×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [160]
昆明植物所硕博研究... [79]
中国西南野生生物种... [45]
中国科学院东亚植物... [42]
资源植物与生物技术... [32]
植物化学与西部植物... [16]
More...
Authors
高立志 [25]
En-Hua Xi... [19]
黄锦岭 [18]
李德铢 [14]
Sun Hang [14]
杨祝良 [10]
More...
Document Type
Journal ... [302]
Thesis [79]
Book [59]
Academic p... [2]
Conference... [1]
Date Issued
2021 [17]
2020 [36]
2019 [35]
2018 [21]
2017 [31]
2016 [27]
More...
Language
英语 [212]
中文 [74]
Source Publication
植物分类与资源学报 [17]
FUNGAL DI... [15]
nature [15]
FRONTIERS... [12]
SCIENTIFI... [10]
BMC PLANT ... [9]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Chiang Mai University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AChiang%5C+Mai%5C+University"},{"jsname":"Chinese Academy of Sciences[2013T2S003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C%5B2013T2S003%5C%5D"},{"jsname":"Cluster of Excellence COTE[ANR-10-LABX-45]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3ACluster%5C+of%5C+Excellence%5C+COTE%5C%5BANR%5C-10%5C-LABX%5C-45%5C%5D"},{"jsname":"Cold stress is one of the major environmental factors that adversely influence plants growth. Cold stress not only limits plants geographic distribution, but also reduces plants yield by shortening growing season, which brought billions of dollars economic losses for global crop. In nature, responses of overwintering plants to low temperature can be divided into three distinct phases: cold acclimation (CA), freezing, and post-freezing recovery (PFR). Until now, plenty intensive study about molecular mechanism of cold stress mainly focused on the above-zero low temperature phase. However, the studies on the freezing phase below zero and the following PFR phase with temperature going up to above-zero were rare. The previous research form our lab hinted that the responses of plants to freezing and PFR were complex and important. Except for passive reflection, there were also crucial active responses during this process. Several special rules were presented at the different levels including gene expression, signal transduction and membrane lipids changes, and fully understanding these rules would be helpful for us to explore the responses of plants to low temperature and then proceed to improve the freezing resistance of plants. In the present study, the mechanisms of respond to freezing and PFR of model plant Arabidopsis thaliana and its close relative Thellungiella halophlia that with extreme tolerance to abiotic stresses were carried out, including regulation of gene expression, signal transduction pathway and membrane lipids changes three levels which were essential for the freezing resistance of plants. Ground on these work, we obtained results from the following five aspects. First, the complete picture of A. thaliana responding to freezing and PFR at transcriptome level was elaborated and three functional genes closely related to the phases were identified. Second, the cis-elements with high frequent presence in differentially expressed genes were elucidated, and the practical binding of one elements among them was experimental verified during freezing and PFR. Moreover, we predicted the new elements which would respond to freezing and PFR. Third, the regulation of freezing stress by microRNA in A. thaliana was preliminarily investigated and 36 functional genes possibly regulated by miRNA during freezing and PFR were gained. Fourth, the negative effect of phytohormone Auxin on A. thaliana subjected to freezing stress was identified. Fifth, for the freezing-resistant plant T. halophlia, the rules of membrane lipids composition changes under freezing stress were uncovered.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3ACold%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+major%5C+environmental%5C+factors%5C+that%5C+adversely%5C+influence%5C+plants%5C+growth.%5C+Cold%5C+stress%5C+not%5C+only%5C+limits%5C+plants%5C+geographic%5C+distribution%2C%5C+but%5C+also%5C+reduces%5C+plants%5C+yield%5C+by%5C+shortening%5C+growing%5C+season%2C%5C+which%5C+brought%5C+billions%5C+of%5C+dollars%5C+economic%5C+losses%5C+for%5C+global%5C+crop.