×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [419]
中国科学院东亚植... [313]
昆明植物所硕博研... [231]
资源植物与生物技... [156]
中国西南野生生物种... [65]
植物化学与西部植物... [32]
More...
Authors
李德铢 [97]
Sun Hang [82]
王红 [54]
孙卫邦 [45]
Yang Yong... [40]
龚洵 [34]
More...
Document Type
Journal... [1112]
Thesis [231]
Book [53]
Other [6]
Academic p... [3]
Conference... [1]
More...
Date Issued
2021 [31]
2020 [107]
2019 [96]
2018 [62]
2017 [85]
2016 [85]
More...
Language
英语 [843]
中文 [224]
Source Publication
American ... [32]
FUNGAL DI... [29]
植物分类与资源学报 [28]
PLOS ONE [27]
MOLECULAR... [26]
SCIENTIFI... [26]
More...
Funding Project
0.05) between wild (AR = 4.651), semi-cultivated (AR = 5.091) and cultivated (AR = 5.132) populations of C. taliensis, which suggested that the genetic background of long-lived woody plant was not easy to be changed, and there were moderate high gene flow between populations. However, there was a significant difference (P < 0.05) between wild (AR = 5.9) and cultivated (AR = 7.1) populations distributed in the same place in Yun county, Yunnan province, which may result from the hybridization and introgression of species in the tea garden and anthropogenic damages to the wild population. The hypothesis of hybrid origin of C. grandibracteata was tested by morphological and microsatellites analyses. Compared with other species, the locules in ovary of C. grandibracteata are variable, which showed a morphological intermediate and mosaic. Except one private allele, Ninety-nine percent alleles of C. grandibracteata were shared with these of C. taliensis and C. sinensis var. assamica. And C. grandibracteata was nested in the cluster of C. taliensis in the UPGMA tree. Conclusively, our results supported the hypothesis of hybrid origin of C. grandibracteata partly. The speciation of C. grandibracteata was derived from hybridization and asymmetrical introgression potentially. It is possible that C. taliensis was one of its parents, but it still needs more evidences to prove that C. sinensis var. assamica was another parent.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3ACamellia%5C+taliensis%5C+%5C%28W.%5C+W.%5C+Smith%5C%29%5C+Melchior%2C%5C+a%5C+member%5C+of%5C+Camellia%5C+sect.%5C+Thea%2C%5C+is%5C+an%5C+indigenous%5C+species%5C+in%5C+local%5C+natural%5C+forest%5C+and%5C+has%5C+a%5C+long%5C+cultivative%5C+history%5C+in%5C+western%5C+Yunnan%5C+and%5C+its%5C+neighborhood%2C%5C+where%5C+the%5C+domestications%5C+of%5C+this%5C+species%5C+in%5C+different%5C+historical%5C+periods%5C+and%5C+in%5C+different%5C+ways%5C+can%5C+be%5C+found.%5C+C.%5C+taliensis%5C+is%5C+an%5C+important%5C+contributor%5C+to%5C+the%5C+formations%5C+of%5C+tea%5C+landraces%5C+by%5C+hybridization%5C+and%5C+introgression.%5C+In%5C+the%5C+present%5C+study%2C%5C+14%5C+microsatellite%5C+loci%5C+screened%5C+from%5C+37%5C+loci%5C+were%5C+used%5C+to%5C+explore%5C+the%5C+genetic%5C+diversity%5C+about%5C+this%5C+species%5C+with%5C+579%5C+samples%5C+from%5C+25%5C+populations%5C+%5C%2816%5C+wild%5C+populations%2C%5C+4%5C+semi%5C-cultivated%5C+populations%5C+and%5C+5%5C+cultivated%5C+populations%5C%29.%5C+At%5C+the%5C+same%5C+time%2C%5C+the%5C+potential%5C+hybrid%5C+speciation%5C+of%5C+C.%5C+grandibracteata%2C%5C+was%5C+investigated%5C+using%5C+39%5C+individuals%5C+from%5C+2%5C+populations%2C%5C+along%5C+with%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+%5C%2883%5C+individuals%5C+from%5C+4%5C+populations%5C%29%5C+by%5C+the%5C+same%5C+microsatellite%5C+markers.%5C+C.%5C+taliensis%5C+had%5C+a%5C+moderate%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+%5C%28A%5C+%3D%5C+14.3%2C%5C+Ne%3D%5C+5.7%2C%5C+HE%5C+%3D%5C+0.666%2C%5C+I%5C+%3D%5C+1.753%2C%5C+AR%5C+%3D%5C+7.2%2C%5C+PPB%5C+%3D%5C+100%25%5C%29.%5C+This%5C+may%5C+result%5C+from%5C+several%5C+factors%5C+including%5C+K%5C-strategy%2C%5C+genetic%5C+background%2C%5C+gene%5C+flow%5C+between%5C+populations%2C%5C+hybridization%5C+and%5C+introgression%5C+among%5C+species.%5C+Between%5C+wild%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+the%5C+gene%5C+flow%5C+was%5C+moderate%5C+high%5C+%5C%28Nm%5C+%3D%5C+1.197%5C%29%2C%5C+and%5C+genetic%5C+variation%5C+was%5C+less%5C+than%5C+20%25%5C+%5C%28GST%5C+%3D%5C+0.147%2C%5C+FST%5C+%3D%5C+0.173%5C%29%2C%5C+which%5C+was%5C+similar%5C+to%5C+other%5C+research%5C+results%5C+of%5C+long%5C-lived%5C+woody%5C+plants%2C%5C+and%5C+reflected%5C+the%5C+genetic%5C+structure%5C+of%5C+its%5C+ancestry%5C+to%5C+same%5C+extent.%5C+There%5C+was%5C+a%5C+high%5C+significant%5C+correlation%5C+between%5C+geographic%5C+distance%5C+and%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+%5C%28r%5C+%3D%5C+0.372%2C%5C+P%5C+%3D%5C+0.001%5C%29%5C+of%5C+populations%2C%5C+which%5C+accorded%5C+with%5C+isolation%5C+by%5C+distance%5C+model.%5C+Inferring%5C+from%5C+Bayesian%5C+clustering%5C+of%5C+genotypes%2C%5C+all%5C+individuals%5C+of%5C+C.%5C+taliensis%5C+were%5C+divided%5C+into%5C+two%5C+groups%2C%5C+conflicting%5C+with%5C+the%5C+result%5C+based%5C+on%5C+Nei%E2%80%99s%5C+genetic%5C+distance%5C+and%5C+real%5C+geographic%5C+distribution%2C%5C+which%5C+suggested%5C+there%5C+were%5C+heavy%5C+and%5C+non%5C-random%5C+influences%5C+by%5C+human%5C+practices.