×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [92]
昆明植物所硕博研究... [46]
资源植物与生物技术... [44]
中国科学院东亚植物... [27]
植物分类与资源学报 [5]
中国西南野生生物种质... [5]
More...
Authors
Yang Yong... [15]
许建初 [15]
张石宝 [10]
Sun Hang [9]
杨杨 [6]
胡虹 [6]
More...
Document Type
Journal ... [196]
Thesis [46]
Book [12]
Academic p... [1]
Conference... [1]
Other [1]
More...
Date Issued
2021 [9]
2020 [16]
2019 [21]
2018 [10]
2017 [16]
2016 [10]
More...
Language
英语 [150]
中文 [38]
Source Publication
植物分类与资源学报 [10]
Functional... [6]
American J... [5]
BioScience [5]
FORESTS [5]
FRONTIERS ... [5]
More...
Funding Project
6 could use lots of photosynthates, but contributed little to the accumulation of biomass. 4. Photosynthetic rate of P. armeniacum decreased a little at the noon, and the highest photosynthetic rate was observed at 10:00h in the greenhouse. The variation of photosynthetic rate was in the same trend as stomatal conductance. Higher relative humidity seemed to be the key for higher photosynthetic rate in P. armeniacum. 5. The photosynthetic capacity of C. flavum was statistically larger than that of P. armeniacum. The lower leaf photosynthetic capacity of P. armeniacum was related to its lower leaf nitrogen concentration,leaf phosphorus concentration and enzyme activities. Meanwhile, the extremely lower stomatal conductance and internal mesophyll conductance might greatly limit the photosynthetic capacity of P. armeniacum. The lower stomatal conductance and photosynthetic rate of Paphiopedilum might partially caused by the lack of chloroplasts in the guard cell of Paphiopedilum. Compared with C. flavum, P. armeniacum was more fond of shade environment.6. The short longevity leaf of Cypripedium had bigger photosynthetic capacity and greater potential for fast growth. But the longer LL of Paphiopedilum enhanced nutrient conservation which could compensate its lower photosynthetic capacity. The short longevity leaf of Cypripedium usually had higher photosynthetic rate per unit leaf mass and dark respiration rate, and photosynthetic capacity decreased fast with leaf age. However, for Paphiopedilum, the situation was the opposite. 7. Compared with Cypripedium, Paphiopedilum had higher water use efficiency and lower photosynthetic nitrogen use efficiency. 8. The leaf of Paphiopedilum had higher leaf construction cost and longer repayment time than that of Cypripedium. The leaf structures and physiological functions of Paphiopedilum and Cypripedium reflected the adaptation to their habitats. The leaf morphological and physiological evolution of Paphiopedilum was related to water and resource-conserving traits in the karst habitat. The leaf traits of Cypripedium were the adaptation to the environment rich in water and nutrients but easy to change with seasons.Our results provided evidence of divergent evolution of congeneric orchids under natural selection.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3APaphiopedilum%5C+and%5C+Cypripedium%5C+are%5C+close%5C+relatives%5C+belonging%5C+to%5C+the%5C+subfamily%5C+Cypripedioideae.%5C+However%2C%5C+they%5C+undergo%5C+considerable%5C+divergence%5C+in%5C+the%5C+aspects%5C+of%5C+life%5C+forms%2C%5C+leaf%5C+traits%5C+and%5C+habitats.%5C+In%5C+present%5C+study%2C%5C+leaf%5C+morphologies%5C+and%5C+anatomical%5C+structures%2C%5C+leaf%5C+lifespans%2C%5C+leaf%5C+mass%5C+per%5C+area%2C%5C+photosynthetic%5C+capacities%2C%5C+nutrient%5C+use%5C+efficiencies%2C%5C+leaf%5C+construction%5C+costs%2C%5C+and%5C+maintenance%5C+costs%5C+were%5C+investigated%5C+to%5C+understand%5C+the%5C+relationship%5C+between%5C+leaf%5C+traits%5C+and%5C+ecophysiological%5C+adaptability%5C+of%5C+the%5C+two%5C+types%5C+of%5C+plants%5C+and%5C+explore%5C+the%5C+related%5C+ecological%5C+and%5C+evolutionary%5C+significances.%5C+The%5C+results%5C+suggest%5C+that%5C%3A1.%5C+Compared%5C+with%5C+Cypripedium%2C%5C+Paphiopedilum%5C+was%5C+characterized%5C+by%5C+drought%5C+tolerance%5C+from%5C+its%5C+leaf%5C+anatomical%5C+structure%5C+including%5C+fleshy%5C+leaf%2C%5C+thicker%5C+surface%5C+cuticle%2C%5C+huge%5C+abaxial%5C+epidermis%5C+cells%2C%5C+differentiation%5C+of%5C+palisade%5C+and%5C+spongy%5C+mesophyll%5C+layers%2C%5C+the%5C+prominent%5C+of%5C+mucilaginous%5C+substances%2C%5C+supportable%5C+leaf%5C+main%5C+vein%2C%5C+lower%5C+total%5C+stoma%5C+area%5C+%5C%28%25%5C%29%2C%5C+sunken%5C+stomata%5C+and%5C+special%5C+stoma%5C+structure.%5C+Leaf%5C+morphologies%5C+and%5C+structures%5C+of%5C+Cypripedium%5C+were%5C+to%5C+the%5C+contrary%5C+of%5C+Paphiopedilum.%5C+Leaf%5C+morphologies%5C+and%5C+structures%5C+embodied%5C+the%5C+adaptation%5C+to%5C+the%5C+environment%5C+in%5C+both%5C+Paphiopedilum%5C+and%5C+Cypripedium.%5C+Our%5C+results%5C+also%5C+confirmed%5C+the%5C+previous%5C+observation%5C+that%5C+Paphiopedilum%5C+was%5C+the%5C+only%5C+genus%5C+that%5C+did%5C+not%5C+possess%5C+guard%5C+cell%5C+chloroplasts.2.%5C+The%5C+photosynthetic%5C+capacities%5C+of%5C+P.%5C+armeniacum%5C+leaves%5C+were%5C+different%5C+with%5C+different%5C+leaf%5C+ages.%5C+The%5C+highest%5C+photosynthetic%5C+capacity%5C+occurred%5C+in%5C+leaf%5C+age%5C+1%5C-2%5C+years%2C%5C+followed%5C+by%5C+1%5C+year%5C+and%5C+2%5C-4%5C+years.%5C+The%5C+highest%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+flavum%5C+occurred%5C+in%5C+leaf%5C+age%5C+60%5C+days%2C%5C+followed%5C+by%5C+30%5C+days%2C%5C+90%5C+days%5C+and%5C+120%5C+days.