%5C+In%5C+nature%2C%5C+responses%5C+of%5C+overwintering%5C+plants%5C+to%5C+low%5C+temperature%5C+can%5C+be%5C+divided%5C+into%5C+three%5C+distinct%5C+phases%5C%3A%5C+cold%5C+acclimation%5C+%5C%28CA%5C%29%2C%5C+freezing%2C%5C+and%5C+post%5C-freezing%5C+recovery%5C+%5C%28PFR%5C%29.%5C+Until%5C+now%2C%5C+plenty%5C+intensive%5C+study%5C+about%5C+molecular%5C+mechanism%5C+of%5C+cold%5C+stress%5C+mainly%5C+focused%5C+on%5C+the%5C+above%5C-zero%5C+low%5C+temperature%5C+phase.%5C+However%2C%5C+the%5C+studies%5C+on%5C+the%5C+freezing%5C+phase%5C+below%5C+zero%5C+and%5C+the%5C+following%5C+PFR%5C+phase%5C+with%5C+temperature%5C+going%5C+up%5C+to%5C+above%5C-zero%5C+were%5C+rare.%5C+The%5C+previous%5C+research%5C+form%5C+our%5C+lab%5C+hinted%5C+that%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+freezing%5C+and%5C+PFR%5C+were%5C+complex%5C+and%5C+important.%5C+Except%5C+for%5C+passive%5C+reflection%2C%5C+there%5C+were%5C+also%5C+crucial%5C+active%5C+responses%5C+during%5C+this%5C+process.%5C+Several%5C+special%5C+rules%5C+were%5C+presented%5C+at%5C+the%5C+different%5C+levels%5C+including%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+and%5C+membrane%5C+lipids%5C+changes%2C%5C+and%5C+fully%5C+understanding%5C+these%5C+rules%5C+would%5C+be%5C+helpful%5C+for%5C+us%5C+to%5C+explore%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+low%5C+temperature%5C+and%5C+then%5C+proceed%5C+to%5C+improve%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+In%5C+the%5C+present%5C+study%2C%5C+the%5C+mechanisms%5C+of%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR%5C+of%5C+model%5C+plant%5C+Arabidopsis%5C+thaliana%5C+and%5C+its%5C+close%5C+relative%5C+Thellungiella%5C+halophlia%5C+that%5C+with%5C+extreme%5C+tolerance%5C+to%5C+abiotic%5C+stresses%5C+were%5C+carried%5C+out%2C%5C+including%5C+regulation%5C+of%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+pathway%5C+and%5C+membrane%5C+lipids%5C+changes%5C+three%5C+levels%5C+which%5C+were%5C+essential%5C+for%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+Ground%5C+on%5C+these%5C+work%2C%5C+we%5C+obtained%5C+results%5C+from%5C+the%5C+following%5C+five%5C+aspects.%5C+First%2C%5C+the%5C+complete%5C+picture%5C+of%5C+A.%5C+thaliana%5C+responding%5C+to%5C+freezing%5C+and%5C+PFR%5C+at%5C+transcriptome%5C+level%5C+was%5C+elaborated%5C+and%5C+three%5C+functional%5C+genes%5C+closely%5C+related%5C+to%5C+the%5C+phases%5C+were%5C+identified.%5C+Second%2C%5C+the%5C+cis%5C-elements%5C+with%5C+high%5C+frequent%5C+presence%5C+in%5C+differentially%5C+expressed%5C+genes%5C+were%5C+elucidated%2C%5C+and%5C+the%5C+practical%5C+binding%5C+of%5C+one%5C+elements%5C+among%5C+them%5C+was%5C+experimental%5C+verified%5C+during%5C+freezing%5C+and%5C+PFR.%5C+Moreover%2C%5C+we%5C+predicted%5C+the%5C+new%5C+elements%5C+which%5C+would%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR.%5C+Third%2C%5C+the%5C+regulation%5C+of%5C+freezing%5C+stress%5C+by%5C+microRNA%5C+in%5C+A.%5C+thaliana%5C+was%5C+preliminarily%5C+investigated%5C+and%5C+36%5C+functional%5C+genes%5C+possibly%5C+regulated%5C+by%5C+miRNA%5C+during%5C+freezing%5C+and%5C+PFR%5C+were%5C+gained.%5C+Fourth%2C%5C+the%5C+negative%5C+effect%5C+of%5C+phytohormone%5C+Auxin%5C+on%5C+A.%5C+thaliana%5C+subjected%5C+to%5C+freezing%5C+stress%5C+was%5C+identified.%5C+Fifth%2C%5C+for%5C+the%5C+freezing%5C-resistant%5C+plant%5C+T.%5C+halophlia%2C%5C+the%5C+rules%5C+of%5C+membrane%5C+lipids%5C+composition%5C+changes%5C+under%5C+freezing%5C+stress%5C+were%5C+uncovered."},{"jsname":"ECOLPIN[AGL2011-24296]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AECOLPIN%5C%5BAGL2011%5C-24296%5C%5D"},{"jsname":"EU MSCA individual fellowship[705432]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AEU%5C+MSCA%5C+individual%5C+fellowship%5C%5B705432%5C%5D"},{"jsname":"EU MSCA individual fellowship[750252]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AEU%5C+MSCA%5C+individual%5C+fellowship%5C%5B750252%5C%5D"},{"jsname":"Environmental stresses could limit plant growth, development and propagation. Abiotic stress refers to the negative impact factors to the plants, such as extreme temperature, drought, flood, salinity, irradiation, chemicals and so on. To understand the mechanism of abiotic stress is very important.Membrane is the most sensitive organs in the cell that response to environmental changes. Cells respond and transduct