%5C+According%5C+to%5C+allelic%5C+richness%2C%5C+there%5C+were%5C+no%5C+significant%5C+differences%5C+%5C%28P%5C+%3E%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+4.651%5C%29%2C%5C+semi%5C-cultivated%5C+%5C%28AR%5C+%3D%5C+5.091%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+5.132%5C%29%5C+populations%5C+of%5C+C.%5C+taliensis%2C%5C+which%5C+suggested%5C+that%5C+the%5C+genetic%5C+background%5C+of%5C+long%5C-lived%5C+woody%5C+plant%5C+was%5C+not%5C+easy%5C+to%5C+be%5C+changed%2C%5C+and%5C+there%5C+were%5C+moderate%5C+high%5C+gene%5C+flow%5C+between%5C+populations.%5C+However%2C%5C+there%5C+was%5C+a%5C+significant%5C+difference%5C+%5C%28P%5C+%3C%5C+0.05%5C%29%5C+between%5C+wild%5C+%5C%28AR%5C+%3D%5C+5.9%5C%29%5C+and%5C+cultivated%5C+%5C%28AR%5C+%3D%5C+7.1%5C%29%5C+populations%5C+distributed%5C+in%5C+the%5C+same%5C+place%5C+in%5C+Yun%5C+county%2C%5C+Yunnan%5C+province%2C%5C+which%5C+may%5C+result%5C+from%5C+the%5C+hybridization%5C+and%5C+introgression%5C+of%5C+species%5C+in%5C+the%5C+tea%5C+garden%5C+and%5C+anthropogenic%5C+damages%5C+to%5C+the%5C+wild%5C+population.%5C+The%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+tested%5C+by%5C+morphological%5C+and%5C+microsatellites%5C+analyses.%5C+Compared%5C+with%5C+other%5C+species%2C%5C+the%5C+locules%5C+in%5C+ovary%5C+of%5C+C.%5C+grandibracteata%5C+are%5C+variable%2C%5C+which%5C+showed%5C+a%5C+morphological%5C+intermediate%5C+and%5C+mosaic.%5C+Except%5C+one%5C+private%5C+allele%2C%5C+Ninety%5C-nine%5C+percent%5C+alleles%5C+of%5C+C.%5C+grandibracteata%5C+were%5C+shared%5C+with%5C+these%5C+of%5C+C.%5C+taliensis%5C+and%5C+C.%5C+sinensis%5C+var.%5C+assamica.%5C+And%5C+C.%5C+grandibracteata%5C+was%5C+nested%5C+in%5C+the%5C+cluster%5C+of%5C+C.%5C+taliensis%5C+in%5C+the%5C+UPGMA%5C+tree.%5C+Conclusively%2C%5C+our%5C+results%5C+supported%5C+the%5C+hypothesis%5C+of%5C+hybrid%5C+origin%5C+of%5C+C.%5C+grandibracteata%5C+partly.%5C+The%5C+speciation%5C+of%5C+C.%5C+grandibracteata%5C+was%5C+derived%5C+from%5C+hybridization%5C+and%5C+asymmetrical%5C+introgression%5C+potentially.%5C+It%5C+is%5C+possible%5C+that%5C+C.%5C+taliensis%5C+was%5C+one%5C+of%5C+its%5C+parents%2C%5C+but%5C+it%5C+still%5C+needs%5C+more%5C+evidences%5C+to%5C+prove%5C+that%5C+C.%5C+sinensis%5C+var.%5C+assamica%5C+was%5C+another%5C+parent."},{"jsname":"Chiang Mai University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AChiang%5C+Mai%5C+University"},{"jsname":"China Agriculture Research System[CARS-02]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AChina%5C+Agriculture%5C+Research%5C+System%5C%5BCARS%5C-02%5C%5D"},{"jsname":"China Scholarship Council","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AChina%5C+Scholarship%5C+Council"},{"jsname":"Chinese Academy of Sciences","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences"},{"jsname":"Chinese Academy of Sciences[2013T2S003]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AChinese%5C+Academy%5C+of%5C+Sciences%5C%5B2013T2S003%5C%5D"},{"jsname":"Cold stress is one of the major environmental factors that adversely influence plants growth. Cold stress not only limits plants geographic distribution, but also reduces plants yield by shortening growing season, which brought billions of dollars economic losses for global crop. In nature, responses of overwintering plants to low temperature can be divided into three distinct phases: cold acclimation (CA), freezing, and post-freezing recovery (PFR). Until now, plenty intensive study about molecular mechanism of cold stress mainly focused on the above-zero low temperature phase. However, the studies on the freezing phase below zero and the following PFR phase with temperature going up to above-zero were rare. The previous research form our lab hinted that the responses of plants to freezing and PFR were complex and important. Except for passive reflection, there were also crucial active responses during this process. Several special rules were presented at the different levels including gene expression, signal transduction and membrane lipids changes, and fully understanding these rules would be helpful for us to explore the responses of plants to low temperature and then proceed to improve the freezing resistance of plants. In the present study, the mechanisms of respond to freezing and PFR of model plant Arabidopsis thaliana and its close relative Thellungiella halophlia that with extreme tolerance to abiotic stresses were carried out, including regulation of gene expression, signal transduction pathway and membrane lipids changes three levels which were essential for the freezing resistance of plants. Ground on these work, we obtained results from the following five aspects. First, the complete picture of A. thaliana responding to freezing and PFR at transcriptome level was elaborated and three functional genes closely related to the phases were identified. Second, the cis-elements with high frequent presence in differentially expressed genes were elucidated, and the practical binding of one elements among them was experimental verified during freezing and PFR. Moreover, we predicted the new elements which would respond to freezing and PFR. Third, the regulation of freezing stress by microRNA in A. thaliana was preliminarily investigated and 36 functional genes possibly regulated by miRNA during freezing and PFR were gained. Fourth, the negative effect of phytohormone Auxin on A. thaliana subjected to freezing stress was identified. Fifth, for the freezing-resistant plant T. halophlia, the rules of membrane lipids composition changes under freezing stress were uncovered.