×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [417]
中国科学院东亚植... [280]
资源植物与生物技... [189]
昆明植物所硕博研... [187]
中国西南野生生物种... [98]
植物化学与西部植物... [88]
More...
Authors
许建初 [99]
Sun Hang [88]
李德铢 [69]
Yang Yong... [42]
龚洵 [33]
高立志 [33]
More...
Document Type
Journal... [1233]
Thesis [187]
Book [86]
Academic p... [2]
Conference... [2]
Other [1]
More...
Date Issued
2021 [78]
2020 [109]
2019 [120]
2018 [89]
2017 [119]
2016 [110]
More...
Language
英语 [932]
中文 [180]
Source Publication
PLOS ONE [42]
nature [36]
FRONTIERS... [33]
植物分类与资源学报 [33]
JOURNAL O... [32]
SCIENTIFI... [28]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=IR%2Bexpansion&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Central Asian Drug Discovery and Development Centre of Chinese Academy of Sciences[CAM201702]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=IR%2Bexpansion&order=desc&&fq=dc.project.title_filter%3ACentral%5C+Asian%5C+Drug%5C+Discovery%5C+and%5C+Development%5C+Centre%5C+of%5C+Chinese%5C+Academy%5C+of%5C+Sciences%5C%5BCAM201702%5C%5D"},{"jsname":"China postdoc foundation[2017M613021]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=IR%2Bexpansion&order=desc&&fq=dc.project.title_filter%3AChina%5C+postdoc%5C+foundation%5C%5B2017M613021%5C%5D"},{"jsname":"Chinese Academy of Sciences President International Fellowship Initiative (CAS-PIFI)[2017PC0035]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=IR%2Bexpansion&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C+President%5C+International%5C+Fellowship%5C+Initiative%5C+%5C%28CAS%5C-PIFI%5C%29%5C%5B2017PC0035%5C%5D"},{"jsname":"Chinese Academy of Sciences[2013T2S003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=IR%2Bexpansion&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C%5B2013T2S003%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-09-27"}],"Funding Project","dc.project.title_filter")'>
CAS Presid... [2]
Chiang Mai... [2]
Chinese Ac... [2]
National S... [2]
1ncarville... [1]
Aconitum c... [1]
More...
Indexed By
SCI [662]
SSCI [34]
CSCD [30]
IC [9]
CCR [3]
ISTP [2]
More...
Funding Organization
National ... [11]
Chinese Ac... [9]
CAS/SAFEA ... [8]
National K... [8]
31590823) [6]
John D. an... [6]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 1511
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Effects of a new advanced glycation inhibitor, LR-90, on mitigating arterial stiffening and improving arterial elasticity and compliance in a diabetic rat model: aortic impedance analysis
期刊论文
出版物, 3111, 期号: 0, 页码: 1-33
Authors:
S, Satheesan
;
J L, Figarola
;
T, Dabbs
;
S, Rahbar
;
R, Ermel
Adobe PDF(967Kb)
  |  
Favorite
  |  
View/Download:169/1
  |  
Submit date:2017/07/24
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:165/2
  |  
Submit date:2017/07/19
A Global Indicator for Biological Invasion
期刊论文
Conservation Biology, 3111, 卷号: 20, 页码: 1635–1646
Authors:
Eugene M McCarthy
;
Jingdong Liu
;
Gao Lizhi
;
John F McDonald
Adobe PDF(233Kb)
  |  
Favorite
  |  
View/Download:99/4
  |  
Submit date:2017/07/19
Data Analysisin Vegetation Ecology
期刊论文
出版物, 3111, 期号: 0, 页码: 1-297
Authors:
Otto Wildi
Adobe PDF(3432Kb)
  |  
Favorite
  |  
View/Download:75/1
  |  
Submit date:2017/07/24
Impacts of rubber plantations on community assembly of ants (Hymenoptera: Formicidae): a case study from monsoonal tropics of Xishuangbanna, southwest China
期刊论文
NORTH-WESTERN JOURNAL OF ZOOLOGY, 2022, 卷号: 18, 期号: 1, 页码: 1-8
Authors:
Alcantara, Mark Jun M.
;
Modi, Shrushti
;
Ling, Tial C.
