中国科学院昆明植物研究所机构知识库
Advanced  
KIB OpenIR  > 昆明植物所硕博研究生毕业学位论文  > 学位论文
题名: 云南、贵州吉祥草化学成分研究
作者: 张重权
学位类别: 博士
答辩日期: 2007-01-19
授予单位: 中国科学院昆明植物研究所
授予地点: 昆明植物研究所
导师: 邱明华
关键词: 吉祥草 ; 化学成分 ; 甾体
学位专业: 植物学
中文摘要: 本论文主要研究了吉祥草Reineckia carnea (Andr.) KUNTH (Liliaceae) 的化学成分。吉祥草是一种多年生常绿草本植物,为中国和日本所特有, 是我国苗族人民常用的一种重要中草药。论文第一章回顾了吉祥草在过去五十年的研究历史;第二章为采自云南丽江的吉祥草化学成分的研究;第三章研究了采自贵州桐梓的吉祥草的化学成分;最后一章综述了植物雌激素的分类、鉴定、生物活性机理及部分含有植物雌激素类化合物的植物种类,同时论述了植物雌激素类化合物对乳腺癌、前列腺癌、心血管疾病、更年期综合症和骨质疏松症的药理作用。 第一章 过去五十年对吉祥草化学成分的研究 回顾了对吉祥草化学成分的研究历史,列出了过去五十年人们从其中分离得到的27个化合物 (包括4个人工产物)。 第二章 对采自云南丽江的吉祥草的化学成分的研究 吉祥草 Reineckia carnea (Andr.) KUNTH 为百合科(Liliaceae)吉祥草属(Reineckia),该属为单种属, 吉祥草为中国和日本所特有。吉祥草的全草可用于治疗咳嗽、风湿性关节炎、止血及扭伤。吉祥草是我国苗族人民常用的一种中药,是许多苗族药方中的主要成分。但是,目前我国还没有吉祥草化学成分研究的报道。我们对采自云南丽江的吉祥草进行研究,从中分离鉴定了48个化合物, 其中16个为新的,包括1个新的具有独特 1β,3β,17α-三羟基取代的螺甾苷元和该螺甾烷的单糖苷及双糖苷。首次从中分得3个黄酮苷类化合物、2个鞘糖脂类化合物、4个芳香类化合物,其中2个为较少见的pseudofurostanol 型甾体皂苷,1个少见的 C-5′ 甲氧基、C-6′甲基、C-7、C-4′ 连糖的黄酮苷及2个新的 cholestane bisdesmosidic 型甾体皂苷。 第三章 对采自贵州桐梓的吉祥草的化学成分的研究 吉祥草在我国分布于云南、贵州、江苏、浙江、安徽、湖南、广东、广西等省。几种贵州产的以吉祥草为重要成分的中药, 其原料主要来自贵州。对采自贵州桐梓的吉祥草的化学成分进行研究, 我们从中分离得到44个化合物, 19个新的,其中2个较少见的孕甾烷甾体皂苷和1个较少见的 bisdesmosidic pseudofurostanol 型皂苷,为丽江吉祥草中没有分到的。 第四章 总 结 总结了本研究的意义:  从吉祥草Reineckia carnea (Andr.) Kunth (Liliaceae)中分离得到55个化合物, 其中19个为新化合物。  作为一种重要的中药,国内至今还没有有关吉祥草化学成分的研究报道;目前所有有关吉祥草化学成分的SCI文献都是日本学者的研究结果。我们对其化学成分进行研究非常必要和及时。  在过去50年里,日本学者共从吉祥草中分离得到27个化合物,包括4个人工产物,全部都是甾体。现在,我们首次从其中分离得到黄酮(3个)、鞘糖脂(2个)以及芳环类(6个)等三种类型的化合物。  首次从吉祥草中分离得到3个较少见的新的bisdesmosidic pseudofurostanol 型甾体皂苷和2个较少见新的pregnane 型甾体皂苷。  首次从中分得1个少见的C-5′ 甲氧基、C-6′甲基、C-7、C-4′ 连糖的黄酮苷。  从吉祥草中分离得到1个新的 C-27 螺甾烷苷元和该螺甾烷的单糖苷及双糖苷。  以前的研究从吉祥草中只分得一个cholestane bisdesmoside型甾体皂苷,现在,我们从中分离得到三个这种类型的甾体皂苷和相应的苷元,该苷元为首次从植物界分离得到。  该属植物中得到的三种新类型的化合物:黄酮、鞘糖脂以及芳环等类型的化合物都有重要的不同于甾体的生物活性,这有助于更好的解释吉祥草的药用功能。  吉祥草的主要化学成分再次被证明为甾体类化合物,且以A/B环顺式(5β)1β,3β-羟基取代或者多羟基取代的甾体皂苷为主,这种类型的甾体皂苷也是Rohdea, Tupistra, Convallaria, Aspidistra, Liriope 及 Ophiopogon等属植物中的常见成分。这为吉祥草与上述各属的近缘关系提供了化学分类学依据。  吉祥草作为一种重要中药,建立其HPLC指纹图谱并准确指认各主要峰非常重要,这有利于吉祥草药材中药标准的建立和中药现代化。我们的研究为其HPLC指纹图谱的建立提供了坚实的基础。  我们的研究结果将人们对吉祥草化学成分的认识提到一个新的高度,这将有利于人们更好地认识其药理作用和更好的利用吉祥草资源。 第五章 甾体类化合物的化学分类学意义、活性及构效关系 分析了甾体类化合物的化学分类学意义、活性及构效关系。 第四章 综 述 本章综述了植物雌激素的分类、鉴定、生物活性机理及部分含有植物雌激素类化合物的植物种类,同时论述了植物雌激素类化合物对乳腺癌、前列腺癌、心血管疾病、更年期综合症和骨质疏松症的药理作用。
英文摘要: This dissertation focused on the chemical constituents of Reineckia carnea (Andr.) KUNTH (Liliaceae), a perennial ever-green herb indigenous to China and Japan. Chapter 1 retrospected the studies on R. carnea in the past 50 years. In the second chapter, we described the isolation and identification of the chemical constituents of R. carnea collected in Yunnan Province. The third chapter studied the secondary metabolites of R. carnea gathered from Guizhou Province. The last chapter reviewed the classification of phytoestrogens, methods of identification, their proposed mechanisms of action and botanical sources for phytoestrogens. The effects of phytoestrogens on breast and prostate cancers, cardiovascular disease, menopausal symptoms and osteoporosis will also be examined including research on benefits and risks. Chapter 1. Studies on R. carnea in the Past 50 Years: A Retrospect Retrospected the