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3ACold%5C+stress%5C+is%5C+one%5C+of%5C+the%5C+major%5C+environmental%5C+factors%5C+that%5C+adversely%5C+influence%5C+plants%5C+growth.%5C+Cold%5C+stress%5C+not%5C+only%5C+limits%5C+plants%5C+geographic%5C+distribution%2C%5C+but%5C+also%5C+reduces%5C+plants%5C+yield%5C+by%5C+shortening%5C+growing%5C+season%2C%5C+which%5C+brought%5C+billions%5C+of%5C+dollars%5C+economic%5C+losses%5C+for%5C+global%5C+crop.%5C+In%5C+nature%2C%5C+responses%5C+of%5C+overwintering%5C+plants%5C+to%5C+low%5C+temperature%5C+can%5C+be%5C+divided%5C+into%5C+three%5C+distinct%5C+phases%5C%3A%5C+cold%5C+acclimation%5C+%5C%28CA%5C%29%2C%5C+freezing%2C%5C+and%5C+post%5C-freezing%5C+recovery%5C+%5C%28PFR%5C%29.%5C+Until%5C+now%2C%5C+plenty%5C+intensive%5C+study%5C+about%5C+molecular%5C+mechanism%5C+of%5C+cold%5C+stress%5C+mainly%5C+focused%5C+on%5C+the%5C+above%5C-zero%5C+low%5C+temperature%5C+phase.%5C+However%2C%5C+the%5C+studies%5C+on%5C+the%5C+freezing%5C+phase%5C+below%5C+zero%5C+and%5C+the%5C+following%5C+PFR%5C+phase%5C+with%5C+temperature%5C+going%5C+up%5C+to%5C+above%5C-zero%5C+were%5C+rare.%5C+The%5C+previous%5C+research%5C+form%5C+our%5C+lab%5C+hinted%5C+that%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+freezing%5C+and%5C+PFR%5C+were%5C+complex%5C+and%5C+important.%5C+Except%5C+for%5C+passive%5C+reflection%2C%5C+there%5C+were%5C+also%5C+crucial%5C+active%5C+responses%5C+during%5C+this%5C+process.%5C+Several%5C+special%5C+rules%5C+were%5C+presented%5C+at%5C+the%5C+different%5C+levels%5C+including%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+and%5C+membrane%5C+lipids%5C+changes%2C%5C+and%5C+fully%5C+understanding%5C+these%5C+rules%5C+would%5C+be%5C+helpful%5C+for%5C+us%5C+to%5C+explore%5C+the%5C+responses%5C+of%5C+plants%5C+to%5C+low%5C+temperature%5C+and%5C+then%5C+proceed%5C+to%5C+improve%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+In%5C+the%5C+present%5C+study%2C%5C+the%5C+mechanisms%5C+of%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR%5C+of%5C+model%5C+plant%5C+Arabidopsis%5C+thaliana%5C+and%5C+its%5C+close%5C+relative%5C+Thellungiella%5C+halophlia%5C+that%5C+with%5C+extreme%5C+tolerance%5C+to%5C+abiotic%5C+stresses%5C+were%5C+carried%5C+out%2C%5C+including%5C+regulation%5C+of%5C+gene%5C+expression%2C%5C+signal%5C+transduction%5C+pathway%5C+and%5C+membrane%5C+lipids%5C+changes%5C+three%5C+levels%5C+which%5C+were%5C+essential%5C+for%5C+the%5C+freezing%5C+resistance%5C+of%5C+plants.%5C+Ground%5C+on%5C+these%5C+work%2C%5C+we%5C+obtained%5C+results%5C+from%5C+the%5C+following%5C+five%5C+aspects.%5C+First%2C%5C+the%5C+complete%5C+picture%5C+of%5C+A.%5C+thaliana%5C+responding%5C+to%5C+freezing%5C+and%5C+PFR%5C+at%5C+transcriptome%5C+level%5C+was%5C+elaborated%5C+and%5C+three%5C+functional%5C+genes%5C+closely%5C+related%5C+to%5C+the%5C+phases%5C+were%5C+identified.%5C+Second%2C%5C+the%5C+cis%5C-elements%5C+with%5C+high%5C+frequent%5C+presence%5C+in%5C+differentially%5C+expressed%5C+genes%5C+were%5C+elucidated%2C%5C+and%5C+the%5C+practical%5C+binding%5C+of%5C+one%5C+elements%5C+among%5C+them%5C+was%5C+experimental%5C+verified%5C+during%5C+freezing%5C+and%5C+PFR.%5C+Moreover%2C%5C+we%5C+predicted%5C+the%5C+new%5C+elements%5C+which%5C+would%5C+respond%5C+to%5C+freezing%5C+and%5C+PFR.%5C+Third%2C%5C+the%5C+regulation%5C+of%5C+freezing%5C+stress%5C+by%5C+microRNA%5C+in%5C+A.%5C+thaliana%5C+was%5C+preliminarily%5C+investigated%5C+and%5C+36%5C+functional%5C+genes%5C+possibly%5C+regulated%5C+by%5C+miRNA%5C+during%5C+freezing%5C+and%5C+PFR%5C+were%5C+gained.%5C+Fourth%2C%5C+the%5C+negative%5C+effect%5C+of%5C+phytohormone%5C+Auxin%5C+on%5C+A.%5C+thaliana%5C+subjected%5C+to%5C+freezing%5C+stress%5C+was%5C+identified.%5C+Fifth%2C%5C+for%5C+the%5C+freezing%5C-resistant%5C+plant%5C+T.%5C+halophlia%2C%5C+the%5C+rules%5C+of%5C+membrane%5C+lipids%5C+composition%5C+changes%5C+under%5C+freezing%5C+stress%5C+were%5C+uncovered."},{"jsname":"Construction Program of Biology First-class Discipline in Guizhou[CINYL [2017] 009]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AConstruction%5C+Program%5C+of%5C+Biology%5C+First%5C-class%5C+Discipline%5C+in%5C+Guizhou%5C%5BCINYL%5C+%5C%5B2017%5C%5D%5C+009%5C%5D"},{"jsname":"Craigia yunnanensis W. W. Smith & W. E. Evans (Tiliaceae) is an endangered deciduous tree species which has high scientific and economic value. C. yunnanensis is seriously threatened and has been pushed to the verge of extinction due to vegetation destruction in China and consequent contraction of its distribution. Hence, it was listed as a nationally rare and endangered plant in 1999 and has also been proposed as a second-ranked plant for national protection in China and included in IUCN red list. As a scientifically important and valued tree species with endangered status, the wild populations of C. yunnanensis therefore represent is a genetic resource