;
Monkai, Jutamart
;
Xu, He
;
Huang, Shuyin
;
Nakamura, Akihiro
Favorite
  |  
View/Download:162/0
  |  
Submit date:2022/07/15
biodiversity
Formicidae
Hevea brasiliensis
IndVal
Menglun
Southeast Asia
Winkler extractor
Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales
期刊论文
NEW PHYTOLOGIST, 2022, 卷号: 233, 期号: 3, 页码: 1383-1400
Authors:
Wu,Gang
;
Miyauchi,Shingo
;
Morin,Emmanuelle
;
Kuo,Alan
;
Drula,Elodie
;
Varga,Torda
;
Kohler,Annegret
;
Feng,Bang
;
Cao,Yang
;
Lipzen,Anna
;
Daum,Christopher
;
Hundley,Hope
;
Pangilinan,Jasmyn
;
Johnson,Jenifer
;
Barry,Kerrie
;
LaButti,Kurt
;
Ng,Vivian
;
Ahrendt,Steven
;
Min,Byoungnam
;
Choi,In-Geol
;
Park,Hongjae
;
Plett,Jonathan M.
;
Magnuson,Jon
;
Spatafora,Joseph W.
;
Nagy,Laszlo G.
;
Henrissat,Bernard
;
Grigoriev,Igor V.
;
Yang,Zhu-Liang
;
Xu,Jianping
;
Martin,Francis M.
Favorite
  |  
View/Download:32/0
  |  
Submit date:2022/04/02
Boletales
brown-rot fungi
CAZymes
comparative genomics
ectomycorrhizal fungi
trait evolution
R/BIOCONDUCTOR PACKAGE
PHYLOGENETIC ANALYSIS
HOST-SPECIFICITY
FUNGI
GENUS
DIVERSITY
High-quality genome assembly of an important biodiesel plant, Euphorbia lathyris L
期刊论文
DNA RESEARCH, 2021, 卷号: 28, 期号: 6, 页码: 8
Authors:
Wang, Mingcheng
;
Gu, Zhijia
;
Fu, Zhixi
;
Jiang, Dechun
Favorite
  |  
View/Download:154/0
  |  
Submit date:2022/07/15
caper spurge
biodiesel plant
genome assembly
nanopore sequencing
oil metabolism
Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms
期刊论文
nature plants, 2021
Authors:
Gregory W. Stull
View
  |  
Adobe PDF(3425Kb)
  |  
Favorite
  |  
View/Download:144/32
  |  
Submit date:2021/08/23
High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution
期刊论文
PLANT BIOTECHNOLOGY JOURNAL, 2021, 卷号: 19, 期号: 12, 页码: 2544-2560
Authors:
Wang,Xiuyun
;
Gao,Yuan
;
Wu,Xiaopei
;
Wen,Xiaohui
;
Li,Danqing
;
Zhou,Hong
;
Li,Zheng
;
Liu,Bing
;
Wei,Jianfen
;
Chen,Fei
;
Chen,Feng
;
Zhang,Chengjun
;
Zhang,Liangsheng
;
Xia,Yiping
Favorite
  |  
View/Download:25/0
  |  
Submit date:2022/04/02
Azalea
Rhododendron ovatum
altitude
adaptability
floral scent
terpene synthase (TPS)
tandem duplication
defence response
PHYLOGENETIC ANALYSIS
TERPENE SYNTHASES
PLANT VOLATILES
SALICYLIC-ACID
JASMONIC ACID
WHOLE-GENOME
GENE
DIVERSITY
TOOL
TRANSCRIPTOME
Genomic basis of high-altitude adaptation in Tibetan Prunus fruit trees
期刊论文
CURRENT BIOLOGY, 2021, 卷号: 31, 期号: 17, 页码: 3848+
Authors:
Wang,Xia
;
Liu,Shengjun
;
Zuo,Hao
;
Zheng,Weikang
;
Zhang,Shanshan
;
Huang,Yue
;
Pingcuo,Gesang
;
Ying,Hong
;
Zhao,Fan
;
Li,Yuanrong
;
Liu,Junwei
;
Yi,Ting-Shuang
;
Zan,Yanjun
;
Larkin,Robert M.
;
Deng,Xiuxin
;
Zeng,Xiuli
;
Xu,Qiang
Favorite
  |  
View/Download:22/0
  |  
Submit date:2022/04/02
R-PACKAGE
PHYLOGENETIC ANALYSIS
ANALYSIS TOOLKIT
ANALYSIS REVEALS
WEB SERVER
SELECTION
ELEMENT
IDENTIFICATION
ALIGNMENT
ACCURATE