×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植物... [81]
共享文献 [58]
资源植物与生物技术... [25]
昆明植物所硕博研究... [24]
中国西南野生生物种... [17]
植物化学与西部植物资... [5]
More...
Authors
许建初 [33]
李德铢 [13]
Yang Jing [12]
Yang Yongp... [8]
Gao Lian-M... [8]
赵琪 [7]
More...
Document Type
Journal ... [233]
Thesis [24]
Book [11]
Presentati... [1]
Date Issued
2021 [13]
2020 [32]
2019 [29]
2018 [21]
2017 [21]
2016 [25]
More...
Language
英语 [160]
中文 [28]
Source Publication
FUNGAL DI... [34]
MYCOSPHER... [25]
PHYTOTAXA [21]
CRYPTOGAMI... [6]
MYCOLOGICA... [6]
PLOS ONE [6]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Mae Fah Luang University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University"},{"jsname":"Mae Fah Luang University[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University%5C%5B592010200112%5C%5D"},{"jsname":"Mae Fah Luang University[60201000201]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University%5C%5B60201000201%5C%5D"},{"jsname":"Mae Fah Luang University[666713]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University%5C%5B666713%5C%5D"},{"jsname":"Major State Basic Research Development Program[2010CB951704]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AMajor%5C+State%5C+Basic%5C+Research%5C+Development%5C+Program%5C%5B2010CB951704%5C%5D"},{"jsname":"National Natural Science Foundation of China (NSFC)[41271058]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B41271058%5C%5D"},{"jsname":"National Natural Science Foundation of China[NSFC 31600032]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Natural%5C+Science%5C+Foundation%5C+of%5C+China%5C%5BNSFC%5C+31600032%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B592010200112%5C%5D"},{"jsname":"National Research Council of Thailand (Mae Fah Luang University)[60201000201]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Research%5C+Council%5C+of%5C+Thailand%5C+%5C%28Mae%5C+Fah%5C+Luang%5C+University%5C%29%5C%5B60201000201%5C%5D"},{"jsname":"National Science Foundation of China (NSFC)[41761144055]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B41761144055%5C%5D"},{"jsname":"National Science Foundation of China (NSFC)[41771063]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3ANational%5C+Science%5C+Foundation%5C+of%5C+China%5C+%5C%28NSFC%5C%29%5C%5B41771063%5C%5D"},{"jsname":"Oman Animal and Plant Genetic Resources Center (OAPGRC)[EG/AGR/CROP/16/01]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AOman%5C+Animal%5C+and%5C+Plant%5C+Genetic%5C+Resources%5C+Center%5C+%5C%28OAPGRC%5C%29%5C%5BEG%5C%2FAGR%5C%2FCROP%5C%2F16%5C%2F01%5C%5D"},{"jsname":"Research of Featured Microbial Resources and Diversity Investigation in the Southwest Karst area[2014FY120100]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=palms&order=desc&&fq=dc.project.title_filter%3AResearch%5C+of%5C+Featured%5C+Microbial%5C+Resources%5C+and%5C+Diversity%5C+Investigation%5C+in%5C+the%5C+Southwest%5C+Karst%5C+area%5C%5B2014FY120100%5C%5D"},{"jsname":"lastIndexed","jscount":"2024-10-14"}],"Funding Project","dc.project.title_filter")'>
CAS Presid... [2]
Chiang Mai... [2]
Chinese Ac... [2]
Mushroom R... [2]
National S... [2]
Biosystems... [1]
More...
Indexed By
SCI [138]
CSCD [5]
SSCI [2]
Funding Organization
Chinese A... [15]
Deanship o... [6]
Mushroom R... [4]
Mushroom R... [4]
Chiang Mai... [3]
Internatio... [3]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 269
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
台湾北部福山地区亚热带雨林幼苗之研究
期刊论文
出版物, 3111, 页码: 1-100
Authors:
吕佳陵
Adobe PDF(3786Kb)
  |  
Favorite
  |  
View/Download:176/2
  |  
Submit date:2017/07/19
顽拗性种子种质保存现象
期刊论文
出版物, 3111, 页码: 37-40
Authors:
陆旺金
;
傅家瑞
Adobe PDF(147Kb)
  |  
Favorite
  |  
View/Download:178/3
  |  
Submit date:2017/07/19
Two new species and a new host record of Pleosporales (Dothideomycetes) from palm (Arecaceae) in Guangdong Province, China
期刊论文
NEW ZEALAND JOURNAL OF BOTANY, 2023, 页码: 2258583
Authors:
Xiong,Yinru
;
Manawasinghe,Ishara S.
;
Wanasinghe,Dhanushka N.
;
Hongsanan,Sinang
;
Hyde,Kevin D.