that must be conserved. To provide basic information for its conservation, the population dynamics and population size structures, pollination biology and breeding system, eleven fitness-related characters and the genetic variability based on AFLP were comprehensively studied. The main results are summarized as follows: A total of six wild populations of C. yunnanensis were found in two disjunct regions of Yunnan, i.e. WenShan (SE Yunnan) and DeHong (SW Yunnan), from 2005 to 2007. Additionally, in all but one of the populations we detected, mature trees were felled between 2005 and 2007, so destruction of most of these populations is ongoing. Across the six populations of extant C. yunnanensis found during our study, the total number of mature (reproductive) individuals detected was 584 in 2007,plus larger numbers of seedling and resprouts from cut trunks. The result of surveying Population structure showed that there are two regeneration types which are seedlings and sprouts. Seedlings occurred abundantly in gaps or open areas and the size class frequency distributions were often discontinuous, and the same general pattern occurred in all the investigated populations for juveniles and adults. The numbers of seed-origin individuals did however decline sharply with increasing size, indicating a high mortality rate going from seedling to sapling stage may be a problem for this species. Additionally, the cash crop cultivation and logging seriously threaten the survival of the species. We conducted field observations and artificial pollination experiments on the floral biology, pollination process and breeding system of Craigia yunnanensis in Fadou, Xichou county of Yunnan province. The lifespan of a single hermaphrodite flower is approximately 3-4 days. A cyme has 2-9 flowered. The flowering period of an inflorescence is usually 5-14 days. The flowers of C. yunnanensis were protandrous. The stamens were within petal-like staminodes in the opening flowers until the flower withered. Without touchment, the bractlike staminodes can’t open. Self-pollination was partially avoided by temporal and spatial isolation of male and female organs within the same flower. However, autogamous and geitonogamous pollination is unavoidable because of the large number of flowers on a single tree and the action of pollinators. The values of both OCI (≥4) and P/O (1381) and the results of bagging tests indicated there was no apomixes in C. yunnanensis and the breeding system of the species was outcrossing with partial self-compatibility and the pollinators were required during the pollination process. The most frequent effective floral visitor was only beautiful fly (Chrysomyia megacephala). Fruit set and seed set in natural condition were 56.67±3.85% and 6.26±0.75%, respectively. Therefore, lack of pollinators, low pollination efficiency, unavoidable geitonogamous pollination and partial self-compatibility and inbreeding in small populations may account for the low fruit set, especially seed set.Variations in seed traits, seed germination, and seedling growth characters among six Craigia yunnanensis populations were evaluated. All seed and seedling traits exhibited significant differences among populations (P < 0.05). The fitness of seed as assessed by seed size, seed germination and seedling trait was independent of population size, except for the number of seeds per capsule (r = 0.93,P < 0.01). Correlations between geo-climatic variables of seed origin and seed and seedling related characters were insignificant (P > 0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"During a field trip at a brule in Shangri-La, a mixed population of Ligularia Cass. was found, which including L. subspicata (Bur. et Franch.) Hand.-Mazz., L. nelumbifolia (Bur. et Franch.) Hand.-Mazz., L. tongolensis (Franch.) Hand.-Mazz., L. cymbulifera (W.W.Smith) Hand.-Mazz., L. lingiana S.W.Liu, and also some individuals morphologically intermediate between L. subspicata and L. nelumbifolia. Hence, these intermediate individuals were preliminarily assumed as natural hybrids of the two Ligularia. According to their morphology, they’re assumed to form hybrids A and B. Through careful comparison of specimens in herbarium and those we collected, the inflorescence of putative hybrid A is close to L. nelumbifolia, but the shape of laminae are intergradation of L. subspicata and L. nelumbifolia; overall morphology of putative hybrids B is similar to L. nelumbifolia, but inflorescence color is as same as L. subspicata. Compared to L. nelumbifolia (39%) and L. subspicata (36.8%), the germination rate of putative hybrid B (45.7%) slightly higher than the two; but that of hybrid A is extraordinarily low (0.3%). One possible interpretation of the low rate is hybridization. 