environmental signals by changing content of membrane lipids and membrane proteins. The activity change of membrane phospholipase D (PLD) and the composition and content of membrane lipid molecules is one of the most anti-stress methods for the plants. It was reported that plants responded to some abiotic stresses such as freezing, thawing, seed aging and dehydration through changing lipid molecules especially the messenger phosphatidic acid (PA) and mutants of PLD were more tolerant to those stresses. It is important to investigate the characteristics and variation of membrane lipids and membrane proteins to understand the streee in plants.Three different kinds of stresses, including alpine scree temperature stress, allelopathy and Gamma irradiation stress, were studied in the present dissertation. And try to understand how plants response to those stresses by changing membrane system and the function of PLD in resistant to those stresses, lipidomic methods were used to profiling the changing of 11 lipids classes (160 lipids molecules) under thoses stresses. Moreover, PLD mutants were also used to study the role of PLD under those stresses. The mechanisms of plants response to stresses were very complicated; PLD and lipid molecules were not the only factors that response to stresses, the metabolism and phytohormones of tested plants under these stresses were also studied.In alpine scree of northwest Yunnan, the temperature was various from 33 °C during the midday to 4 °C at night, and the highest temperature could reach to 35 to 40 °C. Saussurea medusa and Solms-Laubachia linearifolia, which live in this environment, were chosen as studied model. The results showed that membrane lipid of these two plants significantly fluctuated with the temperature, while the double bond index (DBI) that had close relationship to temperature did not change. Furthermore, the the lysolipids which rise significantly under stresses did not change too much either. Laboratory mimic experiments also confermed the characteristics of lipids change to temperature in alpine scree plants. The results suggested that the plants living in such temperature changeable environment had already adapted to this situation and their membrane responded to the temperature was a kind of adaptation instead of stress response.Since the first introduction in Yunnan province of China in 1940s, E. adenophorum has spread very rapidly especially in southwestern China. Without understanding its invasive mechanism, it is impossible to control it. o-Hydroxycinnamic acid (o-HCA), an allelochmeical isolated from leachates of aerial parts of E. adenophorum were studied. o-HCA was abundant in aerial parts of E. adenophorum (1g/10kg fresh weight). The data showed that o-HCA not only had strong allelopathic effect on Arabidopsis seeds germination, but also inhibited seedling growth, and even induced root death of Arabidopsis seedlings. It could be proposed that o-HCA affected seedlings indirectly, through inducing root cell death, and it disturbed the water and ion absorption of plants and finally induced seedling to die. Interestingly, o-HCA could also inhibit E. adenophorum seed germination, while it showed no effect on its seedling growth. E. adenophorum can produce thousands of seeds and has the ability to vegetative reproduction, with which may alleviate the harmful effect of o-HCA on E. adenophorum. Unlike E. adenophorum, its neighbors’ population was inhibited, under this situation, E. adenophorum coule have better condition to live and invade successfully.Arabidopsis were irradiated with gamma rays, and 50-100 Gy gamma irradiation could inhibit seedling growth, and with the dosage above 200 Gy it could inhibit seedling flowering. Treated Arabidopsis wild types and their PLD a and d mutant with gamma ray showed no significant differences among them. The lipid molecules changes of seedlings under stress of gamma ray were also tested, and found that Gamama ray induced lipids degradation, among which, MGDG and DGDG degraded dramatically, while the average carbons in lipids did not changed. The lipids content (nmol per mg dry weight) decreased significantly, while the mol% content (mol% of total) changed slightly. Gamma irradiation also leaded to dramatically change of Arabidopsis seedling metabolomics and the phytohormones (ABA,ZR,JA,IAA).