;
Biao,Xu
;
Dong,Zhangyong
View
  |  
Adobe PDF(68301Kb)
  |  
Favorite
  |  
View/Download:27/8
  |  
Submit date:2024/07/22
Byssosphaeria
Magnibotryascoma
Paraconiothyrium
phylogeny
saprobic fungi
2 new species
YAKUSHIMA ISLAND
1ST REPORT
LEAF-SPOT
FUNGI
MELANOMMATACEAE
NOV.
LOPHIOSTOMATACEAE
BYSSOSPHAERIA
REAPPRAISAL
MICROFUNGI
Microfungi associated with ornamental palms: Byssosphaeria phoenicis sp. nov. (Melanommataceae) and Pseudocoleophoma rhapidis sp. nov. (Dictyosporiaceae) from south China
期刊论文
PHYTOTAXA, 2022, 卷号: 568, 期号: 2, 页码: 149-169
Authors:
Kularathnage, Nuwan D.
;
Wanasinghe, Dhanushka N.
;
Senanayake, Indunil C.
;
Yang, Yunhui
;
Manawasinghe, Ishara S.
;
Phillips, Alan J. L.
;
Hyde, Kevin D.
;
Dong, Wei
;
Song, Jiage
View
  |  
Adobe PDF(9418Kb)
  |  
Favorite
  |  
View/Download:58/9
  |  
Submit date:2024/03/11
Mendogia diffusa sp. nov. and an updated key to the species of Mendogia (Myriangiaceae, Dothideomycetes)
期刊论文
BIODIVERSITY DATA JOURNAL, 2021, 卷号: 9, 页码: e67705
Authors:
Thiyagaraja,Vinodhini
;
Luecking,Robert
;
Ertz,Damien
;
Samarakoon,Milan C.
;
Wanasinghe,Dhanushka N.
;
Karunarathna,Samantha C.
;
Cheewangkoon,Ratchadawan
;
Hyde,Kevin D.
Favorite
  |  
View/Download:78/0
  |  
Submit date:2022/04/02
one new species
morphology
multilocus phylogeny
saprotroph
taxonomy
FAM. NOV.
FUNGI
OUTLINE
Stachybotrys musae sp. nov., S. microsporus, and Memnoniella levispora (Stachybotryaceae, Hypocreales) Found on Bananas in China and Thailand
期刊论文
LIFE-BASEL, 2021, 卷号: 11, 期号: 4, 页码: 323
Authors:
Samarakoon,Binu C.
;
Wanasinghe,Dhanushka N.
;
Phookamsak,Rungtiwa
;
Bhat,Jayarama
;
Chomnunti,Putarak
;
Karunarathna,Samantha C.
;
Lumyong,Saisamorn
Favorite
  |  
View/Download:95/0
  |  
Submit date:2022/04/02
new species
fungi on banana
Musaceae
saprobes
Sordariomycetes
PHYLOGENETIC-RELATIONSHIPS
PRIMER SETS
FUNGI
DIVERSITY
CHARTARUM
PANDANACEAE
ENDOPHYTES
DISEASE
RECORD
PALMS
Yunnan-Guizhou Plateau: a mycological hotspot
期刊论文
PHYTOTAXA, 2021, 卷号: 523, 期号: 1, 页码: 1-31
Authors:
Wijayawardene,Nalin N.
;
Dissanayake,Lakmali S.
;
Dai,Dong-Qi
;
Li,Qi-Rui
;
Xiao,Yuanpin
;
Wen,Ting-Chi
;
Karunarathna,Samantha C.
;
Wu,Hai-Xia
;
Zhang,Huang
;
Tibpromma,Saowaluck
;
Kang,Ji-Chuan
;
Wang,Yong
;
Shen,Xiang-Chun
;
Tang,Li-Zhou
;
Deng,Chun-Ying
;
Liu,Yanxia
;
Kang,Yingqian
View
  |  
Adobe PDF(8258Kb)
  |  
Favorite
  |  
View/Download:189/60
  |  
Submit date:2022/04/02
2 new species
polyphasic approach
six new records
species diversity
taxonomy
MULTIPLE SEQUENCE ALIGNMENT
SP-NOV
PHYLOGENETIC CLASSIFICATION
ENTOMOPATHOGENIC GENUS
MULTIGENE PHYLOGENY
FUNGI
CORDYCEPS
GENERA
DIVERSITY
LINEAGES
Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide
期刊论文
NATURE COMMUNICATIONS, 2021, 卷号: 12, 期号: 1, 页码: 3137
Authors:
Zhong,Yonglin
;
Chu,Chengjin
;
Myers,Jonathan A.
;
Gilbert,Gregory S.
;
Lutz,James A.
;
Stillhard,Jonas
;
Zhu,Kai
;
Thompson,Jill
;
Baltzer,Jennifer L.
;
He,Fangliang
;
LaManna,Joseph A.