%5C+3.%5C+Photosynthetic%5C+capacities%5C+of%5C+different%5C+leaf%5C+positions%5C+were%5C+mainly%5C+affected%5C+by%5C+leaf%5C+ages%5C+in%5C+P.%5C+armeniacum.%5C+The%5C+four%5C+leaves%5C+lying%5C+on%5C+the%5C+top%5C+did%5C+the%5C+most%5C+accumulation%5C+of%5C+the%5C+assimilation%5C+products%5C+in%5C+the%5C+whole%5C+plant.%5C+The%5C+leaves%5C+of%5C+sequence%5C+number%5C+%3E%5C+6%5C+could%5C+use%5C+lots%5C+of%5C+photosynthates%2C%5C+but%5C+contributed%5C+little%5C+to%5C+the%5C+accumulation%5C+of%5C+biomass.%5C+4.%5C+Photosynthetic%5C+rate%5C+of%5C+P.%5C+armeniacum%5C+decreased%5C+a%5C+little%5C+at%5C+the%5C+noon%2C%5C+and%5C+the%5C+highest%5C+photosynthetic%5C+rate%5C+was%5C+observed%5C+at%5C+10%5C%3A00h%5C+in%5C+the%5C+greenhouse.%5C+The%5C+variation%5C+of%5C+photosynthetic%5C+rate%5C+was%5C+in%5C+the%5C+same%5C+trend%5C+as%5C+stomatal%5C+conductance.%5C+Higher%5C+relative%5C+humidity%5C+seemed%5C+to%5C+be%5C+the%5C+key%5C+for%5C+higher%5C+photosynthetic%5C+rate%5C+in%5C+P.%5C+armeniacum.%5C+5.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+flavum%5C+was%5C+statistically%5C+larger%5C+than%5C+that%5C+of%5C+P.%5C+armeniacum.%5C+The%5C+lower%5C+leaf%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum%5C+was%5C+related%5C+to%5C+its%5C+lower%5C+leaf%5C+nitrogen%5C+concentration%2Cleaf%5C+phosphorus%5C+concentration%5C+and%5C+enzyme%5C+activities.%5C+Meanwhile%2C%5C+the%5C+extremely%5C+lower%5C+stomatal%5C+conductance%5C+and%5C+internal%5C+mesophyll%5C+conductance%5C+might%5C+greatly%5C+limit%5C+the%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum.%5C+The%5C+lower%5C+stomatal%5C+conductance%5C+and%5C+photosynthetic%5C+rate%5C+of%5C+Paphiopedilum%5C+might%5C+partially%5C+caused%5C+by%5C+the%5C+lack%5C+of%5C+chloroplasts%5C+in%5C+the%5C+guard%5C+cell%5C+of%5C+Paphiopedilum.%5C+Compared%5C+with%5C+C.%5C+flavum%2C%5C+P.%5C+armeniacum%5C+was%5C+more%5C+fond%5C+of%5C+shade%5C+environment.6.%5C+The%5C+short%5C+longevity%5C+leaf%5C+of%5C+Cypripedium%5C+had%5C+bigger%5C+photosynthetic%5C+capacity%5C+and%5C+greater%5C+potential%5C+for%5C+fast%5C+growth.%5C+But%5C+the%5C+longer%5C+LL%5C+of%5C+Paphiopedilum%5C+enhanced%5C+nutrient%5C+conservation%5C+which%5C+could%5C+compensate%5C+its%5C+lower%5C+photosynthetic%5C+capacity.%5C+The%5C+short%5C+longevity%5C+leaf%5C+of%5C+Cypripedium%5C+usually%5C+had%5C+higher%5C+photosynthetic%5C+rate%5C+per%5C+unit%5C+leaf%5C+mass%5C+and%5C+dark%5C+respiration%5C+rate%2C%5C+and%5C+photosynthetic%5C+capacity%5C+decreased%5C+fast%5C+with%5C+leaf%5C+age.%5C+However%2C%5C+for%5C+Paphiopedilum%2C%5C+the%5C+situation%5C+was%5C+the%5C+opposite.%5C+7.%5C+Compared%5C+with%5C+Cypripedium%2C%5C+Paphiopedilum%5C+had%5C+higher%5C+water%5C+use%5C+efficiency%5C+and%5C+lower%5C+photosynthetic%5C+nitrogen%5C+use%5C+efficiency.%5C+8.%5C+The%5C+leaf%5C+of%5C+Paphiopedilum%5C+had%5C+higher%5C+leaf%5C+construction%5C+cost%5C+and%5C+longer%5C+repayment%5C+time%5C+than%5C+that%5C+of%5C+Cypripedium.%5C+The%5C+leaf%5C+structures%5C+and%5C+physiological%5C+functions%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+reflected%5C+the%5C+adaptation%5C+to%5C+their%5C+habitats.%5C+The%5C+leaf%5C+morphological%5C+and%5C+physiological%5C+evolution%5C+of%5C+Paphiopedilum%5C+was%5C+related%5C+to%5C+water%5C+and%5C+resource%5C-conserving%5C+traits%5C+in%5C+the%5C+karst%5C+habitat.%5C+The%5C+leaf%5C+traits%5C+of%5C+Cypripedium%5C+were%5C+the%5C+adaptation%5C+to%5C+the%5C+environment%5C+rich%5C+in%5C+water%5C+and%5C+nutrients%5C+but%5C+easy%5C+to%5C+change%5C+with%5C+seasons.Our%5C+results%5C+provided%5C+evidence%5C+of%5C+divergent%5C+evolution%5C+of%5C+congeneric%5C+orchids%5C+under%5C+natural%5C+selection."},{"jsname":"Paphiopedilum and Cypripedium,known as slipper orchids in horticulture, belong to the subfamily Cypripedioideae of the Orchidaceae. Although they are closely related phylogenetically, there are significant differences in leaf traits and geographical distributions between two genera. This dissertation includes the following sections: (1) the leaf functional traits were compared in six species of the two genera; (2) the physiological responses of P. armeniacum to different water regimes, light regimes and low temperature; (3) the leaf phenotypic plastics of C. flavum in response to the different light condition and the photosynthetic characteristics of three Cypripedium species during sexual reproduction. The aims are to understand the convergent and divergent evolution between the two genera in leaf traits and their adaptive significances, and the leaf plastic responses to different levels of resources. Such information could provide scientific basis for conservation and domestication of Paphiopedilum and Cypripedium. The results are given below:1. Compared with Paphiopedilum, Cypripedium showed significantly higher photosynthetic rate (Pmax), leaf nitrogen content (Na), photosynthetic nitrogen utilization (PNUE), the fractions of leaf nitrogen partitioning in carboxylation (PC) and bioenergetics (PB), specific leaf area (SLA), ratio of leaf chlorophyll a and b (Chla/b), but significantly lower leaf construction cost (CC) and the ratio of leaf carbon content to leaf nitrogen (C/N). These leaf traits of Cypripedium are considered as the adaptation to short growing period and rich soil nutrients in the alpine habitats. Conversely, the long life span, low Pmax and mesophyll conductance (gm) but high SLA, CC and C/N in Paphiopedilum indicated that the adaptation to low-light, limited-nutrient habitat in the limestone area. As a sympatric species of Paphiopedilum, C. lentiginosum not only kept phylogenetically leaf traits of Cypripedium, suchas stomatal conductance (gs), Pmax, PNUE and dormant in winter, but also possessed many leaf traits which is similar to that in Paphiopedilum, such as relative stomatal limitations (RSL), gm, the ratio of leaf chlorophyll a and b (Chl a/b), fraction of leaf nitrogen allocated to light-harvesting components (PL). These results indicated the convergent and divergent evolution of Paphiopedilum and Cypripedium in leaf traits.2. Paphiopedilum. armeniacum exhibited a high plasticity of leaf photosynthetic function in response to different light regimes, but the responses changes with the time. Due to grow under low light habitat, P. armeniacum grown under 50% shade (HL) had the significantly lowest Pmax than the plants grown under 75% shade (ML) and 95% shade (LL) after six months. However, after twelve months, the Pmax of the plants grown under HL increased significantly and then became the highest one among three levels of light. It is also found that leaf dry mass per unit area (LMA), leaf stomatal conductance (gS), internal mesophyll conductance (gm), the fraction of leaf nitrogen partitioning in photosynthetic carboxylation (PC), bioeneretics (PB) were greatly influenced by irradiance. The plants grown under HL increased gS, gm, PC, PB to increase Pmax. In addition, the plants grown under HL had the highest ratio of total chlorophyll content to total Carotenoid content (Car/Chl) while the plants grown under LL had the lowest ratio of leaf chlorophyll a and b (Chl a/b). As a result, plasticity of leaf photosynthetic physiology of P. armeniacum in response to different light regimes depended largely on leaf nitrogen partitioning and leaf structure. As for the numbers of flowering and fruiting, ML was the best light level.3. The responses of P. armeniacum to different water regimes were not significantly different. But the Pmax and the maximum photochemical efficiency of PSⅡ (Fv/Fm) decreased with the increased frequency of watering. The reasons were that the plants have high respiration rate (Rd) and make more use of light energy to oxidation cycle. The plants watered every eight days (MW) and every twenty days (LW) had higher Pmax than the plant watered every four days (HW) mainly because of the higher PC and PB. Besides, the leaves of P. armeniacum had excellent property for holding water also contributed to the high photosynthetic capacity.4. Paphiopedilum. armeniacum was very sensitive to the low temperature. The plants significantly decreased photosynthetic capacity after grown under 4℃ for three days and the photosynthetic machinery was destroyed after fifteen days. The photosynthetic capacity of P. armeniacum exhibited no change at 10℃ and 15℃.5. Cypripedium flavum of four habitats (DB, XRD, XZD and TSQ) with different light intensity exhibited different photosynthetic characteristics after transplanted to the same environment in Kunming. Among the habitats, the light intensity of DB was the highest while XRD was the lowest. The light intensity of XZD and TSQ were not significantly difference. Among all the plants in Kunming, the plants of DB had the significantly highest Pmax but the plants of XRD had the lowest Pmax. The light saturation point (LSP) and photosynthetic nitrogen use efficiency (PNUE) agreed well with the light intensity of four habitats and contributed to the high Pmax of DB. The LMA, Chl and leaf nitrogen content were not different among all the plants. C. flavum exhibited sensitively response to the change of light in leaf construction while kept the plasticity of leaf photosynthetic characteristics which developed from its own habitat.6. The photosynthetic capacity of C. tibeticum and C. flavum were significantly increased at the flowering stage. For these two species, the significantly increased Amax were closely related to the maximum carboxylation rate by ribulose-1, 5-bisphosphate carboxylase/oxygenase (Vcmax), photon saturated rate of electron transport (Jmax), the rate of triose phosphate utilization (TPU) and actual quantum efficiency of the photosystem II photochemistry (ΦPSII) respectively. However, flowering almost did not affect the photosynthetic capacity of C. guttatum. C. guttatum had the smallest plant size, the leaf area, the volume of labellum and the volume of fruit, but the biggest fruit volume per leaf area among three species. These results indicated that for C. flavum and C. tibeticum there were a physiological mechanism in photosynthesis to compensate the cost of flowering as well as increased resource acquisitions, which would be beneficial to the survival or future flowering of the plant. C. gutattum could keep a steady photosynthetic capacity during life history. This kind of pattern could decrease the effect of the reproductive costs as much as possible. In contrast to