studies on R. carnea in the past 50 years, 27 compounds including 4 artificial compounds were presented. Chapter 2. Investigation on Chemical Constituents of R. carnea (Andr.) Kunth Collected in Yunnan Province R. carnea (Andr.) KUNTH, the only species of the genus Reineckia (Liliaceae), is indigenous to China and Japan. The whole plant has been used as an antitussive, an antarthritic, a hemostatic, and an antitode in traditional Chinese medicine. As a major ingredient of many medical prescriptions, R. carnea is one of the most important traditional Chinese medicines of Miao Minority. In our present study, 48 compounds were isolated and identified including 16 new compounds. Among them, compound 18 was a novel flavanone featured a methoxyl and a methyl attached on C-5′ and C-6′, respectively. (1) reineckiagenin A 25(R)-5β-spirostan-1β,3β,17α-triol (2) reineckiagenoside A 25(R)-5β-spirostan-1β,3β,17α-triol 1-O-β-D-xylopyranoside (3) reineckiagenoside B 25(S)-5β-spirostan-1β,3β,17α-trio 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside (4) 25(S)-5β-spirostan-1β,3β-diol 1-O-β-D-xylopyranoside (5) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-fucopyranoside (6) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl-(1→2)- β-D-xylopyranoside (7) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol (8) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1,16-di-O-β-D-glucopyrannoside (9) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-α-L-rhamnopyranosyl-(1→2)-β-D- glucopyranoside 16-O-β-D-glucopyranoside (10) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-β-D-glucopyranoside 16-O- (3-O-acetyl)-β-D-glucopyranoside (11) (25S)-spirost-5-ene-3β-ol (diosgenin) 3-O-{O-β-D-glucopyranosyl-(1→2)-O- [β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D- galactopyranoside (12) (25R)-26-O-β- D-glucopyranosyl 22-hydroxy-furost-5-ene-3β,26-diol 3-O-{O-β- D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl- (1→4)-β-D-galactopyranoside (proto-aspidistrin) (13) (25R)-26-[(β-D-glucopyranosyl)oxy]-furost-5,20(22)-dien-3β-yl O-{O-β-D- glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl- (1→4)-β-D-galactopyranoside (14) (25R)-26-[(β-D-glucopyranosyl)oxy]-furost-20(22)-en-1β,2β,3β,4β,5β,6β-hexol (15) 26-O-β-D-glucopyranosyl-25(R)-5β-furostan-1β,2β,3β,4β,5β,22ξ,26-heptol (16) 4′,5,7-trihydroxy-5′-methoxy-flavonol 7-O-α- L -rhamnopyranosyl- (1→6)-β-D-glucopyranoside (17) tricetin-7-O-α- L -rhamnopyranosyl-(1→6)-β-D-glucopyranoside (18)4′,5,7-trihydroxy-6′-methyl-5′-methoxy-flavanone 7-O-α- L -rhamnopyranoside 4′-O-β- D -glucopyranosyl-(1→2)-β- D -xylopyranoside (19) 25(S)-5β-spirostan-1β,3β,4β,5β-tetrol (kitigenin) 5-O-β-D-glucopyranoside (20) 2-(3-hydroxy-5-methoxyphenyl)-3-hyroxymethyl-7-methoxyl- 5-propenalbenzofuran (22) 25(R)-5β-spirostan-1β,2β,3β,4β,5β-pentol (23) 25(S)-5β-spirostan-1β,2β,3β,4β,5β-pentol (24) 25(R)-5β-spirostan-1β,2β,3β,4β,5β,6β-hexol (25) 25(S)-5β-spirostan-1β,2β,3β,4β,5β,6β-hexol (26) 25(R)-5β-spirostan-1β,2β,3β,4β,5β-pentol 5-O-β-D-glucopyranoside (27) 25(S)-5β-spirostan-1β,2β,3β,4β,5β-pentol 5-O-β-D-glucopyranoside (28) (25R)-26-O-β- D -glucopyranosyl 