Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures
Li, Xing1,2; Luo, Huan1; Huang, Tao1,2; Xu, Li1,2; Shi, Xiaohuo1; Hu, Kaifeng1,3
通讯作者Hu, Kaifeng(kaifenghu@mail.kib.ac.cn)
2019-03-01
发表期刊ANALYTICAL AND BIOANALYTICAL CHEMISTRY
ISSN1618-2642
卷号411期号:7页码:1301-1309
摘要NMR and LC-MS are two powerful techniques for metabolomics studies. In NMR spectra and LC-MS data collected on a series of metabolite mixtures, signals of the same individual metabolite are quantitatively correlated, based on the fact that NMR and LC-MS signals are derived from the same metabolite covary. Deconvoluting NMR spectra and LC-MS data of the mixtures through this kind of statistical correlation, NMR and LC-MS spectra of individual metabolites can be obtained as if the specific metabolite is virtually isolated from the mixture. Integrating NMR and LC-MS spectra, more abundant and orthogonal information on the same compound can significantly facilitate the identification of individual metabolites in the mixture. This strategy was demonstrated by deconvoluting 1D C-13, DEPT, HSQC, TOCSY, and LC-MS spectra acquired on 10 mixtures consisting of 6 typical metabolites with varying concentration. Based on statistical correlation analysis, NMR and LC-MS signals of individual metabolites in the mixtures can be extracted as if their spectra are acquired on the purified metabolite, which notably facilitates structure identification. Statistically correlating NMR spectra and LC-MS data (CoNaM) may represent a novel approach to identification of individual compounds in a mixture. The success of this strategy on the synthetic metabolite mixtures encourages application of the proposed strategy of CoNaM to biological samples (such as serum and cell extracts) in metabolomics studies to facilitate identification of potential biomarkers.
关键词Deconvolution LC-MS NMR Statistical correlation Structure identification
DOI10.1007/s00216-019-01600-z
收录类别SCI
语种英语
WOS记录号WOS:000463593300001
引用统计
文献类型期刊论文
条目标识符http://ir.kib.ac.cn/handle/151853/67625
专题植物化学与西部植物资源持续利用国家重点实验室
通讯作者Hu, Kaifeng
作者单位1.Chinese Acad Sci, Kunming Inst Bot, State Key Lab Phytochem & Plant Resources West Ch, 132 Lanhei Rd, Kunming 650201, Yunnan, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chengdu Univ TCM, Innovat Inst Chinese Med & Pharm, Chengdu 611137, Sichuan, Peoples R China
推荐引用方式
GB/T 7714
Li, Xing,Luo, Huan,Huang, Tao,et al. Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures[J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY,2019,411(7):1301-1309.
APA Li, Xing,Luo, Huan,Huang, Tao,Xu, Li,Shi, Xiaohuo,&Hu, Kaifeng.(2019).Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures.ANALYTICAL AND BIOANALYTICAL CHEMISTRY,411(7),1301-1309.
MLA Li, Xing,et al."Statistically correlating NMR spectra and LC-MS data to facilitate the identification of individual metabolites in metabolomics mixtures".ANALYTICAL AND BIOANALYTICAL CHEMISTRY 411.7(2019):1301-1309.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Li-2019-Statisticall(1588KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xing]的文章
[Luo, Huan]的文章
[Huang, Tao]的文章
百度学术
百度学术中相似的文章
[Li, Xing]的文章
[Luo, Huan]的文章
[Huang, Tao]的文章
必应学术
必应学术中相似的文章
[Li, Xing]的文章
[Luo, Huan]的文章
[Huang, Tao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Li-2019-Statistically correlating NMR spectra.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。