former samples from PHYSG3BRC. This new dataset could improve the accuracy of paleoclimate reconstructions for floras under the monsoon climate condition. When it is applied to Chinese Neogene floras, PHYSGCHINA could improve the accuracy of paleoclimate parameters, especially parameters related to precipitation. 3. Paleoclimate reconstructions of Chinese Cenozoic floras,Paleoclimates of Chinese Cenozoic floras are reconstructed using leaf physiognomy- climate models being set up in this study. The Chinese paleoclimate history in Eocene is similar to the trend from worldwide record. That is, hot climate presented in early Eocene and early Middle Eocene, and then, climate cooled down from late Middle Eocene to Late Eocene in China. Moreover, paleoclimates of two Late Miocene floras from Yunnan province, i.e., Xiaolongtan flora and Bangmai flora, are reconstructed using different models. The results indicate that, temperature of Yunnan is slightly higher than that in nowadays, but the precipitation is much higher than that at present day, which may be caused by the uplift of Hengduan Mountain. 4. Late Pliocene Yangjie flora in West Yunnan Province, China,A Late Pliocene Yangjie flora form Yongping County, western Yunnan province, which belongs to Sanying formation, is studied in this dissertation. Yangjie flora is dominated by Quercus sect. Heterobalanus (Oerst.) Menits. (evergreen sclerophyllous oaks), and this forest type is quite common in SW China at present. The discovery of Yangjie flora provides evidence that, vegetations of Yunnan in Miocene were dominated by evergreen forests, and the dominant families were Fabaceae, Fagaceae and Lauraceae. In Pliocene, this vegetation type changed gradually to evergreen sclerophyllous oak forests. This vegetation change may have been caused by the uplift of Hengduan Mountain in Neogene. A polypodiaceous fern, Drynaria callispora sp. nov., is described from the upper Pliocene Sanying Formation in western Yunnan Province, southwestern China. The species with well-preserved pinnae and in situ spores is the first convincing Drynaria fossil record. Detailed morphological investigation reveals that D. callispora is characterized by 1) pinnatifid fronds with entire-margined pinnae having straight or zigzag secondary veins; 2) finer venation showing void quadrangular areoles, but occasionally with one unbranched veinlet; 3) one row of circular sori on each side of the strong primary vein; and 4) in situ spores with verrucate exospores elliptical in polar view and bean-shaped in equatorial view. A morphological comparison shows that D. callispora is significantly different from all the fossil species previously identified as drynarioids. A phylogenetic analysis of D. callispora supports that the fossil is closely related to D. sinica Diels and D. mollis Bedd., two extant species distributing in the Himalayas. The discovery of the new fern indicates that the genus Drynaria became diversified in its modern distribution region no later than the late Pliocene and had retained the similar ecology to that of many modern drynarioid ferns ever since. 