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AEnvironmental%5C+stresses%5C+could%5C+limit%5C+plant%5C+growth%2C%5C+development%5C+and%5C+propagation.%5C+Abiotic%5C+stress%5C+refers%5C+to%5C+the%5C+negative%5C+impact%5C+factors%5C+to%5C+the%5C+plants%2C%5C+such%5C+as%5C+extreme%5C+temperature%2C%5C+drought%2C%5C+flood%2C%5C+salinity%2C%5C+irradiation%2C%5C+chemicals%5C+and%5C+so%5C+on.%5C+To%5C+understand%5C+the%5C+mechanism%5C+of%5C+abiotic%5C+stress%5C+is%5C+very%5C+important.Membrane%5C+is%5C+the%5C+most%5C+sensitive%5C+organs%5C+in%5C+the%5C+cell%5C+that%5C+response%5C+to%5C+environmental%5C+changes.%5C+Cells%5C+respond%5C+and%5C+transduct%5C+environmental%5C+signals%5C+by%5C+changing%5C+content%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins.%5C+The%5C+activity%5C+change%5C+of%5C+membrane%5C+phospholipase%5C+D%5C+%5C%28PLD%5C%29%5C+and%5C+the%5C+composition%5C+and%5C+content%5C+of%5C+membrane%5C+lipid%5C+molecules%5C+is%5C+one%5C+of%5C+the%5C+most%5C+anti%5C-stress%5C+methods%5C+for%5C+the%5C+plants.%5C+It%5C+was%5C+reported%5C+that%5C+plants%5C+responded%5C+to%5C+some%5C+abiotic%5C+stresses%5C+such%5C+as%5C+freezing%2C%5C+thawing%2C%5C+seed%5C+aging%5C+and%5C+dehydration%5C+through%5C+changing%5C+lipid%5C+molecules%5C+especially%5C+the%5C+messenger%5C+phosphatidic%5C+acid%5C+%5C%28PA%5C%29%5C+and%5C+mutants%5C+of%5C+PLD%5C+were%5C+more%5C+tolerant%5C+to%5C+those%5C+stresses.%5C+It%5C+is%5C+important%5C+to%5C+investigate%5C+the%5C+characteristics%5C+and%5C+variation%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins%5C+to%5C+understand%5C+the%5C+streee%5C+in%5C+plants.Three%5C+different%5C+kinds%5C+of%5C+stresses%2C%5C+including%5C+alpine%5C+scree%5C+temperature%5C+stress%2C%5C+allelopathy%5C+and%5C+Gamma%5C+irradiation%5C+stress%2C%5C+were%5C+studied%5C+in%5C+the%5C+present%5C+dissertation.%5C+And%5C+try%5C+to%5C+understand%5C+how%5C+plants%5C+response%5C+to%5C+those%5C+stresses%5C+by%5C+changing%5C+membrane%5C+system%5C+and%5C+the%5C+function%5C+of%5C+PLD%5C+in%5C+resistant%5C+to%5C+those%5C+stresses%2C%5C+lipidomic%5C+methods%5C+were%5C+used%5C+to%5C+profiling%5C+the%5C+changing%5C+of%5C+11%5C+lipids%5C+classes%5C+%5C%28160%5C+lipids%5C+molecules%5C%29%5C+under%5C+thoses%5C+stresses.%5C+Moreover%2C%5C+PLD%5C+mutants%5C+were%5C+also%5C+used%5C+to%5C+study%5C+the%5C+role%5C+of%5C+PLD%5C+under%5C+those%5C+stresses.%5C+The%5C+mechanisms%5C+of%5C+plants%5C+response%5C+to%5C+stresses%5C+were%5C+very%5C+complicated%5C%3B%5C+PLD%5C+and%5C+lipid%5C+molecules%5C+were%5C+not%5C+the%5C+only%5C+factors%5C+that%5C+response%5C+to%5C+stresses%2C%5C+the%5C+metabolism%5C+and%5C+phytohormones%5C+of%5C+tested%5C+plants%5C+under%5C+these%5C+stresses%5C+were%5C+also%5C+studied.In%5C+alpine%5C+scree%5C+of%5C+northwest%5C+Yunnan%2C%5C+the%5C+temperature%5C+was%5C+various%5C+from%5C+33%5C+%C2%B0C%5C+during%5C+the%5C+midday%5C+to%5C+4%5C+%C2%B0C%5C+at%5C+night%2C%5C+and%5C+the%5C+highest%5C+temperature%5C+could%5C+reach%5C+to%5C+35%5C+to%5C+40%5C+%C2%B0C.%5C+Saussurea%5C+medusa%5C+and%5C+Solms%5C-Laubachia%5C+linearifolia%2C%5C+which%5C+live%5C+in%5C+this%5C+environment%2C%5C+were%5C+chosen%5C+as%5C+studied%5C+model.%5C+The%5C+results%5C+showed%5C+that%5C+membrane%5C+lipid%5C+of%5C+these%5C+two%5C+plants%5C+significantly%5C+fluctuated%5C+with%5C+the%5C+temperature%2C%5C+while%5C+the%5C+double%5C+bond%5C+index%5C+%5C%28DBI%5C%29%5C+that%5C+had%5C+close%5C+relationship%5C+to%5C+temperature%5C+did%5C+not%5C+change.%5C+Furthermore%2C%5C+the%5C+the%5C+lysolipids%5C+which%5C+rise%5C+significantly%5C+under%5C+stresses%5C+did%5C+not%5C+change%5C+too%5C+much%5C+either.%5C+Laboratory%5C+mimic%5C+experiments%5C+also%5C+confermed%5C+the%5C+characteristics%5C+of%5C+lipids%5C+change%5C+to%5C+temperature%5C+in%5C+alpine%5C+scree%5C+plants.%5C+The%5C+results%5C+suggested%5C+that%5C+the%5C+plants%5C+living%5C+in%5C+such%5C+temperature%5C+changeable%5C+environment%5C+had%5C+already%5C+adapted%5C+to%5C+this%5C+situation%5C+and%5C+their%5C+membrane%5C+responded%5C+to%5C+the%5C+temperature%5C+was%5C+a%5C+kind%5C+of%5C+adaptation%5C+instead%5C+of%5C+stress%5C+response.Since%5C+the%5C+first%5C+introduction%5C+in%5C+Yunnan%5C+province%5C+of%5C+China%5C+in%5C+1940s%2C%5C+E.