×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [320]
昆明植物所硕博研... [125]
共享文献 [111]
资源植物与生物技术... [66]
中国西南野生生物种... [33]
植物化学与西部植物... [29]
More...
Authors
杨祝良 [69]
Sun Hang [54]
许建初 [51]
李德铢 [50]
赵琪 [28]
龚洵 [27]
More...
Document Type
Journal ... [679]
Thesis [125]
Book [26]
Other [4]
Conference... [2]
Academic p... [1]
More...
Date Issued
2021 [49]
2020 [63]
2019 [68]
2018 [58]
2017 [68]
2016 [76]
More...
Language
英语 [483]
中文 [121]
Source Publication
PHYTOTAXA [77]
FUNGAL DI... [47]
JOURNAL O... [27]
MYCOSPHER... [27]
PLOS ONE [27]
MYCOLOGIC... [23]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal%2BInternal%2BTranscribed%2BSpacer&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Czech Science Foundation, GAR[P506/14/13541S]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal%2BInternal%2BTranscribed%2BSpacer&order=desc&&fq=dc.project.title_filter%3ACzech%5C+Science%5C+Foundation%2C%5C+GAR%5C%5BP506%5C%2F14%5C%2F13541S%5C%5D"},{"jsname":"German Academic Exchange Service (DAAD)","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Ribosomal%2BInternal%2BTranscribed%2BSpacer&order=desc&&fq=dc.project.title_filter%3AGerman%5C+Academic%5C+Exchange%5C+Service%5C+%5C%28DAAD%5C%29"},{"jsname":"lastIndexed","jscount":"2023-09-22"}],"Funding Project","dc.project.title_filter")'>
National N... [2]
Science Re... [2]
Science an... [2]
Thailand R... [2]
Aconitum c... [1]
Astilbe Bu... [1]
More...
Indexed By
SCI [434]
CSCD [11]
IC [5]
Funding Organization
Chinese A... [17]
CAS/SAFEA ... [9]
National N... [8]
John D. an... [7]
National K... [5]
National N... [5]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 838
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Issue Date Ascending
Issue Date Descending
Systematics and Biogeography of Aralia L. (Araliaceae):Revision of Aralia Sects. Aralia, Humiles, Nanae, andSciadodendron
期刊论文
出版物, 3111, 卷号: 57, 期号: 0, 页码: 1-172
Authors:
Jun Wen
Adobe PDF(7233Kb)
  |  
Favorite
  |  
View/Download:169/5
  |  
Submit date:2017/07/24
Aralia
Aralia Sect. Aralia
Aralia Sect. Dimorphanthus
Aralia Sect. Humiles
Aralia Sect. Nanae
Aralia Sect. pentapanax
Aralia Sect. Sciadodendron
Biogeography
Araliaceae
Systematics
Boletes clarified
期刊论文
出版物, 3111, 期号: 0, 页码: 1-38
Authors:
David Arora
;
Jonathan L. Frank
Adobe PDF(1003Kb)
  |  
Favorite
  |  
View/Download:177/1
  |  
Submit date:2017/07/24
Appendiculati
Boletaceae
Butter Boletes
Butyriboletus
Molecular phylogenetics
New Genus
New Species
Taxonomy
Stagonosporopsis pogostemonis: A Novel Ascomycete Fungus Causing Leaf Spot and Stem Blight on Pogostemon cablin (Lamiaceae) in South China
期刊论文
PATHOGENS, 2021, 卷号: 10, 期号: 9, 页码: 1093
Authors:
Dong,Zhang-Yong
;
Huang,Ying-Hua
;
Manawasinghe,Ishara S.
;
Wanasinghe,Dhanushka N.
;
Liu,Jia-Wei
;
Shu,Yong-Xin
;
Zhao,Min-Ping
;
Xiang,Mei-Mei
;
Luo,Mei
Favorite
  |  
View/Download:19/0
  |  
Submit date:2022/04/02
Didymellaceae
phoma-like
pathogenicity
phylogeny
MELOIDOGYNE-INCOGNITA
1ST REPORT
PYRETHRUM
IDENTIFICATION
POPULATION
PATCHOULI
TANACETI
DISEASE
AGENTS
PLANTS
Genetic diversity of Amomum xanthioides and its related species from Southeast Asia and China
期刊论文
JOURNAL OF NATURAL MEDICINES, 2021, 卷号: 75, 期号: 4, 页码: 798-812
Authors:
Sone,Mikako
;
Zhu,Shu
;
Cheng,Xiao
;
Ketphanh,Sounthone
;
Swe,Swe
;
Tun,Than Lwin
;
Kawano,Noriaki
;
Kawahara,Nobuo
;
Komatsu,Katsuko
Favorite
  |  
View/Download:8/0
  |  
Submit date:2022/04/02
Amomum semen
Amomi fructus
Amomum xanthioides
Genetic diversity
ZINGIBERACEAE
SEQUENCE
MORPHOANATOMICAL AND PHyLOGENETIC CHARACTERIzATION OF THE ECTOMyCORRHIzA BETWEEN LAccARIA SQuARRoSA WITH PINuS PSEuDoSTRoBuS AND ITS RELEVANCE FOR REFORESTATION PROGRAMS
期刊论文
BOTANICAL SCIENCES, 2021
Authors:
Herrera,Mariana
;
Fu-Qiang Yu
;
Ramos-Rendon,David
;
Martinez-Reyes,Magdalena
;
Hernandez-Santiago,Austino
;
Chater,Caspar C. C.