5. Paleoclimate reconstruction of Yangjie flora,LMA, Single Linear Regression for Precipitation and PHYSGCHINA are applied to reconstruct paleoclimate of Yangjie flora. MAT calculated by LMA and CLAMP is 22.0 ± 2.4°C and 20.0 ± 1.4°C, respectively, and GSP calculated by Single Linear Regression for Precipitation and PHYSGCHINA is 1521.9 ± 131.3 mm and 2084.7 ± 223.1 mm, respectively All methods agree that, both temperature and precipitation were higher in Late Pliocene than in nowadays. Meanwhile, precipitation parameters calculated by CLAMP gets high values. 6. Preliminary study of insect herbivory in Yangjie flora,Insect herbivory on leaves of Quercus preguyavaefolia Tao and Q. presenescens Zhou, two dominant species in Yangjie flora, is reported by the preliminary research. Each of these two species has a high diversity of insect damage. Among all damage types, margin feeding and surface feeding are most common, and skeletonization, piercing and sucking, and galling are less found. Most of these damage types belonge to the high host specialization (HS = 1). However, the proportion of leaves without insect damage in Q. presenescens is much higher than that in Q. preguyavaefolia. According to the log-log linear regression model, both Quercus preguyavaefolia and Q. presenescens have very high leaf mass per area (with 184.8 ± 6.7 g/m2 and 155.3 ± 10.7 g/m2, respectively). The high diversity of insect herbivory demonstrates a warm climate in the Late Pliocene of West Yunnan Province.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&fq=dc.type_filter%3A%E5%AD%A6%E4%BD%8D%E8%AE%BA%E6%96%87&sort_by=2&isNonaffiliated=false&search_type=-1&query1=taxonomy&order=desc&&fq=dc.project.title_filter%3AThe%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+climate%5C+is%5C+widely%5C+used%5C+to%5C+reconstruct%5C+paleoclimates%5C+of%5C+Cenozoic%5C+floras.%5C+Previous%5C+works%5C+demonstrate%5C+that%5C+LMA%5C+show%5C+regional%5C+constraints.%5C+Until%5C+now%2C%5C+no%5C+equation%5C+has%5C+been%5C+set%5C+up%5C+directly%5C+from%5C+Chinese%5C+forests.%5C+This%5C+relationship%5C+is%5C+exhaustively%5C+studied%5C+based%5C+on%5C+50%5C+samples%5C+from%5C+mesic%5C+to%5C+humid%5C+forests%5C+across%5C+China.%5C+Models%5C+including%5C+Leaf%5C+Margin%5C+Analysis%5C+%5C%28LMA%5C%29%2C%5C+Single%5C+Linear%5C+regression%5C+for%5C+Precipitation%2C%5C+and%5C+Climate%5C+Leaf%5C+Analysis%5C+Multivariate%5C+Program%5C+%5C%28CLAMP%5C%29%2C%5C+are%5C+set%5C+up%5C+and%5C+used%5C+to%5C+quantitatively%5C+reconstruct%5C+paleoclimates%5C+of%5C+Chinese%5C+Neogene%5C+floras.%5C+Meanwhile%2C%5C+a%5C+paleoflora%2C%5C+i.e.%2C%5C+Yangjie%5C+flora%2C%5C+which%5C+belongs%5C+to%5C+the%5C+Upper%5C+Pliocene%5C+Sanying%5C+formation%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+is%5C+studied.%5C+The%5C+species%5C+assemblage%2C%5C+paleoclimate%5C+and%5C+paleoecology%5C+of%5C+Yangjie%5C+flora%5C+are%5C+discussed.%5C+Conclusions%5C+in%5C+this%5C+dissertation%5C+are%5C+as%5C+following%5C%3A%5C+1.%5C+Chinese%5C+leaf%5C+physiognomy%5C-climate%5C+models%5C+based%5C+on%5C+regression%5C+analyses%EF%BC%8CLMA%5C+is%5C+a%5C+widely%5C+used%5C+method%5C+that%5C+applies%5C+present%5C-day%5C+linear%5C+correlation%5C+between%5C+the%5C+proportion%5C+of%5C+woody%5C+dicotyledonous%5C+species%5C+with%5C+untoothed%5C+leaves%5C+%5C%28P%5C%29%5C+and%5C+mean%5C+annual%5C+temperature%5C+%5C%28MAT%5C%29%5C+to%5C+estimate%5C+paleotemperatures%5C+from%5C+fossil%5C+leaf%5C+floras.