22-methoxy-furostan- 1β,2β,3β,4β,5β,26-hexol 5-O-β-D-glucopyranoside (29) 25(R)-5β-spirostan-1β,3β,4β,5β-tetrol 5-O-β-D-glucopyranoside (30) (25R)-26-O-β-D-glucopyranosyl 22-methoxy-furostan-1β,3β,4β,5β,26-pentol 5-O-β-D-glucopyranoside (31) β-sitosterol (32) stigma-5-en-3-O-β-D-glucopyranoside (33) stigmasterol (34) stigmasterol 3-O-β-D-glucopyranoside (35) 25(R)-5β-spirostan-1β,3β-diol (36) 25(R)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside (37) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside 3-O-α- L -rhamnopyranoside (38) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside 3-O-α- L -rhamnopyranoside (39) 25(R)-5β-spirostan-1β,3β-diol 1-O-β-D-fucopyranoside (40) 25(S)-5β-spirostan-1β,3β-diol 1-O-β-D-fucopyranoside (41) 25(R)-spirost-5-ene-3β-ol (42) (25R)-26-O-β- D-glucopyranosyl 22-methoxy-furost-5-ene-3β,26-diol (43) 25(S)-spirost-5-ene-1β,3β-diol 3-O-β-D-glucopyranoside (44) 1-(but-2-ynyl)-3-methoxy-5-methylbenzene (45) 2-allylbenzene-1,4-diol (46) 4-(3-hydroxy-5-methoxyphenethyl)-2-methoxyphenol (47) (2S,3R,4E,8E,10E, 2′R)-1-O-- D -glucopyranosyl-2- (2′-hydroxypalmitoyl)-amino-4,8,10-pentadecadien-1,3-diol (48) (2S,3R,4E,8E, 2′R)-1-O-- D -glucopyranosyl-2- (2′-hydroxypalmitoyl)-amino-4,8-hexadecadien-1,3-diol Chapter 3. Studies on the Secondary Metabolites of R. carnea Gathered from Guizhou Province. Reineckia carnea (Andr.) Kunth, a perennial ever-green herb, distributed in the provinces of Yunnan, Guizhou, Jiangsu, Zhejiang, Jiangxi, Anhui, Hunan, Guangdong, Guangxi, etc. It was most frequently used by the people in Guizhou Province and the raw medicinal material of R. carnea in the medicinal formula was mainly from Guizhou Province. The former investigation by us resulted dozens of compounds that are new or for the first time to be isolated from this plant, which prompted us to further investigate the chemical constituents of R. carnea collected from Guizhou province. This lead to the isolation of 44 compounds including 3 new ones (1, 2, 43). The structures of new compounds were determined on extensive analysis of the spectrum and chemical methods, while the known ones were identified by careful TLC comparison with authentic samples. (1) 5β-pregna-16-en-20-one-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside (2) 1-O-[α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosyl]-26-O- 20,22-seco-25(R)- furosta-20,22-dione-1β,3β,26-triol. or 5β-16β-O-(4-methylidene-5-O-β-D-glucopyranosylpentanoyl) pregn-1β,3β,16β-triol-20-one 1-O-[α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranosided. (3) (25R)-26-[(β-D-glucopyranosyl)oxy]-furost-20(22)-en-1β,2β,3β,4β,5β,6β-hexol (4) 25(R)-5β-spirostan-1β,2β,3β,4β,5β-pentol (5) 25(S)-5β-spirostan-1β,2β,3β,4β,5β-pentol (6) 26-O-β-D-glucopyranosyl-25(R)-5β-furostan-1β,2β,3β,4β,5β,22ξ,26-heptol (7) 25(R)-5β-spirostan-1β,2β,3β,4β,5β-pentol 5-O-β-D-glucopyranoside (8) 25(S)-5β-spirostan-1β,2β,3β,4β,5β-pentol 5-O-β-D-glucopyranoside (9) 25(R)-5β-spirostan-1β,2β,3β,4β,5β,6β-hexol (10) 25(S)-5β-spirostan-1β,2β,3β,4β,5β,6β-hexol (11) 25(R)-spirost-5-ene-3β-ol (12) (25S)-spirost-5-ene-3β-ol (diosgenin) 