;
Perez-Moreno,Jesos
Favorite
  |  
View/Download:14/0
  |  
Submit date:2022/04/02
Ectomycorrhizal symbiosis
edible wild mushrooms
inoculants
Neotropics
pines
PRIMARY SUCCESSION
DOUGLAS-FIR
FUNGUS
FOREST
MONTEZUMAE
GROWTH
A new saprotrophic species of Amanita (Amanitaceae, Agaricales) from Inner Mongolia, China
期刊论文
PHYTOTAXA, 2021, 卷号: 527, 期号: 4, 页码: 284-292
Authors:
Liu,Xiaoliang
;
Bau,Tolgor
;
Yang,Zhu L.
Favorite
  |  
View/Download:34/0
  |  
Submit date:2022/04/02
Amanita
new species
taxonomy
molecular phylogeny
GENUS
LEPIDELLA
Amanita chuformis, a new Amanita species with a marginate basal bulb
期刊论文
MYCOSCIENCE, 2021, 卷号: 62, 期号: 1, 页码: 29-35
Authors:
Cui,Yang-Yang
;
Cai,Qing
;
Yang,Zhu L.
View
  |  
Adobe PDF(1067Kb)
  |  
Favorite
  |  
View/Download:13/0
  |  
Submit date:2022/04/02
molecular evidence
morphological characters
taxonomy
MOLECULAR PHYLOGENY
ALIGNMENTS
SEQUENCES
TAXONOMY
Yunnan-Guizhou Plateau: a mycological hotspot
期刊论文
PHYTOTAXA, 2021, 卷号: 523, 期号: 1, 页码: 1-31
Authors:
Wijayawardene,Nalin N.
;
Dissanayake,Lakmali S.
;
Dai,Dong-Qi
;
Li,Qi-Rui
;
Xiao,Yuanpin
;
Wen,Ting-Chi
;
Karunarathna,Samantha C.
;
Wu,Hai-Xia
;
Zhang,Huang
;
Tibpromma,Saowaluck
;
Kang,Ji-Chuan
;
Wang,Yong
;
Shen,Xiang-Chun
;
Tang,Li-Zhou
;
Deng,Chun-Ying
;
Liu,Yanxia
;
Kang,Yingqian
View
  |  
Adobe PDF(8258Kb)
  |  
Favorite
  |  
View/Download:33/1
  |  
Submit date:2022/04/02
2 new species
polyphasic approach
six new records
species diversity
taxonomy
MULTIPLE SEQUENCE ALIGNMENT
SP-NOV
PHYLOGENETIC CLASSIFICATION
ENTOMOPATHOGENIC GENUS
MULTIGENE PHYLOGENY
FUNGI
CORDYCEPS
GENERA
DIVERSITY
LINEAGES
Appressorial interactions with host and their evolution
期刊论文
FUNGAL DIVERSITY, 2021, 卷号: 110, 期号: 1, 页码: 75-107
Authors:
Chethana,K. W. Thilini
;
Jayawardena,Ruvishika S.
;
Chen,Yi-Jyun
;
Konta,Sirinapa
;
Tibpromma,Saowaluck
;
Phukhamsakda,Chayanard
;
Abeywickrama,Pranami D.
;
Samarakoon,Milan C.
;
Senwanna,Chanokned
;
Mapook,Ausana
;
Tang,Xia
;
Gomdola,Deecksha
;
Marasinghe,Diana S.
;
Padaruth,Oundhyalah D.
;
Balasuriya,Abhaya
;
Xu,Jianping
;
Lumyong,Saisamorn
;
Hyde,Kevin D.
View
  |  
Adobe PDF(8605Kb)
  |  
Favorite
  |  
View/Download:18/0
  |  
Submit date:2022/04/02
Ancestral characters
Evolution
Host-recognition
Hyaline appressoria
Infection process
Melanized appressoria
Proto-appressoria
ACTIVATED PROTEIN-KINASE
UROMYCES-VICIAE-FABAE
INFECTION STRUCTURE FORMATION
SCANNING-ELECTRON-MICROSCOPY
BEAUVERIA-BASSIANA INFECTION
BOTRYTIS-CINEREA VIRULENCE
BIOLOGICAL-CONTROL AGENTS
WALL-DEGRADING ENZYMES
GREY MOLD FUNGUS
ENTOMOPATHOGENIC FUNGUS
Comprehensive Review of Tolypocladium and Description of a Novel Lineage from Southwest China
期刊论文
PATHOGENS, 2021, 卷号: 10, 期号: 11, 页码: 1389
Authors:
Yu,Feng-Ming
;
Thilini Chethana,Kandawatte Wedaralalage
;
Wei,De-Ping
;
Liu,Jian-Wei
;
Zhao,Qi
;
Tang,Song-Ming
;
Li,Lu
;
Hyde,Kevin David
View
  |  
Adobe PDF(1933Kb)
  |  
Favorite
  |  
View/Download:19/0
  |  
Submit date:2022/04/02
new taxon
diversity
ecology
host shift
multi-gene
mycoparasite
taxonomic key
SP-NOV
PHYLOGENETIC-RELATIONSHIPS
CORDYCEPS
FUNGI
DIVERSIFICATION
PERFORMANCE
EVOLUTION
PATHOGEN
NUCLEAR
SOIL