%5C+The%5C+Chinese%5C+data%5C+indicate%5C+that%5C+P%5C+shows%5C+a%5C+strong%5C+linear%5C+correlation%5C+with%5C+MAT%2C%5C+but%5C+the%5C+actual%5C+relationship%5C+is%5C+slightly%5C+different%5C+from%5C+those%5C+recognized%5C+from%5C+other%5C+regions.%5C+Among%5C+all%5C+currently%5C+used%5C+LMA%5C+equations%2C%5C+the%5C+one%5C+resulting%5C+from%5C+North%5C+and%5C+Central%5C+American%5C+and%5C+Japanese%5C+data%2C%5C+rather%5C+than%5C+the%5C+widely%5C+used%5C+East%5C+Asian%5C+LMA%5C+equation%2C%5C+yields%5C+the%5C+closest%5C+values%5C+to%5C+the%5C+actual%5C+MATs%5C+of%5C+the%5C+Chinese%5C+samples%5C+%5C%28mean%5C+absolute%5C+error%5C+%3D%5C+1.9%C2%B0C%5C%29.%5C+A%5C+new%5C+equation%5C+derived%5C+from%5C+the%5C+Chinese%5C+forests%5C+is%5C+therefore%5C+developed%2C%5C+where%5C+MAT%5C+%3D%5C+1.038%5C+%5C%2B%5C+27.6%5C+%C3%97%5C+P.%5C+This%5C+study%5C+not%5C+only%5C+demonstrates%5C+the%5C+similarity%5C+of%5C+the%5C+relationship%5C+between%5C+P%5C+and%5C+MAT%5C+in%5C+the%5C+Northern%5C+Hemisphere%2C%5C+but%5C+also%5C+improves%5C+the%5C+reliability%5C+of%5C+LMA%5C+for%5C+paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+paleofloras.%5C+Besides%2C%5C+regression%5C+analyses%5C+are%5C+used%5C+to%5C+explore%5C+the%5C+relationship%5C+between%5C+leaf%5C+physiognomy%5C+and%5C+precipitation.%5C+In%5C+contrast%5C+to%5C+former%5C+studies%2C%5C+entire%5C+leaf%5C+margin%5C+shows%5C+the%5C+highest%5C+correlation%5C+with%5C+the%5C+Growing%5C+Season%5C+Precipitation%5C+%5C%28GSP%5C%29.%5C+A%5C+new%5C+equation%5C+is%5C+proposed%5C%3A%5C+GSP%5C+%3D%5C+228.0%5C+%5C%2B%5C+1707.0%5C+%C3%97%5C+P.%5C+2.%5C+The%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%5C+%E2%80%93%5C+PHYSGCHINA%EF%BC%8CCLAMP%2C%5C+which%5C+is%5C+based%5C+on%5C+canonical%5C+correspondence%5C+analysis%2C%5C+is%5C+improved%5C+by%5C+the%5C+inclusion%5C+of%5C+50%5C+Chinese%5C+samples.%5C+The%5C+result%5C+indicates%5C+that%2C%5C+new%5C+calibrated%5C+data%5C+from%5C+50%5C+Chinese%5C+sample%5C+sites%5C+are%5C+situated%5C+away%5C+from%5C+the%5C+former%5C+144%5C+samples%5C+in%5C+the%5C+physiognomic%5C+space%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+unique%5C+characters%5C+of%5C+leaf%5C+physiognomy%5C+under%5C+monsoon%5C+condition.%5C+Therefore%2C%5C+a%5C+new%5C+calibrated%5C+CLAMP%5C+dataset%2C%5C+i.e.%2C%5C+PHYSGCHINA%2C%5C+is%5C+set%5C+up%5C+based%5C+on%5C+50%5C+new%5C+Chinese%5C+samples%2C%5C+and%5C+144%5C+former%5C+samples%5C+from%5C+PHYSG3BRC.%5C+This%5C+new%5C+dataset%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+reconstructions%5C+for%5C+floras%5C+under%5C+the%5C+monsoon%5C+climate%5C+condition.%5C+When%5C+it%5C+is%5C+applied%5C+to%5C+Chinese%5C+Neogene%5C+floras%2C%5C+PHYSGCHINA%5C+could%5C+improve%5C+the%5C+accuracy%5C+of%5C+paleoclimate%5C+parameters%2C%5C+especially%5C+parameters%5C+related%5C+to%5C+precipitation.%5C+3.%5C+Paleoclimate%5C+reconstructions%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%EF%BC%8CPaleoclimates%5C+of%5C+Chinese%5C+Cenozoic%5C+floras%5C+are%5C+reconstructed%5C+using%5C+leaf%5C+physiognomy%5C-%5C+climate%5C+models%5C+being%5C+set%5C+up%5C+in%5C+this%5C+study.