×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [208]
中国科学院东亚植... [187]
资源植物与生物技术... [97]
昆明植物所硕博研究... [82]
中国西南野生生物种... [51]
植物化学与西部植物... [25]
More...
Authors
李德铢 [71]
许建初 [47]
Sun Hang [26]
王红 [23]
Gao Lian-... [23]
杨祝良 [17]
More...
Document Type
Journal ... [603]
Thesis [82]
Book [65]
Conference... [3]
Other [2]
Academic p... [1]
More...
Date Issued
2020 [67]
2019 [66]
2018 [44]
2017 [52]
2016 [64]
2015 [55]
More...
Language
英语 [494]
中文 [67]
Source Publication
PLOS ONE [25]
MOLECULAR... [20]
FUNGAL DI... [18]
SCIENTIFI... [17]
PHYTOTAXA [16]
FRONTIERS... [13]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"China Scholarship Council[201504910423]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council%5C%5B201504910423%5C%5D"},{"jsname":"China postdoc foundation[2017M613021]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3AChina%5C+postdoc%5C+foundation%5C%5B2017M613021%5C%5D"},{"jsname":"Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Chinese Academy of Sciences President International Fellowship Initiative (CAS-PIFI)[2017PC0035]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C+President%5C+International%5C+Fellowship%5C+Initiative%5C+%5C%28CAS%5C-PIFI%5C%29%5C%5B2017PC0035%5C%5D"},{"jsname":"Cluster of Excellence COTE[ANR-10-LABX-45]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Sampling%2BStrategy&order=desc&&fq=dc.project.title_filter%3ACluster%5C+of%5C+Excellence%5C+COTE%5C%5BANR%5C-10%5C-LABX%5C-45%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-05-30"}],"Funding Project","dc.project.title_filter")'>
National K... [4]
Chinese Ac... [2]
National N... [2]
''Investis... [1]
Applied an... [1]
Applied an... [1]
More...
Indexed By
SCI [375]
SSCI [12]
CSCD [6]
IC [1]
Funding Organization
Chinese Ac... [8]
National N... [8]
Chinese Ac... [5]
National K... [5]
CAS/SAFEA ... [4]
Deanship o... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 756
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:161/2
  |  
Submit date:2017/07/19
A Global Indicator for Biological Invasion
期刊论文
Conservation Biology, 3111, 卷号: 20, 页码: 1635–1646
Authors:
Eugene M McCarthy
;
Jingdong Liu
;
Gao Lizhi
;
John F McDonald
Adobe PDF(233Kb)
  |  
Favorite
  |  
View/Download:95/4
  |  
Submit date:2017/07/19
Data Analysisin Vegetation Ecology
期刊论文
出版物, 3111, 期号: 0, 页码: 1-297
Authors:
Otto Wildi
Adobe PDF(3432Kb)
  |  
Favorite
  |  
View/Download:71/1
  |  
Submit date:2017/07/24
The pharmacokinetics of anthocyanins and their metabolites in humans
期刊论文
出版物, 3111, 期号: 0, 页码: 1-37
Authors:
R M de Ferrars
;
C Czank
;
Q Zhang
;
N P Botting
;
P A Kroon
;
A Cassidy
;
C D Kay
Adobe PDF(1873Kb)
  |  
Favorite
  |  
View/Download:83/1
  |  
Submit date:2017/07/24
Anthocyanins
Metabolites
Hippuric Acid
Ferulic Acid
Vanillic Acid
Diversity increases yield but reduces harvest index in crop mixtures
期刊论文
nature plants, 2021
Authors:
Jianguo Chen
Adobe PDF(7506Kb)
  |  
Favorite
  |  
View/Download:181/41
  |  
Submit date:2021/08/23
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
期刊论文
nature plants, 2021
Authors:
Gregory W. Stull
View
  |  
Adobe PDF(3425Kb)
  |  
Favorite
  |  
View/Download:136/31
  |  
Submit date:2021/08/23
BrrICE1.1 is associated with putrescine synthesis through regulation of the arginine decarboxylase gene in freezing tolerance of turnip (Brassica rapa var. rapa)
期刊论文
BMC PLANT BIOLOGY, 2020
Authors:
Yin, Xin
;
Yang, Yunqiang
;
Lv, Yanqiu
;
Li, Yan
;
Yang, Danni
;
Yue, Yanling
;
Yang, Yongping
View
  |  
Adobe PDF(2911Kb)
  |  
Favorite
  |  
View/Download:62/11
  |  
Submit date:2021/01/05
Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.)
期刊论文
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2020
Authors:
Moller, Michael
;
Liu, Jie
;
Li, Yan
;
Li, Jian-Hua
;
Ye, Lin-Jiang
;
Mill, Robert
;
Thomas, Philip
;
Li, De-Zhu
;
Gao, Lian-Ming
View
  |  
Adobe PDF(6464Kb)
  |  
Favorite
  |  
View/Download:33/7
  |  
Submit date:2021/01/05
An expanded circumscription for the previously monotypic Pleurospermopsis (Apiaceae) based on nrDNA ITS sequences and morphological evidence
期刊论文
PHYTOTAXA, 2020
Authors:
Zhou, Jing
;
Wei, Jin
;
Liu, Zhenwen
View
  |  
Adobe PDF(1504Kb)
  |  
Favorite
  |  
View/Download:38/0
  |  
Submit date:2021/01/05
Genomic insights into adaptation to heterogeneous environments for the ancient relictualCircaeaster agrestis(Circaeasteraceae, Ranunculales)
期刊论文
NEW PHYTOLOGIST, 2020
Authors:
Zhang, Xu
;
Sun, Yanxia
;
Landis, Jacob B.
;
Zhang, Jianwen
;
Yang, Linsen
;
Lin, Nan
;
Zhang, Huajie
;
Guo, Rui
;
Li, Lijuan
;
Zhang, Yonghong
;
Deng, Tao
;
Sun, Hang
;
Wang, Hengchang
View
  |  
Adobe PDF(2221Kb)
  |  
Favorite
  |  
View/Download:87/27
  |  
Submit date:2021/01/05