;
Davies,Stuart J.
;
Aderson-Teixeira,Kristina J.
;
Burslem,David F. R. P.
;
Alonso,Alfonso
;
Chao,Kuo-Jung
;
Wang,Xugao
;
Gao,Lianming
;
Orwig,David A.
;
Yin,Xue
;
Sui,Xinghua
;
Su,Zhiyao
;
Abiem,Iveren
;
Bissiengou,Pulcherie
;
Bourg,Norm
;
Butt,Nathalie
;
Cao,Min
;
Chang-Yang,Chia-Hao
;
Chao,Wei-Chun
;
Chapman,Hazel
;
Chen,Yu-Yun
;
Coomes,David A.
;
Cordell,Susan
;
de Oliveira,Alexandre A.
;
Du,Hu
;
Fang,Suqin
;
Giardina,Christian P.
;
Hao,Zhanqing
;
Hector,Andrew
;
Hubbell,Stephen P.
;
Janik,David
;
Jansen,Patrick A.
;
Jiang,Mingxi
;
Jin,Guangze
;
Kenfack,David
;
Kral,Kamil
;
Larson,Andrew J.
;
Li,Buhang
;
Li,Xiankun
;
Li,Yide
;
Lian,Juyu
;
Lin,Luxiang
;
Liu,Feng
;
Liu,Yankun
;
Liu,Yu
;
Luan,Fuchen
;
Luo,Yahuang
;
Ma,Keping
;
Malhi,Yadvinder
;
McMahon,Sean M.
;
McShea,William
;
Memiaghe,Herve
;
Mi,Xiangcheng
;
Morecroft,Mike
;
Novotny,Vojtech
;
O'Brien,Michael J.
;
den Ouden,Jan
;
Parker,Geoffrey G.
;
Qiao,Xiujuan
;
Ren,Haibao
;
Reynolds,Glen
;
Samonil,Pavel
;
Sang,Weiguo
;
Shen,Guochun
;
Shen,Zhiqiang
;
Song,Guo-Zhang Michael
;
Sun,I-Fang
;
Tang,Hui
;
Tian,Songyan
;
Uowolo,Amanda L.
;
Uriarte,Maria
;
Wang,Bin
;
Wang,Xihua
;
Wang,Youshi
;
Weiblen,George D.
;
Wu,Zhihong
;
Xi,Nianxun
;
Xiang,Wusheng
;
Xu,Han
;
Xu,Kun
;
Ye,Wanhui
;
Yu,Mingjian
;
Zeng,Fuping
;
Zhang,Minhua
;
Zhang,Yingming
;
Zhu,Li
;
Zimmerman,Jess K.
View
  |  
Adobe PDF(7895Kb)
  |  
Favorite
  |  
View/Download:343/193
  |  
Submit date:2022/04/02
NEGATIVE DENSITY-DEPENDENCE
NESTEDNESS
TEMPERATURE
COMPONENTS
TURNOVER
PLANTS
FUNGI
ASSOCIATIONS
ECOLOGY
NETWORK
Five Novel Freshwater Ascomycetes Indicate High Undiscovered Diversity in Lotic Habitats in Thailand
期刊论文
JOURNAL OF FUNGI, 2021, 卷号: 7, 期号: 2, 页码: 117
Authors:
Calabon,Mark S.
;
Jones,E. B. Gareth
;
Boonmee,Saranyaphat
;
Doilom,Mingkwan
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
View
  |  
Adobe PDF(7256Kb)
  |  
Favorite
  |  
View/Download:118/24
  |  
Submit date:2022/04/02
6 new taxa
aquatic fungi
Dothideomycetes
freshwater fungi
multi-loci phylogenetic analyses
Neoxylomyces
Sordariomycetes
tropical mycology
PHYLOGENETIC CONTRIBUTIONS
MOLECULAR PHYLOGENY
REFINED FAMILIES
SUBMERGED WOOD
BACKBONE TREE
WESTERN-GHATS
PRIMER SETS
FUNGI
NOV.
PHAEOACREMONIUM
Amphibambusa hongheensis sp. nov., a novel bambusicolous ascomycete from Yunnan, China
期刊论文
PHYTOTAXA, 2021, 卷号: 505, 期号: 2, 页码: 201-212
Authors:
Jiang,Hong-Bo
;
Zhang,Shi-Jie
;
Phookamsak,Rungtiwa
;
Promputtha,Itthayakorn
;
Kakumyan,Pattana
;
Xu,Jian-Chu
View
  |  
Adobe PDF(2442Kb)
  |  
Favorite
  |  
View/Download:114/25
  |  
Submit date:2022/04/02
1 novel taxon
Cainiaceae
sexual morph
Sordariomycetes
taxonomy
FUNGI
PROBABILITY
ALIGNMENT
OUTLINE