%5C+The%5C+Chinese%5C+paleoclimate%5C+history%5C+in%5C+Eocene%5C+is%5C+similar%5C+to%5C+the%5C+trend%5C+from%5C+worldwide%5C+record.%5C+That%5C+is%2C%5C+hot%5C+climate%5C+presented%5C+in%5C+early%5C+Eocene%5C+and%5C+early%5C+Middle%5C+Eocene%2C%5C+and%5C+then%2C%5C+climate%5C+cooled%5C+down%5C+from%5C+late%5C+Middle%5C+Eocene%5C+to%5C+Late%5C+Eocene%5C+in%5C+China.%5C+Moreover%2C%5C+paleoclimates%5C+of%5C+two%5C+Late%5C+Miocene%5C+floras%5C+from%5C+Yunnan%5C+province%2C%5C+i.e.%2C%5C+Xiaolongtan%5C+flora%5C+and%5C+Bangmai%5C+flora%2C%5C+are%5C+reconstructed%5C+using%5C+different%5C+models.%5C+The%5C+results%5C+indicate%5C+that%2C%5C+temperature%5C+of%5C+Yunnan%5C+is%5C+slightly%5C+higher%5C+than%5C+that%5C+in%5C+nowadays%2C%5C+but%5C+the%5C+precipitation%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+at%5C+present%5C+day%2C%5C+which%5C+may%5C+be%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain.%5C+4.%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+in%5C+West%5C+Yunnan%5C+Province%2C%5C+China%EF%BC%8CA%5C+Late%5C+Pliocene%5C+Yangjie%5C+flora%5C+form%5C+Yongping%5C+County%2C%5C+western%5C+Yunnan%5C+province%2C%5C+which%5C+belongs%5C+to%5C+Sanying%5C+formation%2C%5C+is%5C+studied%5C+in%5C+this%5C+dissertation.%5C+Yangjie%5C+flora%5C+is%5C+dominated%5C+by%5C+Quercus%5C+sect.%5C+Heterobalanus%5C+%5C%28Oerst.%5C%29%5C+Menits.%5C+%5C%28evergreen%5C+sclerophyllous%5C+oaks%5C%29%2C%5C+and%5C+this%5C+forest%5C+type%5C+is%5C+quite%5C+common%5C+in%5C+SW%5C+China%5C+at%5C+present.%5C+The%5C+discovery%5C+of%5C+Yangjie%5C+flora%5C+provides%5C+evidence%5C+that%2C%5C+vegetations%5C+of%5C+Yunnan%5C+in%5C+Miocene%5C+were%5C+dominated%5C+by%5C+evergreen%5C+forests%2C%5C+and%5C+the%5C+dominant%5C+families%5C+were%5C+Fabaceae%2C%5C+Fagaceae%5C+and%5C+Lauraceae.%5C+In%5C+Pliocene%2C%5C+this%5C+vegetation%5C+type%5C+changed%5C+gradually%5C+to%5C+evergreen%5C+sclerophyllous%5C+oak%5C+forests.%5C+This%5C+vegetation%5C+change%5C+may%5C+have%5C+been%5C+caused%5C+by%5C+the%5C+uplift%5C+of%5C+Hengduan%5C+Mountain%5C+in%5C+Neogene.%5C+A%5C+polypodiaceous%5C+fern%2C%5C+Drynaria%5C+callispora%5C+sp.%5C+nov.%2C%5C+is%5C+described%5C+from%5C+the%5C+upper%5C+Pliocene%5C+Sanying%5C+Formation%5C+in%5C+western%5C+Yunnan%5C+Province%2C%5C+southwestern%5C+China.%5C+The%5C+species%5C+with%5C+well%5C-preserved%5C+pinnae%5C+and%5C+in%5C+situ%5C+spores%5C+is%5C+the%5C+first%5C+convincing%5C+Drynaria%5C+fossil%5C+record.%5C+Detailed%5C+morphological%5C+investigation%5C+reveals%5C+that%5C+D.%5C+callispora%5C+is%5C+characterized%5C+by%5C+1%5C%29%5C+pinnatifid%5C+fronds%5C+with%5C+entire%5C-margined%5C+pinnae%5C+having%5C+straight%5C+or%5C+zigzag%5C+secondary%5C+veins%5C%3B%5C+2%5C%29%5C+finer%5C+venation%5C+showing%5C+void%5C+quadrangular%5C+areoles%2C%5C+but%5C+occasionally%5C+with%5C+one%5C+unbranched%5C+veinlet%5C%3B%5C+3%5C%29%5C+one%5C+row%5C+of%5C+circular%5C+sori%5C+on%5C+each%5C+side%5C+of%5C+the%5C+strong%5C+primary%5C+vein%5C%3B%5C+and%5C+4%5C%29%5C+in%5C+situ%5C+spores%5C+with%5C+verrucate%5C+exospores%5C+elliptical%5C+in%5C+polar%5C+view%5C+and%5C+bean%5C-shaped%5C+in%5C+equatorial%5C+view.%5C+A%5C+morphological%5C+comparison%5C+shows%5C+that%5C+D.