C. flavum and C. tibeticum, C. gutattum possessed a more economical and effective reproductive pattern which maybe related to its wider distribution.In conclusion, Paphiopedilum and Cypripedium have significantly different leaf traits which agree well with their habitats and there is a divergent and convergent evolution between the two genera. P. armeniacum is much tolerant and responsive to varying water and light availability but very sensitivity to the low temperature. Confronting the suddenly change of light environment, C. flavum can respond sensitively to the change of light in leaf construction but the plasticity of leaf photosynthetic characteristics which developed from its own habitat can hold for the next growing season. In contrast to C. flavum and C. tibeticum, C. gutattum possesses a more economical and effective reproductive pattern which maybe related to its wider distribution. The study of the relationship between the two genera, the response and tolerance to the environmental factors of the two genera are important for understanding the adaptation and evolution of the Cypripedioideae.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3APaphiopedilum%5C+and%5C+Cypripedium%EF%BC%8Cknown%5C+as%5C+slipper%5C+orchids%5C+in%5C+horticulture%2C%5C+belong%5C+to%5C+the%5C+subfamily%5C+Cypripedioideae%5C+of%5C+the%5C+Orchidaceae.%5C+Although%5C+they%5C+are%5C+closely%5C+related%5C+phylogenetically%2C%5C+there%5C+are%5C+significant%5C+differences%5C+in%5C+leaf%5C+traits%5C+and%5C+geographical%5C+distributions%5C+between%5C+two%5C+genera.%5C+This%5C+dissertation%5C+includes%5C+the%5C+following%5C+sections%5C%3A%5C+%5C%281%5C%29%5C+the%5C+leaf%5C+functional%5C+traits%5C+were%5C+compared%5C+in%5C+six%5C+species%5C+of%5C+the%5C+two%5C+genera%5C%3B%5C+%5C%282%5C%29%5C+the%5C+physiological%5C+responses%5C+of%5C+P.%5C+armeniacum%5C+to%5C+different%5C+water%5C+regimes%2C%5C+light%5C+regimes%5C+and%5C+low%5C+temperature%5C%3B%5C+%5C%283%5C%29%5C+the%5C+leaf%5C+phenotypic%5C+plastics%5C+of%5C+C.%5C+flavum%5C+in%5C+response%5C+to%5C+the%5C+different%5C+light%5C+condition%5C+and%5C+the%5C+photosynthetic%5C+characteristics%5C+of%5C+three%5C+Cypripedium%5C+species%5C+during%5C+sexual%5C+reproduction.%5C+The%5C+aims%5C+are%5C+to%5C+understand%5C+the%5C+convergent%5C+and%5C+divergent%5C+evolution%5C+between%5C+the%5C+two%5C+genera%5C+in%5C+leaf%5C+traits%5C+and%5C+their%5C+adaptive%5C+significances%2C%5C+and%5C+the%5C+leaf%5C+plastic%5C+responses%5C+to%5C+different%5C+levels%5C+of%5C+resources.%5C+Such%5C+information%5C+could%5C+provide%5C+scientific%5C+basis%5C+for%5C+conservation%5C+and%5C+domestication%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium.%5C+The%5C+results%5C+are%5C+given%5C+below%5C%3A1.%5C+Compared%5C+with%5C+Paphiopedilum%2C%5C+Cypripedium%5C+showed%5C+significantly%5C+higher%5C+photosynthetic%5C+rate%5C+%5C%28Pmax%5C%29%2C%5C+leaf%5C+nitrogen%5C+content%5C+%5C%28Na%5C%29%2C%5C+photosynthetic%5C+nitrogen%5C+utilization%5C+%5C%28PNUE%5C%29%2C%5C+the%5C+fractions%5C+of%5C+leaf%5C+nitrogen%5C+partitioning%5C+in%5C+carboxylation%5C+%5C%28PC%5C%29%5C+and%5C+bioenergetics%5C+%5C%28PB%5C%29%2C%5C+specific%5C+leaf%5C+area%5C+%5C%28SLA%5C%29%2C%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chla%5C%2Fb%5C%29%2C%5C+but%5C+significantly%5C+lower%5C+leaf%5C+construction%5C+cost%5C+%5C%28CC%5C%29%5C+and%5C+the%5C+ratio%5C+of%5C+leaf%5C+carbon%5C+content%5C+to%5C+leaf%5C+nitrogen%5C+%5C%28C%5C%2FN%5C%29.%5C+These%5C+leaf%5C+traits%5C+of%5C+Cypripedium%5C+are%5C+considered%5C+as%5C+the%5C+adaptation%5C+to%5C+short%5C+growing%5C+period%5C+and%5C+rich%5C+soil%5C+nutrients%5C+in%5C+the%5C+alpine%5C+habitats.%5C+Conversely%2C%5C+the%5C+long%5C+life%5C+span%2C%5C+low%5C+Pmax%5C+and%5C+mesophyll%5C+conductance%5C+%5C%28gm%5C%29%5C+but%5C+high%5C+SLA%2C%5C+CC%5C+and%5C+C%5C%2FN%5C+in%5C+Paphiopedilum%5C+indicated%5C+that%5C+the%5C+adaptation%5C+to%5C+low%5C-light%2C%5C+limited%5C-nutrient%5C+habitat%5C+in%5C+the%5C+limestone%5C+area.%5C+As%5C+a%5C+sympatric%5C+species%5C+of%5C+Paphiopedilum%2C%5C+C.%5C+lentiginosum%5C+not%5C+only%5C+kept%5C+phylogenetically%5C+leaf%5C+traits%5C+of%5C+Cypripedium%2C%5C+suchas%5C+stomatal%5C+conductance%5C+%5C%28gs%5C%29%2C%5C+Pmax%2C%5C+PNUE%5C+and%5C+dormant%5C+in%5C+winter%2C%5C+but%5C+also%5C+possessed%5C+many%5C+leaf%5C+traits%5C+which%5C+is%5C+similar%5C+to%5C+that%5C+in%5C+Paphiopedilum%2C%5C+such%5C+as%5C+relative%5C+stomatal%5C+limitations%5C+%5C%28RSL%5C%29%2C%5C+gm%2C%5C+the%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chl%5C+a%5C%2Fb%5C%29%2C%5C+fraction%5C+of%5C+leaf%5C+nitrogen%5C+allocated%5C+to%5C+light%5C-harvesting%5C+components%5C+%5C%28PL%5C%29.%5C+These%5C+results%5C+indicated%5C+the%5C+convergent%5C+and%5C+divergent%5C+evolution%5C+of%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+in%5C+leaf%5C+traits.2.%5C+Paphiopedilum.%5C+armeniacum%5C+exhibited%5C+a%5C+high%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+function%5C+in%5C+response%5C+to%5C+different%5C+light%5C+regimes%2C%5C+but%5C+the%5C+responses%5C+changes%5C+with%5C+the%5C+time.%5C+Due%5C+to%5C+grow%5C+under%5C+low%5C+light%5C+habitat%2C%5C+P.