×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [166]
共享文献 [66]
昆明植物所硕博研究... [62]
资源植物与生物技术... [37]
中国西南野生生物种... [36]
植物化学与西部植物... [17]
More...
Authors
李德铢 [47]
许建初 [44]
杨祝良 [35]
赵琪 [18]
Sun Hang [11]
郭振华 [11]
More...
Document Type
Journal ... [368]
Thesis [62]
Book [37]
Academic p... [1]
Conference... [1]
Other [1]
More...
Date Issued
2021 [10]
2020 [56]
2019 [49]
2018 [36]
2017 [54]
2016 [49]
More...
Language
英语 [263]
中文 [60]
Source Publication
FUNGAL DI... [56]
PHYTOTAXA [40]
MYCOSPHER... [28]
MOLECULAR... [21]
MYCOLOGIC... [18]
PLOS ONE [14]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Friends of the Royal Botanic Gardens Victoria","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AFriends%5C+of%5C+the%5C+Royal%5C+Botanic%5C+Gardens%5C+Victoria"},{"jsname":"Funds for International Cooperation and Exchange of the National Natural Science Foundation of China[31210103919]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AFunds%5C+for%5C+International%5C+Cooperation%5C+and%5C+Exchange%5C+of%5C+the%5C+National%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5B31210103919%5C%5D"},{"jsname":"German Academic Exchange Service (DAAD)","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AGerman%5C+Academic%5C+Exchange%5C+Service%5C+%5C%28DAAD%5C%29"},{"jsname":"Innovation Program of the Chinese Academy of Sciences[KSCX2-YW-Z-0926]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AInnovation%5C+Program%5C+of%5C+the%5C+Chinese%5C+Academy%5C+of%5C+Sciences%5C%5BKSCX2%5C-YW%5C-Z%5C-0926%5C%5D"},{"jsname":"Mae Fah Luang University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University"},{"jsname":"Mae Fah Luang University[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Multi-locus%2Bphylogeny&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University%5C%5B592010200112%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-06-06"}],"Funding Project","dc.project.title_filter")'>
Chiang Mai... [3]
CAS Presid... [2]
Chinese Ac... [2]
Mae Fah Lu... [2]
Mushroom R... [2]
National S... [2]
More...
Indexed By
SCI [266]
CSCD [3]
AHCI [1]
Funding Organization
Chinese A... [25]
Deanship ... [10]
Chinese Ac... [5]
Mushroom R... [5]
CAS/SAFEA ... [4]
MFLU(56101... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 470
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Author Ascending
Author Descending
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:161/2
  |  
Submit date:2017/07/19
Dothidea kunmingensis, a novel asexual species of Dothideaceae on Jasminum nudiflorum (winter jasmine) from Southwestern China
期刊论文
PHYTOTAXA, 2021, 卷号: 529, 期号: 1, 页码: 43-56
Authors:
Gao,Ying
;
Monkai,Jutamart
;
Gentekaki,Eleni
;
Ren,Guang-Cong
;
Wanasinghe,Dhanushka N.
;
Xu,Jian-Chu
;
Gui,Heng
Favorite
  |  
View/Download:16/0
  |  
Submit date:2022/04/02
1 new species
asexual morph
Dothideaceae
phylogeny
taxonomy
NATURAL CLASSIFICATION
SP-NOV
FUNGI
GENERA
GENUS
PROBABILITY
COLEOPHOMA
BOOTSTRAP
ALIGNMENT
NUCLEAR
Introducing a new pleosporalean family Sublophiostomataceae fam. nov. to accommodate Sublophiostoma gen. nov.
期刊论文
SCIENTIFIC REPORTS, 2021, 卷号: 11, 期号: 1, 页码: 9496
Authors:
Hongsanan,Sinang
;
Phookamsak,Rungtiwa
;
Goonasekara,Ishani D.
;
Thambugala,Kasun M.
;
Hyde,Kevin D.
;
Bhat,Jayarama D.
;
Suwannarach,Nakarin
;
Cheewangkoon,Ratchadawan
Favorite
  |  
View/Download:19/0
  |  
Submit date:2022/04/02
NATURAL CLASSIFICATION
FUNGI
PHYLOGENY
MORPHOLOGY
SPECIATION
REVISION
OUTLINE
GENERA
TAXA
Additions to Italian Pleosporinae, including Italica heraclei sp. nov.
期刊论文
BIODIVERSITY DATA JOURNAL, 2021, 卷号: 9, 页码: e59648
Authors:
Wijesinghe,Subodini N.
;
Wang,Yong
;
Zucconi,Laura
;
Dayarathne,Monika C.
;
Boonmee,Saranyaphat
;
Camporesi,Erio
;
Wanasinghe,Dhanushka N.
;
Hyde,Kevin D.