3-O-{O-β-D-glucopyranosyl-(1→2)-O- [β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D- galactopyranoside (13) (25R)-26-O-β-D-glucopyranosyl 22-hydroxy-furost-5-ene-3β,26-diol 3-O- {O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D- glucopyranosyl-(1→4)-β- D -galactopyranoside (proto-aspidistrin) (14) (25R)-26-O-β- D -glucopyranosyl 22-methoxyl-furost-5-ene-3β,26-diol 3-O- {O-β- D -glucopyranosyl-(1→2)-O-[β- D -xylopyranosyl-(1→3)]-O-β- D - glucopyranosyl-(1→4)-β- D -galactopyranoside (methyl proto-aspidistrin) (15) β-sitosterol (16) stigma-5-en-3-O-β-D-glucopyranoside (17) stigmasterol (18) stigmasterol 3-O-β-D-glucopyranoside (19) (25R)-26-O-β- D -glucopyranosyl 22-methoxy-furost-5-ene-3β,26-diol (20) 25(S)-spirost-5-ene-3β-ol 3-O-β-D-glucopyranoside (21) 25(R)-5β-spirostan-1β,3β-diol (22) 25(R)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl-(1→2)- β-D-xylopyranoside (23) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl- (1→2)-β-D-xylopyranoside (24) 25(S)-5β-spirostan-1β,3β-diol 1-O-β-D-xylopyranoside (25) (25R)-26-O-β- D -glucopyranosyl 22-methoxyl-furost -3β,26-diol 1-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (26) (25R)-26-O-β- D -glucopyranosyl 22-methoxyl-furost -3β,26-diol 1-O-α-L-rhamnopyranoside (27) 25(R)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl-(1→2)- β-D-xylopyranoside 3-O-α- L -rhamnopyranoside (28) 25(S)-5β-spirostan-1β,3β-diol 1-O-α-L-rhamnopyranosyl-(1→2)-β-D- xylopyranoside 3-O-α- L -rhamnopyranoside (29) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol (30) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1,16-di-O-β-D-glucopyrannoside (31) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-α-L-rhamnopyranosyl-(1→2)- β-D-glucopyranoside 16-O-β-D-glucopyranoside (32) (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-β-D-glucopyranoside 16-O- (3-O-acetyl)-β-D-glucopyranoside (33) 4′,5,7-trihydroxy-5′-methoxy-flavonol 7-O-α- L -rhamnopyranosyl-(1→6)-β-D- glucopyranoside (34) tricetin-7-O-α- L -rhamnopyranosyl-(1→6)-β-D-glucopyranoside (35) 4′,5,7-trihydroxy-6′-methyl-5′-methoxy-flavanone 7-O-α-L-rhamnopyranoside 4′-O-β-D-glucopyranosyl-(1→2)-β- D -xylopyranoside (36) (2S,3R,4E,8E,10E, 2′R)-1-O-- D -glucopyranosyl-2- (2′-hydroxypalmitoyl)-amino-4,8,10-pentadecadien-1,3-diol (37) (2S,3R,4E,8E, 2′R)-1-O-- D -glucopyranosyl-2- (2′-hydroxypalmitoyl)-amino-4,8-hexadecadien-1,3-diol (38) 25(R)-5β-spirostan-1β,,3β,4β,6β-tetrol (39) 25(S)-5β-spirostan-1β,,3β,4β,6β-tetrol (40) (25R)-26-O-β-D-glucopyranosyl 22-hydroxy-furost-5-ene-3β,26-diol 3-O-β-D- xylopyranosyl-(1→3)-β-D-glucopyranoside (41) Cimidahurinine (4-(2-hydroxyethyl)-1,2-benzenediol-2-O-β-D-glucopyranoside) (42) caffeic acid ester (43) 2-(2-ethyl-3-hydroxyphenethoxy)-2,5-bis(hydroxymethyl)-tetrahydrofuran-3,4- diol (44) 5-((3,4-dihydroxy-2,5-bis(hydroxymethyl)-tetrahydrofuran-2-yloxy)methyl)-2- (hydroxymethyl)-tetrahydrofuran-2,3,4-triol Chapter 4. Conclusion  Phytochemical investigation on Reineckia carnea (Andr.) Kunth (Liliaceae) resulted 55 compounds, including 19 new ones.  