%5C+adenophorum%5C+has%5C+spread%5C+very%5C+rapidly%5C+especially%5C+in%5C+southwestern%5C+China.%5C+Without%5C+understanding%5C+its%5C+invasive%5C+mechanism%2C%5C+it%5C+is%5C+impossible%5C+to%5C+control%5C+it.%5C+o%5C-Hydroxycinnamic%5C+acid%5C+%5C%28o%5C-HCA%5C%29%2C%5C+an%5C+allelochmeical%5C+isolated%5C+from%5C+leachates%5C+of%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+were%5C+studied.%5C+o%5C-HCA%5C+was%5C+abundant%5C+in%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+%5C%281g%5C%2F10kg%5C+fresh%5C+weight%5C%29.%5C+The%5C+data%5C+showed%5C+that%5C+o%5C-HCA%5C+not%5C+only%5C+had%5C+strong%5C+allelopathic%5C+effect%5C+on%5C+Arabidopsis%5C+seeds%5C+germination%2C%5C+but%5C+also%5C+inhibited%5C+seedling%5C+growth%2C%5C+and%5C+even%5C+induced%5C+root%5C+death%5C+of%5C+Arabidopsis%5C+seedlings.%5C+It%5C+could%5C+be%5C+proposed%5C+that%5C+o%5C-HCA%5C+affected%5C+seedlings%5C+indirectly%2C%5C+through%5C+inducing%5C+root%5C+cell%5C+death%2C%5C+and%5C+it%5C+disturbed%5C+the%5C+water%5C+and%5C+ion%5C+absorption%5C+of%5C+plants%5C+and%5C+finally%5C+induced%5C+seedling%5C+to%5C+die.%5C+Interestingly%2C%5C+o%5C-HCA%5C+could%5C+also%5C+inhibit%5C+E.%5C+adenophorum%5C+seed%5C+germination%2C%5C+while%5C+it%5C+showed%5C+no%5C+effect%5C+on%5C+its%5C+seedling%5C+growth.%5C+E.%5C+adenophorum%5C+can%5C+produce%5C+thousands%5C+of%5C+seeds%5C+and%5C+has%5C+the%5C+ability%5C+to%5C+vegetative%5C+reproduction%2C%5C+with%5C+which%5C+may%5C+alleviate%5C+the%5C+harmful%5C+effect%5C+of%5C+o%5C-HCA%5C+on%5C+E.%5C+adenophorum.%5C+Unlike%5C+E.%5C+adenophorum%2C%5C+its%5C+neighbors%E2%80%99%5C+population%5C+was%5C+inhibited%2C%5C+under%5C+this%5C+situation%2C%5C+E.%5C+adenophorum%5C+coule%5C+have%5C+better%5C+condition%5C+to%5C+live%5C+and%5C+invade%5C+successfully.Arabidopsis%5C+were%5C+irradiated%5C+with%5C+gamma%5C+rays%2C%5C+and%5C+50%5C-100%5C+Gy%5C+gamma%5C+irradiation%5C+could%5C+inhibit%5C+seedling%5C+growth%2C%5C+and%5C+with%5C+the%5C+dosage%5C+above%5C+200%5C+Gy%5C+it%5C+could%5C+inhibit%5C+seedling%5C+flowering.%5C+Treated%5C+Arabidopsis%5C+wild%5C+types%5C+and%5C+their%5C+PLD%5C+a%5C+and%5C+d%5C+mutant%5C+with%5C+gamma%5C+ray%5C+showed%5C+no%5C+significant%5C+differences%5C+among%5C+them.%5C+The%5C+lipid%5C+molecules%5C+changes%5C+of%5C+seedlings%5C+under%5C+stress%5C+of%5C+gamma%5C+ray%5C+were%5C+also%5C+tested%2C%5C+and%5C+found%5C+that%5C+Gamama%5C+ray%5C+induced%5C+lipids%5C+degradation%2C%5C+among%5C+which%2C%5C+MGDG%5C+and%5C+DGDG%5C+degraded%5C+dramatically%2C%5C+while%5C+the%5C+average%5C+carbons%5C+in%5C+lipids%5C+did%5C+not%5C+changed.%5C+The%5C+lipids%5C+content%5C+%5C%28nmol%5C+per%5C+mg%5C+dry%5C+weight%5C%29%5C+decreased%5C+significantly%2C%5C+while%5C+the%5C+mol%25%5C+content%5C+%5C%28mol%25%5C+of%5C+total%5C%29%5C+changed%5C+slightly.%5C+Gamma%5C+irradiation%5C+also%5C+leaded%5C+to%5C+dramatically%5C+change%5C+of%5C+Arabidopsis%5C+seedling%5C+metabolomics%5C+and%5C+the%5C+phytohormones%5C+%5C%28ABA%EF%BC%8CZR%EF%BC%8CJA%EF%BC%8CIAA%5C%29."},{"jsname":"European Research Council through the Advanced Grant Project TREEPEACE[FP7-339728]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AEuropean%5C+Research%5C+Council%5C+through%5C+the%5C+Advanced%5C+Grant%5C+Project%5C+TREEPEACE%5C%5BFP7%5C-339728%5C%5D"},{"jsname":"In the present study, we focused on “Pterygiella complex”, included Pterygiella Oliver, Xizangia D.Y. Hong, Phtheirospermum Bunge ex Fischer & C.A. Meyer, and Pseudobartsia D.Y. Hong, which is endemic to Eastern Asia. Based on chloroplast and nuclear sequences, we explored their phylogeny relationships within Orobanchaceae, the species relations within Pterygiella, and fruit and seed morphology of traditional tribe Rhinantheae. The phylogeny of “Pterygiella complex” was reconstructed based on nuclear and chloroplast sequences within the family Orobanchaceae. The genera relationship within the complex was reconstructed based on chloroplast sequences of atpB-rbcL, atpH-I, psbA-trnH, rpl16, trnL-F and trnS-G. The results showed that “Pterygiella complex” was not a natural group and could be divided into two different clades. Clade I included most taxa, e.g. Pterygiella, Xizangia, Pseudobartsia, Phtheirospermum (exclude P. japonicum). The species of this clade were endemic to East-Himalaya and Hengduan Mountains region. Clade II included Phtheirospermum japonicum (Thunberg) Kanitz, which was a heterogeneous member in genus Phtheirospermum and should be treated as a new monotypic genus. The results supported that Pterygiella bartschioides Hand.