%5C+armeniacum%5C+grown%5C+under%5C+50%25%5C+shade%5C+%5C%28HL%5C%29%5C+had%5C+the%5C+significantly%5C+lowest%5C+Pmax%5C+than%5C+the%5C+plants%5C+grown%5C+under%5C+75%25%5C+shade%5C+%5C%28ML%5C%29%5C+and%5C+95%25%5C+shade%5C+%5C%28LL%5C%29%5C+after%5C+six%5C+months.%5C+However%2C%5C+after%5C+twelve%5C+months%2C%5C+the%5C+Pmax%5C+of%5C+the%5C+plants%5C+grown%5C+under%5C+HL%5C+increased%5C+significantly%5C+and%5C+then%5C+became%5C+the%5C+highest%5C+one%5C+among%5C+three%5C+levels%5C+of%5C+light.%5C+It%5C+is%5C+also%5C+found%5C+that%5C+leaf%5C+dry%5C+mass%5C+per%5C+unit%5C+area%5C+%5C%28LMA%5C%29%2C%5C+leaf%5C+stomatal%5C+conductance%5C+%5C%28gS%5C%29%2C%5C+internal%5C+mesophyll%5C+conductance%5C+%5C%28gm%5C%29%2C%5C+the%5C+fraction%5C+of%5C+leaf%5C+nitrogen%5C+partitioning%5C+in%5C+photosynthetic%5C+carboxylation%5C+%5C%28PC%5C%29%2C%5C+bioeneretics%5C+%5C%28PB%5C%29%5C+were%5C+greatly%5C+influenced%5C+by%5C+irradiance.%5C+The%5C+plants%5C+grown%5C+under%5C+HL%5C+increased%5C+gS%2C%5C+gm%2C%5C+PC%2C%5C+PB%5C+to%5C+increase%5C+Pmax.%5C+In%5C+addition%2C%5C+the%5C+plants%5C+grown%5C+under%5C+HL%5C+had%5C+the%5C+highest%5C+ratio%5C+of%5C+total%5C+chlorophyll%5C+content%5C+to%5C+total%5C+Carotenoid%5C+content%5C+%5C%28Car%5C%2FChl%5C%29%5C+while%5C+the%5C+plants%5C+grown%5C+under%5C+LL%5C+had%5C+the%5C+lowest%5C+ratio%5C+of%5C+leaf%5C+chlorophyll%5C+a%5C+and%5C+b%5C+%5C%28Chl%5C+a%5C%2Fb%5C%29.%5C+As%5C+a%5C+result%2C%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+physiology%5C+of%5C+P.%5C+armeniacum%5C+in%5C+response%5C+to%5C+different%5C+light%5C+regimes%5C+depended%5C+largely%5C+on%5C+leaf%5C+nitrogen%5C+partitioning%5C+and%5C+leaf%5C+structure.%5C+As%5C+for%5C+the%5C+numbers%5C+of%5C+flowering%5C+and%5C+fruiting%2C%5C+ML%5C+was%5C+the%5C+best%5C+light%5C+level.3.%5C+The%5C+responses%5C+of%5C+P.%5C+armeniacum%5C+to%5C+different%5C+water%5C+regimes%5C+were%5C+not%5C+significantly%5C+different.%5C+But%5C+the%5C+Pmax%5C+and%5C+the%5C+maximum%5C+photochemical%5C+efficiency%5C+of%5C+PS%E2%85%A1%5C+%5C%28Fv%5C%2FFm%5C%29%5C+decreased%5C+with%5C+the%5C+increased%5C+frequency%5C+of%5C+watering.%5C+The%5C+reasons%5C+were%5C+that%5C+the%5C+plants%5C+have%5C+high%5C+respiration%5C+rate%5C+%5C%28Rd%5C%29%5C+and%5C+make%5C+more%5C+use%5C+of%5C+light%5C+energy%5C+to%5C+oxidation%5C+cycle.%5C+The%5C+plants%5C+watered%5C+every%5C+eight%5C+days%5C+%5C%28MW%5C%29%5C+and%5C+every%5C+twenty%5C+days%5C+%5C%28LW%5C%29%5C+had%5C+higher%5C+Pmax%5C+than%5C+the%5C+plant%5C+watered%5C+every%5C+four%5C+days%5C+%5C%28HW%5C%29%5C+mainly%5C+because%5C+of%5C+the%5C+higher%5C+PC%5C+and%5C+PB.%5C+Besides%2C%5C+the%5C+leaves%5C+of%5C+P.%5C+armeniacum%5C+had%5C+excellent%5C+property%5C+for%5C+holding%5C+water%5C+also%5C+contributed%5C+to%5C+the%5C+high%5C+photosynthetic%5C+capacity.4.%5C+Paphiopedilum.%5C+armeniacum%5C+was%5C+very%5C+sensitive%5C+to%5C+the%5C+low%5C+temperature.%5C+The%5C+plants%5C+significantly%5C+decreased%5C+photosynthetic%5C+capacity%5C+after%5C+grown%5C+under%5C+4%E2%84%83%5C+for%5C+three%5C+days%5C+and%5C+the%5C+photosynthetic%5C+machinery%5C+was%5C+destroyed%5C+after%5C+fifteen%5C+days.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+P.%5C+armeniacum%5C+exhibited%5C+no%5C+change%5C+at%5C+10%E2%84%83%5C+and%5C+15%E2%84%83.5.%5C+Cypripedium%5C+flavum%5C+of%5C+four%5C+habitats%5C+%5C%28DB%2C%5C+XRD%2C%5C+XZD%5C+and%5C+TSQ%5C%29%5C+with%5C+different%5C+light%5C+intensity%5C+exhibited%5C+different%5C+photosynthetic%5C+characteristics%5C+after%5C+transplanted%5C+to%5C+the%5C+same%5C+environment%5C+in%5C+Kunming.%5C+Among%5C+the%5C+habitats%2C%5C+the%5C+light%5C+intensity%5C+of%5C+DB%5C+was%5C+the%5C+highest%5C+while%5C+XRD%5C+was%5C+the%5C+lowest.%5C+The%5C+light%5C+intensity%5C+of%5C+XZD%5C+and%5C+TSQ%5C+were%5C+not%5C+significantly%5C+difference.%5C+Among%5C+all%5C+the%5C+plants%5C+in%5C+Kunming%2C%5C+the%5C+plants%5C+of%5C+DB%5C+had%5C+the%5C+significantly%5C+highest%5C+Pmax%5C+but%5C+the%5C+plants%5C+of%5C+XRD%5C+had%5C+the%5C+lowest%5C+Pmax.%5C+The%5C+light%5C+saturation%5C+point%5C+%5C%28LSP%5C%29%5C+and%5C+photosynthetic%5C+nitrogen%5C+use%5C+efficiency%5C+%5C%28PNUE%5C%29%5C+agreed%5C+well%5C+with%5C+the%5C+light%5C+intensity%5C+of%5C+four%5C+habitats%5C+and%5C+contributed%5C+to%5C+the%5C+high%5C+Pmax%5C+of%5C+DB.%5C+The%5C+LMA%2C%5C+Chl%5C+and%5C+leaf%5C+nitrogen%5C+content%5C+were%5C+not%5C+different%5C+among%5C+all%5C+the%5C+plants.%5C+C.%5C+flavum%5C+exhibited%5C+sensitively%5C+response%5C+to%5C+the%5C+change%5C+of%5C+light%5C+in%5C+leaf%5C+construction%5C+while%5C+kept%5C+the%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+characteristics%5C+which%5C+developed%5C+from%5C+its%5C+own%5C+habitat.6.%5C+The%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+tibeticum%5C+and%5C+C.%5C+flavum%5C+were%5C+significantly%5C+increased%5C+at%5C+the%5C+flowering%5C+stage.%5C+For%5C+these%5C+two%5C+species%2C%5C+the%5C+significantly%5C+increased%5C+Amax%5C+were%5C+closely%5C+related%5C+to%5C+the%5C+maximum%5C+carboxylation%5C+rate%5C+by%5C+ribulose%5C-1%2C%5C+5%5C-bisphosphate%5C+carboxylase%5C%2Foxygenase%5C+%5C%28Vcmax%5C%29%2C%5C+photon%5C+saturated%5C+rate%5C+of%5C+electron%5C+transport%5C+%5C%28Jmax%5C%29%2C%5C+the%5C+rate%5C+of%5C+triose%5C+phosphate%5C+utilization%5C+%5C%28TPU%5C%29%5C+and%5C+actual%5C+quantum%5C+efficiency%5C+of%5C+the%5C+photosystem%5C+II%5C+photochemistry%5C+%5C%28%CE%A6PSII%5C%29%5C+respectively.