Knowledge Management System of Kunming Institute of Botany,CAS
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis | |
Zhou, Yanli; Zhang, Jingling; Zhao, Changhong; Long, Guangqiang; Zhou, Chengli; Sun, Xudong; Yang, Yunqiang; Zhang, Chengjun; Yang, Yongping | |
2022 | |
发表期刊 | CURRENT ISSUES IN MOLECULAR BIOLOGY |
卷号 | 44期号:11页码:5579-5592 |
摘要 | Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters. |
关键词 | calcineurin B-like protein cold tolerance Stipa capillacea transcriptome tonoplast CALCIUM SENSOR GENE-EXPRESSION MONOSACCHARIDE TRANSPORTER STRESS TOLERANCE ABIOTIC STRESS DROUGHT ACCLIMATION PROTEINS PHOSPHORYLATION OVEREXPRESSION |
DOI | 10.3390/cimb44110378 |
收录类别 | SCI |
WOS记录号 | WOS:000883432600001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.kib.ac.cn/handle/151853/74699 |
专题 | 中国科学院昆明植物研究所 |
推荐引用方式 GB/T 7714 | Zhou, Yanli,Zhang, Jingling,Zhao, Changhong,et al. Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis[J]. CURRENT ISSUES IN MOLECULAR BIOLOGY,2022,44(11):5579-5592. |
APA | Zhou, Yanli.,Zhang, Jingling.,Zhao, Changhong.,Long, Guangqiang.,Zhou, Chengli.,...&Yang, Yongping.(2022).Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis.CURRENT ISSUES IN MOLECULAR BIOLOGY,44(11),5579-5592. |
MLA | Zhou, Yanli,et al."Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis".CURRENT ISSUES IN MOLECULAR BIOLOGY 44.11(2022):5579-5592. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
10.3390_cimb44110378(3371KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论