-Mazz. and Phtheirospermum glandulosum Benth. should be elevated to genus level as Xizangia and Pseudobartsia, respectively.Furthermore, we focused on the genus Pterygiella to explore the species’ circumscription by molecular phylogeny, DNA barcodes and morphological studies. The results suggested that Pterygiella should divide into three clades. P. duclouxii was divided into clade I and clade II, and P. nigrescens was included the clade I of these P. duclouxii taxa, with which it shares eglandular hairs on the stem. Clade III included P. suffruticosa and P. cylindrica, while the level of inter- and intra-species variation in two species did not support their distinction. Therefore, P. suffruticosa should move into or considered as a variety of P. cylindrica. The form of stem, leaf veins and the indumentum of stems are key traits for circumscribing the species within the genus. By comparing the effectiveness with core DNA barcodes, ITS-2 can be used as suitable DNA barcode in the genus Pterygiella.Fruit and seed characteristics of 49 species in 21 genera of the tribe Rhinantheae and 9 species in 9 genera of Orobachaceae were examined. 25 characters were selected and analyzed by principal component analysis for discovering the systematic significances. The results suggested four main types and six subtypes were distinguished based on gross seed coat appearance, inner tangential wall and thickenings of radial wall. Fruit and seed data reflect the close relationships within “Pterygiella complex”. While, Xizangia was distinctly different from Pterygiella. Phtheirospermum tenuisectum was more similar to the member of section minutisepala within the genus Phtheiroseprmum. Phtheirospermum japonicum was heterogeneous within the genus Phtheirospermum. On the whole, fruit and seed data supported Xizangia and Pseudobartsia as a genus rank and Phtheirospermum japonicum was a heterogeneous member in Phtheirospermum","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AIn%5C+the%5C+present%5C+study%2C%5C+we%5C+focused%5C+on%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%2C%5C+included%5C+Pterygiella%5C+Oliver%2C%5C+Xizangia%5C+D.Y.%5C+Hong%2C%5C+Phtheirospermum%5C+Bunge%5C+ex%5C+Fischer%5C+%5C%26%5C+C.A.%5C+Meyer%2C%5C+and%5C+Pseudobartsia%5C+D.Y.%5C+Hong%2C%5C+which%5C+is%5C+endemic%5C+to%5C+Eastern%5C+Asia.%5C+Based%5C+on%5C+chloroplast%5C+and%5C+nuclear%5C+sequences%2C%5C+we%5C+explored%5C+their%5C+phylogeny%5C+relationships%5C+within%5C+Orobanchaceae%2C%5C+the%5C+species%5C+relations%5C+within%5C+Pterygiella%2C%5C+and%5C+fruit%5C+and%5C+seed%5C+morphology%5C+of%5C+traditional%5C+tribe%5C+Rhinantheae.%5C+The%5C+phylogeny%5C+of%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%5C+was%5C+reconstructed%5C+based%5C+on%5C+nuclear%5C+and%5C+chloroplast%5C+sequences%5C+within%5C+the%5C+family%5C+Orobanchaceae.%5C+The%5C+genera%5C+relationship%5C+within%5C+the%5C+complex%5C+was%5C+reconstructed%5C+based%5C+on%5C+chloroplast%5C+sequences%5C+of%5C+atpB%5C-rbcL%2C%5C+atpH%5C-I%2C%5C+psbA%5C-trnH%2C%5C+rpl16%2C%5C+trnL%5C-F%5C+and%5C+trnS%5C-G.%5C+The%5C+results%5C+showed%5C+that%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D%5C+was%5C+not%5C+a%5C+natural%5C+group%5C+and%5C+could%5C+be%5C+divided%5C+into%5C+two%5C+different%5C+clades.%5C+Clade%5C+I%5C+included%5C+most%5C+taxa%2C%5C+e.g.%5C+Pterygiella%2C%5C+Xizangia%2C%5C+Pseudobartsia%2C%5C+Phtheirospermum%5C+%5C%28exclude%5C+P.%5C+japonicum%5C%29.%5C+The%5C+species%5C+of%5C+this%5C+clade%5C+were%5C+endemic%5C+to%5C+East%5C-Himalaya%5C+and%5C+Hengduan%5C+Mountains%5C+region.%5C+Clade%5C+II%5C+included%5C+Phtheirospermum%5C+japonicum%5C+%5C%28Thunberg%5C%29%5C+Kanitz%2C%5C+which%5C+was%5C+a%5C+heterogeneous%5C+member%5C+in%5C+genus%5C+Phtheirospermum%5C+and%5C+should%5C+be%5C+treated%5C+as%5C+a%5C+new%5C+monotypic%5C+genus.