%5C+However%2C%5C+flowering%5C+almost%5C+did%5C+not%5C+affect%5C+the%5C+photosynthetic%5C+capacity%5C+of%5C+C.%5C+guttatum.%5C+C.%5C+guttatum%5C+had%5C+the%5C+smallest%5C+plant%5C+size%2C%5C+the%5C+leaf%5C+area%2C%5C+the%5C+volume%5C+of%5C+labellum%5C+and%5C+the%5C+volume%5C+of%5C+fruit%2C%5C+but%5C+the%5C+biggest%5C+fruit%5C+volume%5C+per%5C+leaf%5C+area%5C+among%5C+three%5C+species.%5C+These%5C+results%5C+indicated%5C+that%5C+for%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%5C+there%5C+were%5C+a%5C+physiological%5C+mechanism%5C+in%5C+photosynthesis%5C+to%5C+compensate%5C+the%5C+cost%5C+of%5C+flowering%5C+as%5C+well%5C+as%5C+increased%5C+resource%5C+acquisitions%2C%5C+which%5C+would%5C+be%5C+beneficial%5C+to%5C+the%5C+survival%5C+or%5C+future%5C+flowering%5C+of%5C+the%5C+plant.%5C+C.%5C+gutattum%5C+could%5C+keep%5C+a%5C+steady%5C+photosynthetic%5C+capacity%5C+during%5C+life%5C+history.%5C+This%5C+kind%5C+of%5C+pattern%5C+could%5C+decrease%5C+the%5C+effect%5C+of%5C+the%5C+reproductive%5C+costs%5C+as%5C+much%5C+as%5C+possible.%5C+In%5C+contrast%5C+to%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%2C%5C+C.%5C+gutattum%5C+possessed%5C+a%5C+more%5C+economical%5C+and%5C+effective%5C+reproductive%5C+pattern%5C+which%5C+maybe%5C+related%5C+to%5C+its%5C+wider%5C+distribution.In%5C+conclusion%2C%5C+Paphiopedilum%5C+and%5C+Cypripedium%5C+have%5C+significantly%5C+different%5C+leaf%5C+traits%5C+which%5C+agree%5C+well%5C+with%5C+their%5C+habitats%5C+and%5C+there%5C+is%5C+a%5C+divergent%5C+and%5C+convergent%5C+evolution%5C+between%5C+the%5C+two%5C+genera.%5C+P.%5C+armeniacum%5C+is%5C+much%5C+tolerant%5C+and%5C+responsive%5C+to%5C+varying%5C+water%5C+and%5C+light%5C+availability%5C+but%5C+very%5C+sensitivity%5C+to%5C+the%5C+low%5C+temperature.%5C+Confronting%5C+the%5C+suddenly%5C+change%5C+of%5C+light%5C+environment%2C%5C+C.%5C+flavum%5C+can%5C+respond%5C+sensitively%5C+to%5C+the%5C+change%5C+of%5C+light%5C+in%5C+leaf%5C+construction%5C+but%5C+the%5C+plasticity%5C+of%5C+leaf%5C+photosynthetic%5C+characteristics%5C+which%5C+developed%5C+from%5C+its%5C+own%5C+habitat%5C+can%5C+hold%5C+for%5C+the%5C+next%5C+growing%5C+season.%5C+In%5C+contrast%5C+to%5C+C.%5C+flavum%5C+and%5C+C.%5C+tibeticum%2C%5C+C.%5C+gutattum%5C+possesses%5C+a%5C+more%5C+economical%5C+and%5C+effective%5C+reproductive%5C+pattern%5C+which%5C+maybe%5C+related%5C+to%5C+its%5C+wider%5C+distribution.%5C+The%5C+study%5C+of%5C+the%5C+relationship%5C+between%5C+the%5C+two%5C+genera%2C%5C+the%5C+response%5C+and%5C+tolerance%5C+to%5C+the%5C+environmental%5C+factors%5C+of%5C+the%5C+two%5C+genera%5C+are%5C+important%5C+for%5C+understanding%5C+the%5C+adaptation%5C+and%5C+evolution%5C+of%5C+the%5C+Cypripedioideae."},{"jsname":"Plants in the genus of Pedicularis L. have high values in horticulture and some species are medicinal plants. However, they have a reputation for being uncultivable, which is an obstacle for their exploitation and utilization. In this dissertation, the hemiparasitism of Pedicularis species was studied systematically for the first time, and the successful cultivation of three Pedicularis species (Pedicularis densispica,Pedicularis cephalantha and Pedicularis rex) throughout all life stages was achieved for the first time. With several representative species as main study materials, a series of experiments on seed germination, vegetation survey in Pedicularis communities, and pot cultivation were carried out. We studied Pedicularis parasitic habit systematically and aimed to achieve progress in the cultivation of Pedicularis species based on the understanding of their parasitic habit. The main results are as follows:1. The dormancy showed by the tested Pedicularis species was non-deep physiological dormancy. Seed dormancy could be overcome by moist-chilling and GA3. Cold stratification for 30-60 days, or 500-1000 mg/L GA3 were the optimal treatments for germination percentage, and stratification for 15 days, or 1000 mg/L GA3 were the optimal treatments for mean germination time. The combination of cold stratification and GA3 were more effective measures to promote seed germination. The optimal germination conditions varied with species, while as a whole, the highest germination percentages were obtained from treatments of 500-1000 mg/L GA3 followed by 15-30 days stratification, and the lowest values of mean germination time were obtained from treatments of 100-1000mg/L GA3 followed by 15-day stratification. Seed germination was not the obstacle for the cultivation of Pedicularis species.2. Host range and host selectivity of a Pedicularis species were studied systematically for the first time. Examinations of haustorial connections revealed that P. densispica had a wide host range, and it can form haustorial connections on the roots of 33 species belonging to 14 families. Compositae (8 species), Gramineae (5 species) and Leguminosae (5 species) species comprised major hosts. In addition, self-parasitism was observed. Haustoria were non-randomly distributed among host species, suggesting that there was some host selectivity. P. densispica generally preferred species in the families of Gramineae and Cyperaceae. The results of association analysis and correlation