60 individuals were collected, including putative parents, other 4 species of Ligularia nearby, putative hybrid A and B. They were all direct sequenced of four cpDNA fragments, and direct sequenced or cloning sequenced of nrDNA ITS4-5. The results support that L. nelumbifolia and L. subspicata are parents of putative hybrid A, and the majority female parent is L. subspicata, L. vellerea may also be involved in the hybridization in some degree; the nuclear sequences of putative hybrid B have no superposition, and its chloroplast DNA sequences are identical with L. nelumbifolia, so putative hybrid B could not be hybrid; and there are backcross individuals exist among the putative parent L. subspicata. NewHybrids analysis of ISSR markers indicated that, the individuals of putative hybrid A are almost L. nelumbifolia and L. subspicata F1 hybrid generation (10/11), only 1/11 possibly backcross or other forms; all individuals of hybrid B are L. nelumbifolia; except one individual of L. subspicata as backcrossed, the other parent individuals are 100% reliable. This study focused on molecular evidence, complemented by ecological, reproductive and other characteristics, we demonstrated that the morphologically intermediate individuals’ origin, and the probability of belonging to each parental or hybrid class. And concluded that L. nelumbifolia and L. subspicata are the parents of putative hybrid A, L. vellerea may also be involved in the hybridization in some degree, hybrids mainly are the first generation, a few individuals may be involved in backcross, and most probably backcross with L. subspicata according to the anthesis, while the assumption of hybrid B is not supported.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3ADuring%5C+a%5C+field%5C+trip%5C+at%5C+a%5C+brule%5C+in%5C+Shangri%5C-La%2C%5C+a%5C+mixed%5C+population%5C+of%5C+Ligularia%5C+Cass.%5C+was%5C+found%2C%5C+which%5C+including%5C+L.%5C+subspicata%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+nelumbifolia%5C+%5C%28Bur.%5C+et%5C+Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+tongolensis%5C+%5C%28Franch.%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+cymbulifera%5C+%5C%28W.W.Smith%5C%29%5C+Hand.%5C-Mazz.%2C%5C+L.%5C+lingiana%5C+S.W.Liu%2C%5C+and%5C+also%5C+some%5C+individuals%5C+morphologically%5C+intermediate%5C+between%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia.%5C+Hence%2C%5C+these%5C+intermediate%5C+individuals%5C+were%5C+preliminarily%5C+assumed%5C+as%5C+natural%5C+hybrids%5C+of%5C+the%5C+two%5C+Ligularia.%5C+According%5C+to%5C+their%5C+morphology%2C%5C+they%E2%80%99re%5C+assumed%5C+to%5C+form%5C+hybrids%5C+A%5C+and%5C+B.%5C+Through%5C+careful%5C+comparison%5C+of%5C+specimens%5C+in%5C+herbarium%5C+and%5C+those%5C+we%5C+collected%2C%5C+the%5C+inflorescence%5C+of%5C+putative%5C+hybrid%5C+A%5C+is%5C+close%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+the%5C+shape%5C+of%5C+laminae%5C+are%5C+intergradation%C2%A0of%5C+L.%5C+subspicata%5C+and%5C+L.%5C+nelumbifolia%5C%3B%5C+overall%5C+morphology%5C+of%5C+putative%5C+hybrids%5C+B%5C+is%5C+similar%5C+to%5C+L.%5C+nelumbifolia%2C%5C+but%5C+inflorescence%5C+color%5C+is%5C+as%5C+same%5C+as%5C+L.%5C+subspicata.%5C+Compared%5C+to%5C+L.%5C+nelumbifolia%5C+%5C%2839%25%5C%29%5C+and%5C+L.%5C+subspicata%5C+%5C%2836.8%25%5C%29%2C%5C+the%5C+germination%5C+rate%5C+of%5C+putative%5C+hybrid%5C+B%5C+%5C%2845.7%25%5C%29%5C+slightly%5C+higher%5C+than%5C+the%5C+two%5C%3B%5C+but%5C+that%5C+of%5C+hybrid%5C+A%5C+is%5C+extraordinarily%5C+low%5C+%5C%280.3%25%5C%29.%5C+One%5C+possible%5C+interpretation%5C+of%5C+the%5C+low%5C+rate%5C+is%5C+hybridization.%5C+60%5C+individuals%5C+were%5C+collected%2C%5C+including%5C+putative%5C+parents%2C%5C+other%5C+4%5C+species%5C+of%5C+Ligularia%5C+nearby%2C%5C+putative%5C+hybrid%5C+A%5C+and%5C+B.%5C+They%5C+were%5C+all%5C+direct%5C+sequenced%5C+of%5C+four%5C+cpDNA%5C+fragments%2C%5C+and%5C+direct%5C+sequenced%5C+or%5C+cloning%5C+sequenced%5C+of%5C+nrDNA%5C+ITS4%5C-5.%5C+The%5C+results%5C+support%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+and%5C+the%5C+majority%5C+female%5C+parent%5C+is%5C+L.%5C+subspicata%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%5C%3B%5C+the%5C+nuclear%5C+sequences%5C+of%5C+putative%5C+hybrid%5C+B%5C+have%5C+no%5C+superposition%2C%5C+and%5C+its%5C+chloroplast%5C+DNA%5C+sequences%5C+are%5C+identical%5C+with%5C+L.%5C+nelumbifolia%2C%5C+so%5C+putative%5C+hybrid%5C+B%5C+could%5C+not%5C+be%5C+hybrid%5C%3B%5C+and%5C+there%5C+are%5C+backcross%5C+individuals%5C+exist%5C+among%5C+the%5C+putative%5C+parent%5C+L.%5C+subspicata.%5C+NewHybrids%5C+analysis%5C+of%5C+ISSR%5C+markers%5C+indicated%5C+that%2C%5C+the%5C+individuals%5C+of%5C+putative%5C+hybrid%5C+A%5C+are%5C+almost%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+F1%5C+hybrid%5C+generation%5C+%5C%2810%5C%2F11%5C%29%2C%5C+only%5C+1%5C%2F11%5C+possibly%5C+backcross%5C+or%5C+other%5C+forms%5C%3B%5C+all%5C+individuals%5C+of%5C+hybrid%5C+B%5C+are%5C+L.%5C+nelumbifolia%5C%3B%5C+except%5C+one%5C+individual%5C+of%5C+L.%5C+subspicata%5C+as%5C+backcrossed%2C%5C+the%5C+other%5C+parent%5C+individuals%5C+are%5C+100%25%5C+reliable.%5C+This%5C+study%5C+focused%5C+on%5C+molecular%5C+evidence%2C%5C+complemented%5C+by%5C+ecological%2C%5C+reproductive%5C+and%5C+other%5C+characteristics%2C%5C+we%5C+demonstrated%5C+that%5C+the%5C+morphologically%5C+intermediate%5C+individuals%E2%80%99%5C+origin%2C%5C+and%5C+the%5C+probability%5C+of%5C+belonging%5C+to%5C+each%5C+parental%5C+or%5C+hybrid%5C+class.%5C+And%5C+concluded%5C+that%5C+L.%5C+nelumbifolia%5C+and%5C+L.%5C+subspicata%5C+are%5C+the%5C+parents%5C+of%5C+putative%5C+hybrid%5C+A%2C%5C+L.