%5C+The%5C+results%5C+supported%5C+that%5C+Pterygiella%5C+bartschioides%5C+Hand.%5C-Mazz.%5C+and%5C+Phtheirospermum%5C+glandulosum%5C+Benth.%5C+should%5C+be%5C+elevated%5C+to%5C+genus%5C+level%5C+as%5C+Xizangia%5C+and%5C+Pseudobartsia%2C%5C+respectively.Furthermore%2C%5C+we%5C+focused%5C+on%5C+the%5C+genus%5C+Pterygiella%5C+to%5C+explore%5C+the%5C+species%E2%80%99%5C+circumscription%5C+by%5C+molecular%5C+phylogeny%2C%5C+DNA%5C+barcodes%5C+and%5C+morphological%5C+studies.%5C+The%5C+results%5C+suggested%5C+that%5C+Pterygiella%5C+should%5C+divide%5C+into%5C+three%5C+clades.%5C+P.%5C+duclouxii%5C+was%5C+divided%5C+into%5C+clade%5C+I%5C+and%5C+clade%5C+II%2C%5C+and%5C+P.%5C+nigrescens%5C+was%5C+included%5C+the%5C+clade%5C+I%5C+of%5C+these%5C+P.%5C+duclouxii%5C+taxa%2C%5C+with%5C+which%5C+it%5C+shares%5C+eglandular%5C+hairs%5C+on%5C+the%5C+stem.%5C+Clade%5C+III%5C+included%5C+P.%5C+suffruticosa%5C+and%5C+P.%5C+cylindrica%2C%5C+while%5C+the%5C+level%5C+of%5C+inter%5C-%5C+and%5C+intra%5C-species%5C+variation%5C+in%5C+two%5C+species%5C+did%5C+not%5C+support%5C+their%5C+distinction.%5C+Therefore%2C%5C+P.%5C+suffruticosa%5C+should%5C+move%5C+into%5C+or%5C+considered%5C+as%5C+a%5C+variety%5C+of%5C+P.%5C+cylindrica.%5C+The%5C+form%5C+of%5C+stem%2C%5C+leaf%5C+veins%5C+and%5C+the%5C+indumentum%5C+of%5C+stems%5C+are%5C+key%5C+traits%5C+for%5C+circumscribing%5C+the%5C+species%5C+within%5C+the%5C+genus.%5C+By%5C+comparing%5C+the%5C+effectiveness%5C+with%5C+core%5C+DNA%5C+barcodes%2C%5C+ITS%5C-2%5C+can%5C+be%5C+used%5C+as%5C+suitable%5C+DNA%5C+barcode%5C+in%5C+the%5C+genus%5C+Pterygiella.Fruit%5C+and%5C+seed%5C+characteristics%5C+of%5C+49%5C+species%5C+in%5C+21%5C+genera%5C+of%5C+the%5C+tribe%5C+Rhinantheae%5C+and%5C+9%5C+species%5C+in%5C+9%5C+genera%5C+of%5C+Orobachaceae%5C+were%5C+examined.%5C+25%5C+characters%5C+were%5C+selected%5C+and%5C+analyzed%5C+by%5C+principal%5C+component%5C+analysis%5C+for%5C+discovering%5C+the%5C+systematic%5C+significances.%5C+The%5C+results%5C+suggested%5C+four%5C+main%5C+types%5C+and%5C+six%5C+subtypes%5C+were%5C+distinguished%5C+based%5C+on%5C+gross%5C+seed%5C+coat%5C+appearance%2C%5C+inner%5C+tangential%5C+wall%5C+and%5C+thickenings%5C+of%5C+radial%5C+wall.%5C+Fruit%5C+and%5C+seed%5C+data%5C+reflect%5C+the%5C+close%5C+relationships%5C+within%5C+%E2%80%9CPterygiella%5C+complex%E2%80%9D.%5C+While%2C%5C+Xizangia%5C+was%5C+distinctly%5C+different%5C+from%5C+Pterygiella.%5C+Phtheirospermum%5C+tenuisectum%5C+was%5C+more%5C+similar%5C+to%5C+the%5C+member%5C+of%5C+section%5C+minutisepala%5C+within%5C+the%5C+genus%5C+Phtheiroseprmum.%5C+Phtheirospermum%5C+japonicum%5C+was%5C+heterogeneous%5C+within%5C+the%5C+genus%5C+Phtheirospermum.%5C+On%5C+the%5C+whole%2C%5C+fruit%5C+and%5C+seed%5C+data%5C+supported%5C+Xizangia%5C+and%5C+Pseudobartsia%5C+as%5C+a%5C+genus%5C+rank%5C+and%5C+Phtheirospermum%5C+japonicum%5C+was%5C+a%5C+heterogeneous%5C+member%5C+in%5C+Phtheirospermum"},{"jsname":"Mushroom Research Foundation","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3AMushroom%5C+Research%5C+Foundation"},{"jsname":"NASA[NNX12AK56G]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Eukaryotic%2BEvolution&order=desc&&fq=dc.project.title_filter%3ANASA%5C%5BNNX12AK56G%5C%5D"},{"jsname":"lastIndexed","jscount":"2023-09-22"}],"Funding Project","dc.project.title_filter")'>
''Investis... [1]
BRIDGE Pro... [1]
Bambusoide... [1]
C. sinensi... [1]
CAS Key La... [1]
CAS Pionee... [1]
More...
Indexed By
SCI [142]
CSCD [8]
Funding Organization
Project of... [5]
Top Talent... [4]
Hundred Ov... [3]
National H... [3]
Yunnan Inn... [3]
31590820 [2]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 443
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Effector-triggered immunity by the plantpathogen Phytophthora
期刊论文
TRENDS in Microbiology, 3111, 卷号: 14, 期号: 11, 页码: 470-473
Authors:
Dinah Qutob
;
Jennifer Tedman-Jones
;
Mark Gijzen
Adobe PDF(152Kb)
  |  
Favorite
  |  
View/Download:76/1
  |  
Submit date:2017/07/24
Diversity increases yield but reduces harvest index in crop mixtures
期刊论文
nature plants, 2021
Authors:
Jianguo Chen
Adobe PDF(7506Kb)
  |  
Favorite
  |  
View/Download:187/44
  |  
Submit date:2021/08/23
Diversity increases yield but reduces harvest index in crop mixtures
期刊论文
NATURE PLANTS, 2021, 卷号: 7, 期号: 7, 页码: 893+
