×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
none
Authors
none
Document Type
none
Date Issued
none
Language
none
Source Publication
none
Funding Project
none
Indexed By
none
Funding Organization
none
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Search produced no results.
Filters
Funding Project:Plants respond to unpredictable alpine environments by a high degree of specialization in the structural and functional aspects of their flowers and pollination. However, few original data about the reproductive biology of these plants has been documented, particularly in the species-rich Himalaya-Hengduan Mountain regions. Incarvillea Juss. is notable for being a temperate and herbaceous member in the primarily tropical and woody family Bignoniaceae. Most species of the genus occur in alpine areas of the Himalaya-Hengduan Mountain regions. We investigated the reproductive biology of two alpine species, I. mairei and I. lutea. Incarvillea mairei was highly self-compatible, but depended on pollinators for seed production. The main pollinators were Halictus sp and Apis sp. at low altitude, and bumblebee at high altitude. Seed production was severely limited by pollinators, as indicated by supplemental hand-pollination experiments. The extended floral longevity and stigma receptivity greatly compensated for pollinator limitation. Outcrossing rates were high from 0.834 to 0.988 with altitude and cumulative inbreeding depression was 0.088, indicating a predominant outcrossing mating system. The combination of floral traits (approach herkogamy, sensitive stigma, anther appendages) and pollinator activities ensure a remarkably efficient pollination mechanism, as well as make it possible to ensure reproduction success in alpine habitats. Incarvillea lutea is self-compatible, but depends on insects for seed production. Both the fruit and seed set were high under natural conditions. The main pollinator is Halictus sp. The larger floral displays of I. lutea received more visitations, but facilitated geitonogamous pollination simultaneously. The cumulative inbreeding depression was 0.373. The corolla tube changed color with age from yellow to red. Young yellow flowers had a significant greater pollen and nectar reward. The co-occurrence of the change in amount of reward and flower color enabled I. lutea to direct pollinators to visit reproductive, highly rewarding yellow flowers. We suggest floral color change in I. lutea may serve as a mechanism for reducing geitonogamous pollination and increasing the efficiency of pollen transfer to enhance plant fitness