Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field | |
Zhang, Wei1,2; Huang, Wei1; Yang, Qiu-Yun1; Zhang, Shi-Bao1; Hu, Hong1 | |
通讯作者 | Zhang, SB (reprint author), Chinese Acad Sci, Kunming Inst Bot, Key Lab Econ Plants & Biotechnol, Kunming 650201, Yunnan, Peoples R China. ; sbzhang@mail.kib.ac.cn ; huhong@mail.kib.ac.cn |
2013-09-01 | |
发表期刊 | PHYSIOLOGIA PLANTARUM |
ISSN | 0031-9317 |
卷号 | 149期号:1页码:141-150 |
摘要 | Photorespiration has been indicated as an important mechanism for maintaining CO2 assimilation and alleviating photodamage under conditions of high light and low CO2. We tested the hypothesis that plants grown under a high temperature had greater electron flow for photorespiration compared with those grown under a relative low temperature. Responses of photosynthetic electron flow and CO2 assimilation to incident light intensity and intercellular CO2 concentration were examined in leaves of tobacco cultivar k326'. Plants were cultivated at three sites with different ambient temperatures (Zhengzhou, Zunyi and Jiangchuan). Under high light, plants grown in Zhengzhou (with the highest growth temperature in the three sites) showed higher effective quantum yield of photosystem II and total electron flow through photosystem II than that in Zunyi and Jiangchuan. However, regardless of light intensity and intercellular CO2 status, there were no significant differences among sites in the photosynthetic CO2 assimilation rate or electron flow devoted to the carboxylation of ribulose-1,5-bisphosphate (RuBP). As a result, plants grown at high temperature showed higher electron flow devoted to oxygenation of RuBP than plants grown at low temperature. These results suggested that enhancement of electron flow for photorespiration is an important strategy in tobacco for acclimating to high growth temperature. |
关键词 | Chloroplast Dicarboxylate Transport Gas-exchange Measurements Photosystem-ii Chlorophyll Fluorescence Energy-dissipation Reduced Activities Oxidative Stress Co2 Assimilation Calvin Cycle D1 Protein |
学科领域 | Plant Sciences |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000323157900012 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.kib.ac.cn/handle/151853/16831 |
专题 | 资源植物与生物技术所级重点实验室 |
作者单位 | 1.Chinese Acad Sci, Kunming Inst Bot, Key Lab Econ Plants & Biotechnol, Kunming 650201, Yunnan, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Wei,Huang, Wei,Yang, Qiu-Yun,et al. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field[J]. PHYSIOLOGIA PLANTARUM,2013,149(1):141-150. |
APA | Zhang, Wei,Huang, Wei,Yang, Qiu-Yun,Zhang, Shi-Bao,&Hu, Hong.(2013).Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field.PHYSIOLOGIA PLANTARUM,149(1),141-150. |
MLA | Zhang, Wei,et al."Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field".PHYSIOLOGIA PLANTARUM 149.1(2013):141-150. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Zhang-2013-Effect of(789KB) | 开放获取 | -- | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论