As an important traditional Chinese medicine, there has been no published papers dealt with chemical constituents of R. carnea in China, all the SCI papers were solely published by Japanese. Research on the chemical constituents is of significance. Our research carried out at the right time.  Three types of compounds: flavonoids, glycosphingolipids, and aromatic were first obtained from the genus Reineckia. Only steroidal sapogenins and steroidal saponins were found in the genus Reineckia in the past 50 years.  Three new bisdesmosidic pseudofurostanol saponins and two new pregnane glycosides were isolated. This was the first time to get bisdesmosidic pseudofurostanol saponins and pregnane glycosides from the genus Reineckia.  Only one cholestane bisdesmoside was found in the genus Reineckia in the past, now, we got another three cholestane bisdesmosides and the corresponding aglycone from this plant, two of which were new compounds, while the aglycone was isolated from a natural source for the first time.  Three types of compounds: flavonoids, glycosphingolipids, and aromatic were known to possess important bioactivities different from steroids, this would lead to better understanding the medicinal effects of the plant as a traditional Chinese medicine.  The main constituents of Reineckia was again proved to be steroids and the 5β-spirostane with 1β,3β hydroxyls or polyhydroxyls were the most frequently encounted spirostanes, which are also the common type of compounds in the genera Rohdea, Tupistra, Convallaria, Aspidistra, Liriope and Ophiopogon, this gave chemical evidence for the chemotaxonomy of the family liliaceae.  To construct the HPLC fingerprint of the medicinal plants and to identify the main peaks corresponding to the bioactive constituents are of important during the course of modernization the traditional Chinese medicine, our study provided stable basis to construct a clear HPLC fingerprint for R. carnea.  Detailed information of chemical constituents in R. carnea were known in our study which would be of great help in better understanding the medicinal effect of the plant.  All the results will prompt better utilization of the resource of R. carnea and accalerate the modernization of the formula containing R. carnea. Chapter 5. A general survry on chemotaxonomic significance, bioactivity, and bioactivity-structure relationship of steroids Chapter 6. Review Reviewed the classification of phytoestrogens, methods of identification, their proposed mechanisms of action and botanical sources for phytoestrogens. The effects of phytoestrogens on breast and prostate cancers, cardiovascular disease, menopausal symptoms and osteoporosis will also be examined including research on benefits and risks.
语种: 中文
内容类型: 学位论文
URI标识: http://ir.kib.ac.cn/handle/151853/84
Appears in Collections:昆明植物所硕博研究生毕业学位论文_学位论文

Files in This Item:
File Name/ File Size Content Type Version Access License
10001_200318010602055张重权_paper.doc(23002KB)----限制开放-- 联系获取全文

Recommended Citation:
云南、贵州吉祥草化学成分研究.张重权[d].中国科学院昆明植物研究所,2007.20-25
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[张重权]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[张重权]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院昆明植物研究所 - Feedback
Powered by CSpace