%5C+callispora%5C+is%5C+significantly%5C+different%5C+from%5C+all%5C+the%5C+fossil%5C+species%5C+previously%5C+identified%5C+as%5C+drynarioids.%5C+A%5C+phylogenetic%5C+analysis%5C+of%5C+D.%5C+callispora%5C+supports%5C+that%5C+the%5C+fossil%5C+is%5C+closely%5C+related%5C+to%5C+D.%5C+sinica%5C+Diels%5C+and%5C+D.%5C+mollis%5C+Bedd.%2C%5C+two%5C+extant%5C+species%5C+distributing%5C+in%5C+the%5C+Himalayas.%5C+The%5C+discovery%5C+of%5C+the%5C+new%5C+fern%5C+indicates%5C+that%5C+the%5C+genus%5C+Drynaria%5C+became%5C+diversified%5C+in%5C+its%5C+modern%5C+distribution%5C+region%5C+no%5C+later%5C+than%5C+the%5C+late%5C+Pliocene%5C+and%5C+had%5C+retained%5C+the%5C+similar%5C+ecology%5C+to%5C+that%5C+of%5C+many%5C+modern%5C+drynarioid%5C+ferns%5C+ever%5C+since.%5C+5.%5C+Paleoclimate%5C+reconstruction%5C+of%5C+Yangjie%5C+flora%EF%BC%8CLMA%2C%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+are%5C+applied%5C+to%5C+reconstruct%5C+paleoclimate%5C+of%5C+Yangjie%5C+flora.%5C+MAT%5C+calculated%5C+by%5C+LMA%5C+and%5C+CLAMP%5C+is%5C+22.0%5C+%C2%B1%5C+2.4%C2%B0C%5C+and%5C+20.0%5C+%C2%B1%5C+1.4%C2%B0C%2C%5C+respectively%2C%5C+and%5C+GSP%5C+calculated%5C+by%5C+Single%5C+Linear%5C+Regression%5C+for%5C+Precipitation%5C+and%5C+PHYSGCHINA%5C+is%5C+1521.9%5C+%C2%B1%5C+131.3%5C+mm%5C+and%5C+2084.7%5C+%C2%B1%5C+223.1%5C+mm%2C%5C+respectively%5C+All%5C+methods%5C+agree%5C+that%2C%5C+both%5C+temperature%5C+and%5C+precipitation%5C+were%5C+higher%5C+in%5C+Late%5C+Pliocene%5C+than%5C+in%5C+nowadays.%5C+Meanwhile%2C%5C+precipitation%5C+parameters%5C+calculated%5C+by%5C+CLAMP%5C+gets%5C+high%5C+values.%5C+6.%5C+Preliminary%5C+study%5C+of%5C+insect%5C+herbivory%5C+in%5C+Yangjie%5C+flora%EF%BC%8CInsect%5C+herbivory%5C+on%5C+leaves%5C+of%5C+Quercus%5C+preguyavaefolia%5C+Tao%5C+and%5C+Q.%5C+presenescens%5C+Zhou%2C%5C+two%5C+dominant%5C+species%5C+in%5C+Yangjie%5C+flora%2C%5C+is%5C+reported%5C+by%5C+the%5C+preliminary%5C+research.%5C+Each%5C+of%5C+these%5C+two%5C+species%5C+has%5C+a%5C+high%5C+diversity%5C+of%5C+insect%5C+damage.%5C+Among%5C+all%5C+damage%5C+types%2C%5C+margin%5C+feeding%5C+and%5C+surface%5C+feeding%5C+are%5C+most%5C+common%2C%5C+and%5C+skeletonization%2C%5C+piercing%5C+and%5C+sucking%2C%5C+and%5C+galling%5C+are%5C+less%5C+found.%5C+Most%5C+of%5C+these%5C+damage%5C+types%5C+belonge%5C+to%5C+the%5C+high%5C+host%5C+specialization%5C+%5C%28HS%5C+%3D%5C+1%5C%29.%5C+However%2C%5C+the%5C+proportion%5C+of%5C+leaves%5C+without%5C+insect%5C+damage%5C+in%5C+Q.%5C+presenescens%5C+is%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Q.%5C+preguyavaefolia.%5C+According%5C+to%5C+the%5C+log%5C-log%5C+linear%5C+regression%5C+model%2C%5C+both%5C+Quercus%5C+preguyavaefolia%5C+and%5C+Q.%5C+presenescens%5C+have%5C+very%5C+high%5C+leaf%5C+mass%5C+per%5C+area%5C+%5C%28with%5C+184.8%5C+%C2%B1%5C+6.7%5C+g%5C%2Fm2%5C+and%5C+155.3%5C+%C2%B1%5C+10.7%5C+g%5C%2Fm2%2C%5C+respectively%5C%29.%5C+The%5C+high%5C+diversity%5C+of%5C+insect%5C+herbivory%5C+demonstrates%5C+a%5C+warm%5C+climate%5C+in%5C+the%5C+Late%5C+Pliocene%5C+of%5C+West%5C+Yunnan%5C+Province."},{"jsname":"lastIndexed","jscount":"2025-06-04"}],"资助项目","dc.project.title_filter")'>
Aconitum c... [1]
Astilbe Bu... [1]
Bambusoide... [1]
Begonia L.... [1]
Begonia se... [1]
Below-grou... [1]
更多...