Authors:
Chen,Jianguo
;
Engbersen,Nadine
;
Stefan,Laura
;
Schmid,Bernhard
;
Sun,Hang
;
Schob,Christian
Adobe PDF(7463Kb)
  |  
Favorite
  |  
View/Download:34/1
  |  
Submit date:2022/04/02
REPRODUCTIVE ALLOCATION
PLANT DIVERSITY
FUNCTIONAL TRAITS
PRODUCTIVITY
PLASTICITY
ALLOMETRY
COMPLEMENTARITY
VARIABILITY
MAIZE
LONG
Plastome phylogenomics of the East Asian endemic genus Dobinea
期刊论文
PLANT DIVERSITY, 2021, 卷号: 43, 期号: 1, 页码: 35-42
Authors:
Liu,Changkun
;
Yang,Jin
;
Jin,Lei
;
Wang,Shuying
;
Yang,Zhenyan
;
Ji,Yunheng
Adobe PDF(3229Kb)
  |  
Favorite
  |  
View/Download:25/1
  |  
Submit date:2022/04/02
Neo-endemism
Divergence
Dobinea delavayi
Dobinea vulgaris
Dobineeae
Anacardiaceae
QUANTITATIVE RECONSTRUCTION
MOLECULAR PHYLOGENETICS
EVOLUTIONARY HISTORY
CHLOROPLAST GENOME
SAPINDALES
MONSOON
NUCLEAR
CHINA
DIVERSIFICATION
ANACARDIACEAE
Tropane alkaloid biosynthesis: a centennial review
期刊论文
NATURAL PRODUCT REPORTS, 2021, 卷号: 38, 期号: 9, 页码: 1634-1658
Authors:
Huang,Jian-Ping
;
Wang,Yong-Jiang
;
Tian,Tian
;
Wang,Li
;
Yan,Yijun
;
Huang,Sheng-Xiong
View
  |  
Adobe PDF(2786Kb)
  |  
Favorite
  |  
View/Download:16/0
  |  
Submit date:2022/04/02
PUTRESCINE N-METHYLTRANSFERASE
TRANSFORMED ROOT CULTURES
2 TROPINONE REDUCTASES
ROLLE DES ACETATS
DATURA-STRAMONIUM
HYOSCYAMUS-NIGER
TOBACCO ALKALOIDS
ORNITHINE-DECARBOXYLASE
2-OXOGLUTARATE-DEPENDENT DIOXYGENASE
DIFFERENT STEREOSPECIFICITIES
The complete mitochondrial genome of Ophiocordyceps gracilis and its comparison with related species
期刊论文
IMA FUNGUS, 2021, 卷号: 12, 期号: 1, 页码: 31
Authors:
Abuduaini,Aifeire
;
Wang,Yuan-Bing
;
Zhou,Hui-Ying
;
Kang,Rui-Ping
;
Ding,Ming-Liang
;
Jiang,Yu
;
Suo,Fei-Ya
;
Huang,Luo-Dong
View
  |  
Adobe PDF(4435Kb)
  |  
Favorite
  |  
View/Download:17/1
  |  
Submit date:2022/04/02
Mitochondrial genome
Phylogenetic analysis
Ophiocordyceps gracilis
Ophiocordycipitaceae
GROUP-I
CATERPILLAR FUNGUS
AGARICUS-BISPORUS
SEQUENCE
EVOLUTION
HYPOCREALES
CORDYCEPS
REVEALS
OPHIOCORDYCIPITACEAE
VARIABILITY
Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves
期刊论文
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 卷号: 28, 期号: 18, 页码: 22458-22473
Authors:
Li,Xiong
;
Chen,Di
;
Li,Boqun
;
Yang,Ya
;
Yang,Yongping
View
  |  
Adobe PDF(2377Kb)
  |  
Favorite
  |  
View/Download:21/0
  |  
Submit date:2022/04/02
Turnip
Cadmium
Hyperaccumulator
Flavonoid
Acetylation
RNA-SEQ DATA
GENOME-WIDE IDENTIFICATION
GLUTATHIONE METABOLISM
SULFUR ASSIMILATION
GENE FAMILIES
STRESS
EFFLUX
ZINC
ACCUMULATION
PROTEIN
Three Novel Entomopathogenic Fungi From China and Thailand
期刊论文
FRONTIERS IN MICROBIOLOGY, 2021, 卷号: 11, 页码: 608991
Authors:
Wei,De-Ping
;
Wanasinghe,Dhanushka N.
;
Xu,Jian-Chu
;
To-anun,Chaiwat
;
Mortimer,Peter E.
;
Hyde,Kevin D.
;
Elgorban,Abdallah M.
;
Madawala,Sumedha
;
Suwannarach,Nakarin
;
Karunarathna,Samantha C.
;
Tibpromma,Saowaluck
;
Lumyong,Saisamorn
Adobe PDF(9889Kb)
  |  
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
Insect fungi
Ophiocordycipitaceae
Paraisaria alba
Paraisaria arcta
Paraisaria rosea
taxonomy
Yunnan Province
MULTIPLE SEQUENCE ALIGNMENT
MULTIGENE PHYLOGENY
CORDYCEPS
OPHIOCORDYCIPITACEAE
DIVERSITY
COMBINATIONS
ASCOMYCOTA
PARAISARIA
MORPHOLOGY
ANAMORPH
Divergence of the genetic contribution of FRIGIDA homologues in regulating the flowering time in Brassica rapa ssp. rapa
期刊论文
GENE, 2021, 卷号: 796, 页码: 145790
Authors:
Zheng,Yan
;
Gao,Zean
;
Luo,Landi
;
Wang,Yonggang
;
Chen,Qian
;
Yang,Ya
;
Kong,Xiangxiang
;
Yang,Yongping
View
  |  
Adobe PDF(4854Kb)
  |  
Favorite
  |  
View/Download:29/1
  |  
Submit date:2022/04/02
BrrFRI homologues
Flowering time
Vernalization
B
rapa ssp
rapa
LOCUS-C
NATURAL VARIATION
ARABIDOPSIS
VERNALIZATION
FLC
EXPRESSION
REPRESSOR
DOMESTICATION
TRANSCRIPTION
PROTEINS
Phylogeny and evolution of chloroplast tRNAs in Adoxaceae
期刊论文
ECOLOGY AND EVOLUTION, 2021, 卷号: 11, 期号: 3, 页码: 1294-1309
Authors:
Zhong,Qiu-Yi
;
Fu,Xiao-Gang
;
Zhang,Ting-Ting
;
Zhou,Tong
;
Yue,Ming
;
Liu,Jian-Ni
;
Li,Zhong-Hu
View
  |  
Adobe PDF(2392Kb)
  |  
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
anticodon
chloroplast tRNA
intron
phylogeny
transition
transversion
NONOPTIMAL CODON USAGE
HORIZONTAL TRANSFER
GENE DUPLICATION
GENOME
MITOCHONDRIAL
ORIGIN
TRANSLATION
SEQUENCES
ACID
DNA