%5C+vellerea%5C+may%5C+also%5C+be%5C+involved%5C+in%5C+the%5C+hybridization%5C+in%5C+some%5C+degree%2C%5C+hybrids%5C+mainly%5C+are%5C+the%5C+first%5C+generation%2C%5C+a%5C+few%5C+individuals%5C+may%5C+be%5C+involved%5C+in%5C+backcross%2C%5C+and%5C+most%5C+probably%5C+backcross%5C+with%5C+L.%5C+subspicata%5C+according%5C+to%5C+the%5C+anthesis%2C%5C+while%5C+the%5C+assumption%5C+of%5C+hybrid%5C+B%5C+is%5C+not%5C+supported."},{"jsname":"Environmental stresses could limit plant growth, development and propagation. Abiotic stress refers to the negative impact factors to the plants, such as extreme temperature, drought, flood, salinity, irradiation, chemicals and so on. To understand the mechanism of abiotic stress is very important.Membrane is the most sensitive organs in the cell that response to environmental changes. Cells respond and transduct environmental signals by changing content of membrane lipids and membrane proteins. The activity change of membrane phospholipase D (PLD) and the composition and content of membrane lipid molecules is one of the most anti-stress methods for the plants. It was reported that plants responded to some abiotic stresses such as freezing, thawing, seed aging and dehydration through changing lipid molecules especially the messenger phosphatidic acid (PA) and mutants of PLD were more tolerant to those stresses. It is important to investigate the characteristics and variation of membrane lipids and membrane proteins to understand the streee in plants.Three different kinds of stresses, including alpine scree temperature stress, allelopathy and Gamma irradiation stress, were studied in the present dissertation. And try to understand how plants response to those stresses by changing membrane system and the function of PLD in resistant to those stresses, lipidomic methods were used to profiling the changing of 11 lipids classes (160 lipids molecules) under thoses stresses. Moreover, PLD mutants were also used to study the role of PLD under those stresses. The mechanisms of plants response to stresses were very complicated; PLD and lipid molecules were not the only factors that response to stresses, the metabolism and phytohormones of tested plants under these stresses were also studied.In alpine scree of northwest Yunnan, the temperature was various from 33 °C during the midday to 4 °C at night, and the highest temperature could reach to 35 to 40 °C. Saussurea medusa and Solms-Laubachia linearifolia, which live in this environment, were chosen as studied model. The results showed that membrane lipid of these two plants significantly fluctuated with the temperature, while the double bond index (DBI) that had close relationship to temperature did not change. Furthermore, the the lysolipids which rise significantly under stresses did not change too much either. Laboratory mimic experiments also confermed the characteristics of lipids change to temperature in alpine scree plants. The results suggested that the plants living in such temperature changeable environment had already adapted to this situation and their membrane responded to the temperature was a kind of adaptation instead of stress response.Since the first introduction in Yunnan province of China in 1940s, E. adenophorum has spread very rapidly especially in southwestern China. Without understanding its invasive mechanism, it is impossible to control it. o-Hydroxycinnamic acid (o-HCA), an allelochmeical isolated from leachates of aerial parts of E. adenophorum were studied. o-HCA was abundant in aerial parts of E. adenophorum (1g/10kg fresh weight). The data showed that o-HCA not only had strong allelopathic effect on Arabidopsis seeds germination, but also inhibited seedling growth, and even induced root death of Arabidopsis seedlings. It could be proposed that o-HCA affected seedlings indirectly, through inducing root cell death, and it disturbed the water and ion absorption of plants and finally induced seedling to die. Interestingly, o-HCA could also inhibit E. adenophorum seed germination, while it showed no effect on its seedling growth. E. adenophorum can produce thousands of seeds and has the ability to vegetative reproduction, with which may alleviate the harmful effect of o-HCA on E. adenophorum. Unlike E. adenophorum, its neighbors’ population was inhibited, under this situation, E. adenophorum coule have better condition to live and invade successfully.Arabidopsis were irradiated with gamma rays, and 50-100 Gy gamma irradiation could inhibit seedling growth, and with the dosage above 200 Gy it could inhibit seedling flowering. Treated Arabidopsis wild types and their PLD a and d mutant with gamma ray showed no significant differences among them. The lipid molecules changes of seedlings under stress of gamma ray were also tested, and found that Gamama ray induced lipids degradation, among which, MGDG and DGDG degraded dramatically, while the average carbons in lipids did not changed. The lipids content (nmol per mg dry weight) decreased significantly, while the mol% content (mol% of total) changed slightly. Gamma irradiation also leaded to dramatically change of Arabidopsis seedling metabolomics and the phytohormones (ABA,ZR,JA,IAA).