Favorite
  |  
View/Download:15/0
  |  
Submit date:2022/04/02
one new species
Ascomycota
Dothideomycetes
integrative taxonomy
morphology
phylogeny
MULTIPLE SEQUENCE ALIGNMENT
FUNGI
PHYLOGENY
CLASSIFICATION
TAXONOMY
CHOICE
GENERA
PHOMA
TAXA
Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 108, 期号: 1, 页码: 1-215
Authors:
Tennakoon,Danushka S.
;
Kuo,Chang-Hsin
;
Maharachchikumbura,Sajeewa S. N.
;
Thambugala,Kasun M.
;
Gentekaki,Eleni
;
Phillips,Alan J. L.
;
Bhat,D. Jayarama
;
Wanasinghe,Dhanushka N.
;
de Silva,Nimali I.
;
Promputtha,Itthayakorn
;
Hyde,Kevin D.
Favorite
  |  
View/Download:18/0
  |  
Submit date:2022/04/02
46 new taxa
Ascomycota
Dothideomycetes
Incertae sedis
Multi-gene phylogeny
Taxonomy
Sordariomycetes
PUI NATIONAL-PARK
SP.-NOV.
MOLECULAR PHYLOGENY
MULTIGENE PHYLOGENY
FUNGAL SUCCESSION
ENDOPHYTIC FUNGUS
SAPROBIC FUNGI
ALLIED GENERA
SEQUENCE DATA
RAIN-FOREST
One New Species and Two New Host Records of Apiospora from Bamboo and Maize in Northern Thailand with Thirteen New Combinations
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 10, 页码: 1071
Authors:
Tian,Xingguo
;
Karunarathna,Samantha C.
;
Mapook,Ausana
;
Promputtha,Itthayakorn
;
Xu,Jianchu
;
Bao,Danfeng
;
Tibpromma,Saowaluck
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
one new species
new combinations
new host records
phylogeny
taxonomy
ARTHRINIUM APIOSPORACEAE
PRIMER SETS
FUNGI
YUNNAN
Phylogenetic assessment and taxonomic revision of Halobyssothecium and Lentithecium (Lentitheciaceae, Pleosporales)
期刊论文
MYCOLOGICAL PROGRESS, 2021, 卷号: 20, 期号: 5, 页码: 701-720
Authors:
Calabon,Mark Seasat
;
Jones,E. B. Gareth
;
Hyde,Kevin D.
;
Boonmee,Saranyaphat
;
Tibell,Sanja
;
Tibell,Leif
;
Pang,Ka-Lai
;
Phookamsak,Rungtiwa
Favorite
  |  
View/Download:14/0
  |  
Submit date:2022/04/02
3 new taxa
Dothideomycetes
Freshwater fungi
Marine fungi
Multi-locus phylogeny
BAMBUSICOLA SP-NOV
FRESH-WATER
MARINE FUNGI
LIPUT RIVER
BAMBOO
TAXA
ASCOMYCETE
DIVERSITY
MASSARINA
GENERA
Biphasic taxonomic approaches for generic relatedness and phylogenetic relationships of Teichosporaceae
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 110, 期号: 1, 页码: 199-241
Authors:
Tennakoon,Danushka S.
;
Jeewon,Rajesh
;
Thambugala,Kasun M.
;
Gentekaki,Eleni
;
Wanasinghe,Dhanushka N.
;
Promputtha,Itthayakorn
;
Hyde,Kevin D.
Favorite
  |  
View/Download:6/0
  |  
Submit date:2022/04/02
1 new species
Dothideomycetes
Multi-locus phylogeny
Pleosporales
Sexual morph
Taxonomy
MULTIGENE PHYLOGENY
SP-NOV
FUNGI
LOPHIOSTOMATACEAE
PLEOSPORALES
MISTURATOSPHAERIA
CLASSIFICATION
SYSTEMATICS
ASCOMYCOTA
OUTLINE
Colletotrichum dracaenigenum, a new species on Dracaena fragrans
期刊论文
PHYTOTAXA, 2021, 卷号: 491, 期号: 2, 页码: 143-157
Authors:
Chaiwan,Napalai
;
Tibpromma,Saowaluck
;
Jayawardena,Ruvishika S.
;
Mapook,Ausana
;
Wanasinghe,Dhanushka N.
;
Mortimer,Peter E.
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
Morphology
Multi-locus
Novel species
Phylogeny
Taxonomy
FUNGI
DIVERSITY
SPP.
ANTHRACNOSE
FAMILIES
GENERA
The Genus Leccinum (Boletaceae, Boletales) from China Based on Morphological and Molecular Data
期刊论文
JOURNAL OF FUNGI, 2021, 卷号: 7, 期号: 9, 页码: 732
Authors:
Meng,Xin
;
Wang,Geng-Shen
;
Wu,Gang
;
Wang,Pan-Meng
;
Yang,Zhu L.
;
Li,Yan-Chun
Favorite
  |  
View/Download:7/0
  |  
Submit date:2022/04/02
boletes
taxonomy
morphology
phylogeny
new taxa
ANNOTATED CHECKLIST
SEQUENCES
EVOLUTION
PHYLOGENY
DIVERSITY
AGARICS