analysis based on vegetation survey supported the result of examinations of haustorial connections. And correlation analysis was a better way to test host selectivity.3. This is the first report for the performance of Pedicularis species in cultivation throughout all life stages (from seeds to seeds). The high dependence of Pedicularis specieson host plants and their host preference were demonstrated in this study. Pedicularis speciesstrongly depended on host presence, while host plants were essential to Pedicularis speciesnot for survival but for proper development. Different Pedicularis species preferred to different hosts. Host defoliation was a useful promoting measure for the cultivation of Pedicularis species. Pedicularis species reduced the performance of host plants. With the assistance of hosts, three Pedicularis species were cultivated successfully and they retained high horticulture quality.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3APlants%5C+in%5C+the%5C+genus%5C+of%5C+Pedicularis%5C+L.%5C+have%5C+high%5C+values%5C+in%5C+horticulture%5C+and%5C+some%5C+species%5C+are%5C+medicinal%5C+plants.%5C+However%2C%5C+they%5C+have%5C+a%5C+reputation%5C+for%5C+being%5C+uncultivable%2C%5C+which%5C+is%5C+an%5C+obstacle%5C+for%5C+their%5C+exploitation%5C+and%5C+utilization.%5C+In%5C+this%5C+dissertation%2C%5C+the%5C+hemiparasitism%5C+of%5C+Pedicularis%5C+species%5C+was%5C+studied%5C+systematically%5C+for%5C+the%5C+first%5C+time%2C%5C+and%5C+the%5C+successful%5C+cultivation%5C+of%5C+three%5C+Pedicularis%5C+species%5C+%5C%28Pedicularis%5C+densispica%EF%BC%8CPedicularis%5C+cephalantha%5C+and%5C+Pedicularis%5C+rex%5C%29%5C+throughout%5C+all%5C+life%5C+stages%5C+was%5C+achieved%5C+for%5C+the%5C+first%5C+time.%5C+With%5C+several%5C+representative%5C+species%5C+as%5C+main%5C+study%5C+materials%2C%5C+a%5C+series%5C+of%5C+experiments%5C+on%5C+seed%5C+germination%2C%5C+vegetation%5C+survey%5C+in%5C+Pedicularis%5C+communities%2C%5C+and%5C+pot%5C+cultivation%5C+were%5C+carried%5C+out.%5C+We%5C+studied%5C+Pedicularis%5C+parasitic%5C+habit%5C+systematically%5C+and%5C+aimed%5C+to%5C+achieve%5C+progress%5C+in%5C+the%5C+cultivation%5C+of%5C+Pedicularis%5C+species%5C+based%5C+on%5C+the%5C+understanding%5C+of%5C+their%5C+parasitic%5C+habit.%5C+The%5C+main%5C+results%5C+are%5C+as%5C+follows%5C%3A1.%5C+The%5C+dormancy%5C+showed%5C+by%5C+the%5C+tested%5C+Pedicularis%5C+species%5C+was%5C+non%5C-deep%5C+physiological%5C+dormancy.%5C+Seed%5C+dormancy%5C+could%5C+be%5C+overcome%5C+by%5C+moist%5C-chilling%5C+and%5C+GA3.%5C+Cold%5C+stratification%5C+for%5C+30%5C-60%5C+days%2C%5C+or%5C+500%5C-1000%5C+mg%5C%2FL%5C+GA3%5C+were%5C+the%5C+optimal%5C+treatments%5C+for%5C+germination%5C+percentage%2C%5C+and%5C+stratification%5C+for%5C+15%5C+days%2C%5C+or%5C+1000%5C+mg%5C%2FL%5C+GA3%5C+were%5C+the%5C+optimal%5C+treatments%5C+for%5C+mean%5C+germination%5C+time.%5C+The%5C+combination%5C+of%5C+cold%5C+stratification%5C+and%5C+GA3%5C+were%5C+more%5C+effective%5C+measures%5C+to%5C+promote%5C+seed%5C+germination.%5C+The%5C+optimal%5C+germination%5C+conditions%5C+varied%5C+with%5C+species%2C%5C+while%5C+as%5C+a%5C+whole%2C%5C+the%5C+highest%5C+germination%5C+percentages%5C+were%5C+obtained%5C+from%5C+treatments%5C+of%5C+500%5C-1000%5C+mg%5C%2FL%5C+GA3%5C+followed%5C+by%5C+15%5C-30%5C+days%5C+stratification%2C%5C+and%5C+the%5C+lowest%5C+values%5C+of%5C+mean%5C+germination%5C+time%5C+were%5C+obtained%5C+from%5C+treatments%5C+of%5C+100%5C-1000mg%5C%2FL%5C+GA3%5C+followed%5C+by%5C+15%5C-day%5C+stratification.%5C+Seed%5C+germination%5C+was%5C+not%5C+the%5C+obstacle%5C+for%5C+the%5C+cultivation%5C+of%5C+Pedicularis%5C+species.2.%5C+Host%5C+range%5C+and%5C+host%5C+selectivity%5C+of%5C+a%5C+Pedicularis%5C+species%5C+were%5C+studied%5C+systematically%5C+for%5C+the%5C+first%5C+time.%5C+Examinations%5C+of%5C+haustorial%5C+connections%5C+revealed%5C+that%5C+P.%5C+densispica%5C+had%5C+a%5C+wide%5C+host%5C+range%2C%5C+and%5C+it%5C+can%5C+form%5C+haustorial%5C+connections%5C+on%5C+the%5C+roots%5C+of%5C+33%5C+species%5C+belonging%5C+to%5C+14%5C+families.%5C+Compositae%5C+%5C%288%5C+species%5C%29%2C%5C+Gramineae%5C+%5C%285%5C+species%5C%29%5C+and%5C+Leguminosae%5C+%5C%285%5C+species%5C%29%5C+species%5C+comprised%5C+major%5C+hosts.%5C+In%5C+addition%2C%5C+self%5C-parasitism%5C+was%5C+observed.%5C+Haustoria%5C+were%5C+non%5C-randomly%5C+distributed%5C+among%5C+host%5C+species%2C%5C+suggesting%5C+that%5C+there%5C+was%5C+some%5C+host%5C+selectivity.%5C+P.%5C+densispica%5C+generally%5C+preferred%5C+species%5C+in%5C+the%5C+families%5C+of%5C+Gramineae%5C+and%5C+Cyperaceae.%5C+The%5C+results%5C+of%5C+association%5C+analysis%5C+and%5C+correlation%5C+analysis%5C+based%5C+on%5C+vegetation%5C+survey%5C+supported%5C+the%5C+result%5C+of%5C+examinations%5C+of%5C+haustorial%5C+connections.%5C+And%5C+correlation%5C+analysis%5C+was%5C+a%5C+better%5C+way%5C+to%5C+test%5C+host%5C+selectivity.3.%5C+This%5C+is%5C+the%5C+first%5C+report%5C+for%5C+the%5C+performance%5C+of%5C+Pedicularis%5C+species%5C+in%5C+cultivation%5C+throughout%5C+all%5C+life%5C+stages%5C+%5C%28from%5C+seeds%5C+to%5C+seeds%5C%29.%5C+The%5C+high%5C+dependence%5C+of%5C+Pedicularis%5C+specieson%5C+host%5C+plants%5C+and%5C+their%5C+host%5C+preference%5C+were%5C+demonstrated%5C+in%5C+this%5C+study.