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AEnvironmental%5C+stresses%5C+could%5C+limit%5C+plant%5C+growth%2C%5C+development%5C+and%5C+propagation.%5C+Abiotic%5C+stress%5C+refers%5C+to%5C+the%5C+negative%5C+impact%5C+factors%5C+to%5C+the%5C+plants%2C%5C+such%5C+as%5C+extreme%5C+temperature%2C%5C+drought%2C%5C+flood%2C%5C+salinity%2C%5C+irradiation%2C%5C+chemicals%5C+and%5C+so%5C+on.%5C+To%5C+understand%5C+the%5C+mechanism%5C+of%5C+abiotic%5C+stress%5C+is%5C+very%5C+important.Membrane%5C+is%5C+the%5C+most%5C+sensitive%5C+organs%5C+in%5C+the%5C+cell%5C+that%5C+response%5C+to%5C+environmental%5C+changes.%5C+Cells%5C+respond%5C+and%5C+transduct%5C+environmental%5C+signals%5C+by%5C+changing%5C+content%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins.%5C+The%5C+activity%5C+change%5C+of%5C+membrane%5C+phospholipase%5C+D%5C+%5C%28PLD%5C%29%5C+and%5C+the%5C+composition%5C+and%5C+content%5C+of%5C+membrane%5C+lipid%5C+molecules%5C+is%5C+one%5C+of%5C+the%5C+most%5C+anti%5C-stress%5C+methods%5C+for%5C+the%5C+plants.%5C+It%5C+was%5C+reported%5C+that%5C+plants%5C+responded%5C+to%5C+some%5C+abiotic%5C+stresses%5C+such%5C+as%5C+freezing%2C%5C+thawing%2C%5C+seed%5C+aging%5C+and%5C+dehydration%5C+through%5C+changing%5C+lipid%5C+molecules%5C+especially%5C+the%5C+messenger%5C+phosphatidic%5C+acid%5C+%5C%28PA%5C%29%5C+and%5C+mutants%5C+of%5C+PLD%5C+were%5C+more%5C+tolerant%5C+to%5C+those%5C+stresses.%5C+It%5C+is%5C+important%5C+to%5C+investigate%5C+the%5C+characteristics%5C+and%5C+variation%5C+of%5C+membrane%5C+lipids%5C+and%5C+membrane%5C+proteins%5C+to%5C+understand%5C+the%5C+streee%5C+in%5C+plants.Three%5C+different%5C+kinds%5C+of%5C+stresses%2C%5C+including%5C+alpine%5C+scree%5C+temperature%5C+stress%2C%5C+allelopathy%5C+and%5C+Gamma%5C+irradiation%5C+stress%2C%5C+were%5C+studied%5C+in%5C+the%5C+present%5C+dissertation.%5C+And%5C+try%5C+to%5C+understand%5C+how%5C+plants%5C+response%5C+to%5C+those%5C+stresses%5C+by%5C+changing%5C+membrane%5C+system%5C+and%5C+the%5C+function%5C+of%5C+PLD%5C+in%5C+resistant%5C+to%5C+those%5C+stresses%2C%5C+lipidomic%5C+methods%5C+were%5C+used%5C+to%5C+profiling%5C+the%5C+changing%5C+of%5C+11%5C+lipids%5C+classes%5C+%5C%28160%5C+lipids%5C+molecules%5C%29%5C+under%5C+thoses%5C+stresses.%5C+Moreover%2C%5C+PLD%5C+mutants%5C+were%5C+also%5C+used%5C+to%5C+study%5C+the%5C+role%5C+of%5C+PLD%5C+under%5C+those%5C+stresses.%5C+The%5C+mechanisms%5C+of%5C+plants%5C+response%5C+to%5C+stresses%5C+were%5C+very%5C+complicated%5C%3B%5C+PLD%5C+and%5C+lipid%5C+molecules%5C+were%5C+not%5C+the%5C+only%5C+factors%5C+that%5C+response%5C+to%5C+stresses%2C%5C+the%5C+metabolism%5C+and%5C+phytohormones%5C+of%5C+tested%5C+plants%5C+under%5C+these%5C+stresses%5C+were%5C+also%5C+studied.In%5C+alpine%5C+scree%5C+of%5C+northwest%5C+Yunnan%2C%5C+the%5C+temperature%5C+was%5C+various%5C+from%5C+33%5C+%C2%B0C%5C+during%5C+the%5C+midday%5C+to%5C+4%5C+%C2%B0C%5C+at%5C+night%2C%5C+and%5C+the%5C+highest%5C+temperature%5C+could%5C+reach%5C+to%5C+35%5C+to%5C+40%5C+%C2%B0C.%5C+Saussurea%5C+medusa%5C+and%5C+Solms%5C-Laubachia%5C+linearifolia%2C%5C+which%5C+live%5C+in%5C+this%5C+environment%2C%5C+were%5C+chosen%5C+as%5C+studied%5C+model.%5C+The%5C+results%5C+showed%5C+that%5C+membrane%5C+lipid%5C+of%5C+these%5C+two%5C+plants%5C+significantly%5C+fluctuated%5C+with%5C+the%5C+temperature%2C%5C+while%5C+the%5C+double%5C+bond%5C+index%5C+%5C%28DBI%5C%29%5C+that%5C+had%5C+close%5C+relationship%5C+to%5C+temperature%5C+did%5C+not%5C+change.%5C+Furthermore%2C%5C+the%5C+the%5C+lysolipids%5C+which%5C+rise%5C+significantly%5C+under%5C+stresses%5C+did%5C+not%5C+change%5C+too%5C+much%5C+either.%5C+Laboratory%5C+mimic%5C+experiments%5C+also%5C+confermed%5C+the%5C+characteristics%5C+of%5C+lipids%5C+change%5C+to%5C+temperature%5C+in%5C+alpine%5C+scree%5C+plants.%5C+The%5C+results%5C+suggested%5C+that%5C+the%5C+plants%5C+living%5C+in%5C+such%5C+temperature%5C+changeable%5C+environment%5C+had%5C+already%5C+adapted%5C+to%5C+this%5C+situation%5C+and%5C+their%5C+membrane%5C+responded%5C+to%5C+the%5C+temperature%5C+was%5C+a%5C+kind%5C+of%5C+adaptation%5C+instead%5C+of%5C+stress%5C+response.Since%5C+the%5C+first%5C+introduction%5C+in%5C+Yunnan%5C+province%5C+of%5C+China%5C+in%5C+1940s%2C%5C+E.%5C+adenophorum%5C+has%5C+spread%5C+very%5C+rapidly%5C+especially%5C+in%5C+southwestern%5C+China.%5C+Without%5C+understanding%5C+its%5C+invasive%5C+mechanism%2C%5C+it%5C+is%5C+impossible%5C+to%5C+control%5C+it.%5C+o%5C-Hydroxycinnamic%5C+acid%5C+%5C%28o%5C-HCA%5C%29%2C%5C+an%5C+allelochmeical%5C+isolated%5C+from%5C+leachates%5C+of%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+were%5C+studied.%5C+o%5C-HCA%5C+was%5C+abundant%5C+in%5C+aerial%5C+parts%5C+of%5C+E.%5C+adenophorum%5C+%5C%281g%5C%2F10kg%5C+fresh%5C+weight%5C%29.%5C+The%5C+data%5C+showed%5C+that%5C+o%5C-HCA%5C+not%5C+only%5C+had%5C+strong%5C+allelopathic%5C+effect%5C+on%5C+Arabidopsis%5C+seeds%5C+germination%2C%5C+but%5C+also%5C+inhibited%5C+seedling%5C+growth%2C%5C+and%5C+even%5C+induced%5C+root%5C+death%5C+of%5C+Arabidopsis%5C+seedlings.%5C+It%5C+could%5C+be%5C+proposed%5C+that%5C+o%5C-HCA%5C+affected%5C+seedlings%5C+indirectly%2C%5C+through%5C+inducing%5C+root%5C+cell%5C+death%2C%5C+and%5C+it%5C+disturbed%5C+the%5C+water%5C+and%5C+ion%5C+absorption%5C+of%5C+plants%5C+and%5C+finally%5C+induced%5C+seedling%5C+to%5C+die.