Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco | |
Huang,Wei; Zhang,Shi-Bao; Hu,Hong; Huang,W (reprint author),Chinese Acad Sci,Inst Bot,Key Lab Econ Plants & Biotechnol,132 Lanhei Rd,Kunming 650201,Yunnan,Peoples R China.; huangwei@mail.kib.ac.cn | |
2014 | |
发表期刊 | FRONTIERS IN PLANT SCIENCE |
卷号 | 5页码:688 |
摘要 | The greater rate of CO2 assimilation (A(n)) in sun-grown tobacco leaves leads to lower intercellular and chloroplast CO2 concentrations and, thus, a higher rate of oxygenation of ribulose-1,5-bisphosphate (RuBP) than in shade-grown leaves. Impairment of the photorespiratory pathway suppresses photosynthetic CO2 assimilation. Here, we hypothesized that sun leaves can up-regulate photorespiratory pathway to enhance the A(n) in tobacco. To test this hypothesis, we examined the responses of photosynthetic electron flow (J(T)) and CO2 assimilation to incident light intensity and intercellular CO2 concentration (CO in leaves of 'k326' tobacco plants grown at 95% sunlight (sun plants) or 28% sunlight (shade plants). The sun leaves had higher photosynthetic capacity and electron flow devoted to RuBP carboxylation (Jo) than the shade leaves. When exposed to high light, the higher Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and lower C-i in the sun leaves led to greater electron flow devoted to RuBP oxygenation (J(o)). The J(o)/J(C) ratio was significantly higher in the sun leaves than in the shade leaves under strong illumination. As estimated from CO2-response curves, the maximum J(o) was linearly correlated with the estimated Rubisco content. Based on light-response curves, the light-saturated J(o) was linearly correlated with light-saturated J(T) and light-saturated photosynthesis. These findings indicate that enhancement of the photorespiratory pathway is an important strategy by which sun plants maintain a high A(n). |
关键词 | Co2 Assimilation Light Acclimation Photorespiratory Pathway Rubp Carboxylation Rubp Regeneration |
学科领域 | Plant Sciences |
DOI | 10.3389/fpls.2014.00688 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000347699900001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.kib.ac.cn/handle/151853/19365 |
专题 | 资源植物与生物技术所级重点实验室 |
通讯作者 | Huang,W (reprint author),Chinese Acad Sci,Inst Bot,Key Lab Econ Plants & Biotechnol,132 Lanhei Rd,Kunming 650201,Yunnan,Peoples R China.; huangwei@mail.kib.ac.cn |
推荐引用方式 GB/T 7714 | Huang,Wei,Zhang,Shi-Bao,Hu,Hong,et al. Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco[J]. FRONTIERS IN PLANT SCIENCE,2014,5:688. |
APA | Huang,Wei,Zhang,Shi-Bao,Hu,Hong,Huang,W ,&huangwei@mail.kib.ac.cn.(2014).Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco.FRONTIERS IN PLANT SCIENCE,5,688. |
MLA | Huang,Wei,et al."Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco".FRONTIERS IN PLANT SCIENCE 5(2014):688. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Huang-2014-Sun leave(2331KB) | 开放获取 | CC BY-NC-ND | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论