收录类别
资助机构
×
知识图谱
KIB OpenIR
开始提交
已提交作品
待认领作品
已认领作品
未提交全文
收藏管理
QQ客服
官方微博
反馈留言
浏览/检索结果:
共353条,第1-10条
帮助
限定条件
文献类型:学位论文
已选(
0
)
清除
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
WOS被引频次升序
WOS被引频次降序
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
期刊影响因子升序
期刊影响因子降序
中国云南的微型真菌:蕨类植物上子囊菌的案例研究
学位论文
: 中国科学院大学, 2022
作者:
Rungtiwa Phookamsak
Adobe PDF(18195Kb)
  |  
收藏
  |  
浏览/下载:815/1
  |  
提交时间:2024/05/14
子囊菌,中国真菌,内生菌,真菌多样性,形态-分子学方法,腐生真菌,分类学
Ascomycota, Chinese mycota, Endophytes, Fungal diversity, morpho-molecular approaches, Saprobic fungi, Taxonomy
广义红豆杉科系统发育基因组学与生物地理学研究
学位论文
: 中国科学院大学, 2022
作者:
汪洁
Adobe PDF(7773Kb)
  |  
收藏
  |  
浏览/下载:268/1
  |  
提交时间:2024/05/14
广义红豆杉科,叶绿体基因组,二代条形码,系统发育基因组学,生物地理
Taxaceae s.l., Plastomes, Super-barcoding, Phylogenomics, Biogeography
中国杯伞科的系统发育与分类研究
学位论文
: 中国科学院大学, 2022
作者:
何正蜜
Adobe PDF(15394Kb)
  |  
收藏
  |  
浏览/下载:275/1
  |  
提交时间:2024/05/14
广义杯伞,杯伞科,金钱菌属,单拷贝同源直系基因,毒蕈碱
Clitocybe s.l., Clitocybaceae, Collybia, single-copy gene, muscarine
中国雪花衣属及其近缘属黑川衣属的分类和系统发育研究
学位论文
: 中国科学院大学, 2022
作者:
王禄汀
Adobe PDF(11806Kb)
  |  
收藏
  |  
浏览/下载:146/1
  |  
提交时间:2024/05/14
雪花衣属,经典分类,系统发育学,新种
Anaptychia, Classical Taxonomy, Phylogeny, New Species
西非鹅膏属的分子系统发育、物种多样性和毒性研究——兼论该属鞘托鹅膏组的生物地理
学位论文
: 中国科学院大学, 2022
作者:
JEAN EVANS ISRAËL CODJIA
Adobe PDF(18820Kb)
  |  
收藏
  |  
浏览/下载:269/0
  |  
提交时间:2024/05/14
非洲 鹅膏真菌,生物地理,液相高分辨高精密度质谱法,多基因系统发育,分类学
African amanitas, historical biogeography, LC-HRMS, multigene phylogeny, taxonomy.
荨麻族的分子系统发育、叶绿体基因组演化及其大蝎子草属 的物种界定研究
学位论文
: 中国科学院大学, 2022
作者:
CATHERINE AKINYI OGOMA
Adobe PDF(11839Kb)
  |  
收藏
  |  
浏览/下载:187/0
  |  
提交时间:2024/05/14
荨麻族,叶绿体结构进化,系统发育基因组学,基因组浅层测序,大蝎子草属, 物种界定,荨麻科
Urticeae, plastome structural evolution, phylogenomic, genome skimming, Girardinia, automated species delimitation, molecular taxonomy, Urticaceae.
亚洲发光的与致死的蘑菇分类与系统发育研究
学位论文
, 2021
作者:
Samantha Chandranath Karunarathna
Adobe PDF(5265Kb)
  |  
收藏
  |  
浏览/下载:286/1
  |  
提交时间:2024/03/20
青藏高原饼干衣属地衣的系统分类学研究
学位论文
, 2021
作者:
钟秋怡
Adobe PDF(29798Kb)
  |  
收藏
  |  
浏览/下载:54/0
  |  
提交时间:2024/03/20
中国圆孔牛肝菌属的分类及分子系统发育研究
学位论文
, 2021
作者:
黄聪
Adobe PDF(20041Kb)
  |  
收藏
  |  
浏览/下载:309/0
  |  
提交时间:2024/03/20
中国红豆杉属物种的生态位分析与保护策略
学位论文
, 2021
作者:
钟大吕
Adobe PDF(20049Kb)
  |  
收藏
  |  
浏览/下载:267/0
  |  
提交时间:2024/03/20