%5C+Pedicularis%5C+speciesstrongly%5C+depended%5C+on%5C+host%5C+presence%2C%5C+while%5C+host%5C+plants%5C+were%5C+essential%5C+to%5C+Pedicularis%5C+speciesnot%5C+for%5C+survival%5C+but%5C+for%5C+proper%5C+development.%5C+Different%5C+Pedicularis%5C+species%5C+preferred%5C+to%5C+different%5C+hosts.%5C+Host%5C+defoliation%5C+was%5C+a%5C+useful%5C+promoting%5C+measure%5C+for%5C+the%5C+cultivation%5C+of%5C+Pedicularis%5C+species.%5C+Pedicularis%5C+species%5C+reduced%5C+the%5C+performance%5C+of%5C+host%5C+plants.%5C+With%5C+the%5C+assistance%5C+of%5C+hosts%2C%5C+three%5C+Pedicularis%5C+species%5C+were%5C+cultivated%5C+successfully%5C+and%5C+they%5C+retained%5C+high%5C+horticulture%5C+quality."},{"jsname":"Projects of International Cooperation and Exchanges, NSFC[41661144001]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3AProjects%5C+of%5C+International%5C+Cooperation%5C+and%5C+Exchanges%2C%5C+NSFC%5C%5B41661144001%5C%5D"},{"jsname":"Provincial Innovation Group for Farmland Non-pollution Production, Yunnan Agricultural University[2017HC015]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3AProvincial%5C+Innovation%5C+Group%5C+for%5C+Farmland%5C+Non%5C-pollution%5C+Production%2C%5C+Yunnan%5C+Agricultural%5C+University%5C%5B2017HC015%5C%5D"},{"jsname":"University of Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3AUniversity%5C+of%5C+Chinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"World Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3AWorld%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Yunnan Postdoctoral Science Foundation[Y732081261]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Biomass%2BAllocation&order=desc&&fq=dc.project.title_filter%3AYunnan%5C+Postdoctoral%5C+Science%5C+Foundation%5C%5BY732081261%5C%5D"},{"jsname":"lastIndexed","jscount":"2024-10-06"}],"Funding Project","dc.project.title_filter")'>
1ncarville... [1]
Chinese Ac... [1]
Environmen... [1]
Federal Mi... [1]
Fundamenta... [1]
GIZ/BMZ on... [1]
More...
Indexed By
SCI [76]
CSCD [10]
SSCI [6]
Funding Organization
31470321 [2]
Chinese Ac... [2]
German Fed... [2]
2015FB172) [1]
31070337) [1]
31270005) [1]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 257
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:262/4
  |  
Submit date:2017/07/19
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:194/1
  |  
Submit date:2017/07/19
Outlook for advanced biofuels
期刊论文
Energy Policy, 3111, 期号: 0
Authors:
Carlo N Hamelinck
;
AndreP.C. Faaij
Adobe PDF(437Kb)
  |  
Favorite
  |  
View/Download:163/1
  |  
Submit date:2017/07/24
Prospects
Well-to-wheel
Data Analysisin Vegetation Ecology
期刊论文
出版物, 3111, 期号: 0, 页码: 1-297
Authors:
Otto Wildi
Adobe PDF(3432Kb)
  |  
Favorite
  |  
View/Download:175/2
  |  
Submit date:2017/07/24
Trajectories of soil microbial recovery in response to restoration strategies in one of the largest and oldest open-pit phosphate mine in Asia
期刊论文
ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 卷号: 262, 页码: 115215
Authors:
Yan,Kai
;
Luo,Ya-Huang
;
Li,Yun-Ju
;
Du,Ling-Pan
;
Gui,Heng
;
Chen,Si-Chong
View
  |  
Adobe PDF(3168Kb)
  |  
Favorite
  |  
View/Download:36/12
  |  
Submit date:2024/07/22
Dianchi basin
Hierarchical bayesian model
Microbial function
Open-pit phosphate mine reclamation
Restoration strategies
Scenario analysis
BACTERIAL COMMUNITY
FUNGAL COMMUNITIES
BIOMASS
CHINA
STOICHIOMETRY
Quantifying the nitrogen allocation and resorption for an orchid pseudobulb in relation to nitrogen supply
期刊论文
SCIENTIA HORTICULTURAE, 2022, 卷号: 291, 页码: 110580
Authors:
Zhang,Wei
;
Zhang,Shi-Bao
;
Fan,Ze-Xin
Favorite
  |  
View/Download:136/0
  |  
Submit date:2022/04/02
Pleione
Nitrogen addition
Hysteranthous
Reproductive cost
Epiphytic plant
Isotope labeling
NUTRIENT RESORPTION
EPIPHYTIC ORCHIDS
SENESCING LEAVES
FRUIT PRODUCTION
GROWTH
PATTERNS
EFFICIENCY
BIOMASS
CARBON
PLANTS
墨兰(Cymbidium sinense)对氮供应量的生理及生长响应
学位论文
, 2021
Authors:
李志雄
Adobe PDF(3201Kb)
  |  
Favorite
  |  
View/Download:64/0
  |  
Submit date:2024/03/20
Diversity increases yield but reduces harvest index in crop mixtures
期刊论文
nature plants, 2021
Authors:
Jianguo Chen
Adobe PDF(7506Kb)
  |  
Favorite
  |  
View/Download:401/115
  |  
Submit date:2021/08/23
Diversity increases yield but reduces harvest index in crop mixtures
期刊论文
NATURE PLANTS, 2021, 卷号: 7, 期号: 7, 页码: 893+
Authors:
Chen,Jianguo
;
Engbersen,Nadine
;
Stefan,Laura
;
Schmid,Bernhard
;
Sun,Hang
;
Schob,Christian
View
  |  
Adobe PDF(7463Kb)
  |  
Favorite
  |  
View/Download:222/66
  |  
Submit date:2022/04/02
REPRODUCTIVE ALLOCATION
PLANT DIVERSITY
FUNCTIONAL TRAITS
PRODUCTIVITY
PLASTICITY
ALLOMETRY
COMPLEMENTARITY
VARIABILITY
MAIZE
LONG
Combined transcriptomic, proteomic and biochemical approaches to identify the cadmium hyper-tolerance mechanism of turnip seedling leaves
期刊论文
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 卷号: 28, 期号: 18, 页码: 22458-22473
Authors:
Li,Xiong
;
Chen,Di
;
Li,Boqun
;
Yang,Ya
;
Yang,Yongping
View
  |  
Adobe PDF(2377Kb)
  |  
Favorite
  |  
View/Download:165/8
  |  
Submit date:2022/04/02
Turnip
Cadmium
Hyperaccumulator
Flavonoid
Acetylation
RNA-SEQ DATA
GENOME-WIDE IDENTIFICATION
GLUTATHIONE METABOLISM
SULFUR ASSIMILATION
GENE FAMILIES
STRESS
EFFLUX
ZINC
ACCUMULATION
PROTEIN