%5C+Interestingly%2C%5C+o%5C-HCA%5C+could%5C+also%5C+inhibit%5C+E.%5C+adenophorum%5C+seed%5C+germination%2C%5C+while%5C+it%5C+showed%5C+no%5C+effect%5C+on%5C+its%5C+seedling%5C+growth.%5C+E.%5C+adenophorum%5C+can%5C+produce%5C+thousands%5C+of%5C+seeds%5C+and%5C+has%5C+the%5C+ability%5C+to%5C+vegetative%5C+reproduction%2C%5C+with%5C+which%5C+may%5C+alleviate%5C+the%5C+harmful%5C+effect%5C+of%5C+o%5C-HCA%5C+on%5C+E.%5C+adenophorum.%5C+Unlike%5C+E.%5C+adenophorum%2C%5C+its%5C+neighbors%E2%80%99%5C+population%5C+was%5C+inhibited%2C%5C+under%5C+this%5C+situation%2C%5C+E.%5C+adenophorum%5C+coule%5C+have%5C+better%5C+condition%5C+to%5C+live%5C+and%5C+invade%5C+successfully.Arabidopsis%5C+were%5C+irradiated%5C+with%5C+gamma%5C+rays%2C%5C+and%5C+50%5C-100%5C+Gy%5C+gamma%5C+irradiation%5C+could%5C+inhibit%5C+seedling%5C+growth%2C%5C+and%5C+with%5C+the%5C+dosage%5C+above%5C+200%5C+Gy%5C+it%5C+could%5C+inhibit%5C+seedling%5C+flowering.%5C+Treated%5C+Arabidopsis%5C+wild%5C+types%5C+and%5C+their%5C+PLD%5C+a%5C+and%5C+d%5C+mutant%5C+with%5C+gamma%5C+ray%5C+showed%5C+no%5C+significant%5C+differences%5C+among%5C+them.%5C+The%5C+lipid%5C+molecules%5C+changes%5C+of%5C+seedlings%5C+under%5C+stress%5C+of%5C+gamma%5C+ray%5C+were%5C+also%5C+tested%2C%5C+and%5C+found%5C+that%5C+Gamama%5C+ray%5C+induced%5C+lipids%5C+degradation%2C%5C+among%5C+which%2C%5C+MGDG%5C+and%5C+DGDG%5C+degraded%5C+dramatically%2C%5C+while%5C+the%5C+average%5C+carbons%5C+in%5C+lipids%5C+did%5C+not%5C+changed.%5C+The%5C+lipids%5C+content%5C+%5C%28nmol%5C+per%5C+mg%5C+dry%5C+weight%5C%29%5C+decreased%5C+significantly%2C%5C+while%5C+the%5C+mol%25%5C+content%5C+%5C%28mol%25%5C+of%5C+total%5C%29%5C+changed%5C+slightly.%5C+Gamma%5C+irradiation%5C+also%5C+leaded%5C+to%5C+dramatically%5C+change%5C+of%5C+Arabidopsis%5C+seedling%5C+metabolomics%5C+and%5C+the%5C+phytohormones%5C+%5C%28ABA%EF%BC%8CZR%EF%BC%8CJA%EF%BC%8CIAA%5C%29."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"Glory Light International Fellowship for Chinese Botanists at Missouri Botanical Garden","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=REPRODUCTIVE-BIOLOGY&order=desc&&fq=dc.project.title_filter%3AGlory%5C+Light%5C+International%5C+Fellowship%5C+for%5C+Chinese%5C+Botanists%5C+at%5C+Missouri%5C+Botanical%5C+Garden"},{"jsname":"lastIndexed","jscount":"2024-12-07"}],"Funding Project","dc.project.title_filter")'>
Young Acad... [2]
Astilbe Bu... [1]
Basic Expe... [1]
Basic Work... [1]
CAS Key La... [1]
CAS Pionee... [1]
More...
Indexed By
SCI [544]
CSCD [52]
ISTP [1]
Funding Organization
CAS/SAFEA... [11]
National ... [11]
Chinese Ac... [9]
Chinese Ac... [7]
National K... [7]
Hundred Ta... [5]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 1408
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Submit date Ascending
Submit date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Issue Date Ascending
Issue Date Descending
Systematics and Biogeography of Aralia L. (Araliaceae):Revision of Aralia Sects. Aralia, Humiles, Nanae, andSciadodendron
期刊论文
出版物, 3111, 卷号: 57, 期号: 0, 页码: 1-172
Authors:
Jun Wen
Adobe PDF(7233Kb)
  |  
Favorite
  |  
View/Download:336/8
  |  
Submit date:2017/07/24
Aralia
Aralia Sect. Aralia
Aralia Sect. Dimorphanthus
Aralia Sect. Humiles
Aralia Sect. Nanae
Aralia Sect. pentapanax
Aralia Sect. Sciadodendron
Biogeography
Araliaceae
Systematics
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:278/4
  |  
Submit date:2017/07/19
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:208/1
  |  
Submit date:2017/07/19
A Global Indicator for Biological Invasion
期刊论文
Conservation Biology, 3111, 卷号: 20, 页码: 1635–1646
Authors:
Eugene M McCarthy
;
Jingdong Liu
;
Gao Lizhi
;
John F McDonald
Adobe PDF(233Kb)
  |  
Favorite
  |  
View/Download:236/4
  |  
Submit date:2017/07/19
The formation and function of plant volatiles: perfumes for pollinator attraction and defense
期刊论文
Physiology and metabolism, 3111, 期号: 0, 页码: 237-243
Authors:
Eran Pichersky
;
Jonathan Gershenzon
Adobe PDF(103Kb)
  |  
Favorite
  |  
View/Download:171/1
  |  
Submit date:2017/07/26
Boron in plants: deficiency and toxicity
期刊论文
出版物, 3111, 期号: 0, 页码: 1—24
Authors:
Juan J. Camacho-Cristóbal
;
Jesús Rexach
;
Agustín González-Fontes
Adobe PDF(123Kb)
  |  
Favorite
  |  
View/Download:180/1
  |  
Submit date:2017/07/21
Use of Substitute Species in Conservation Biology
期刊论文
Conservation Biology, 3111, 期号: 0, 页码: 1821-1826
Authors:
TIM CARO
;
JOHN EADIE
;
ANDREW SIH
Adobe PDF(172Kb)
  |  
Favorite
  |  
View/Download:271/1
  |  
Submit date:2017/07/24
Reproductive isolation between two sympatric bat-pollinated Bauhinia (Leguminosae)
期刊论文
JOURNAL OF PLANT RESEARCH, 2024, 卷号: 137, 期号: 1, 页码: 65-77
Authors:
Albuquerque-Lima, Sinzinando
;
Lopes, Ariadna Valentina
;
Machado, Isabel Cristina
View
  |  
Adobe PDF(3084Kb)
  |  
Favorite
  |  
View/Download:78/18
  |  
Submit date:2024/05/09
Chiropterophily
Floral morphology
Inter-taxon incompatibility
Nocturnal anthesis
Pollen deposition
Reproductive barriers
FLORAL ISOLATION
BREEDING SYSTEM
COLUMNAR CACTI
BIOLOGY
CAATINGA
ECOLOGY
PLANTS
CAESALPINIOIDEAE
HYBRIDIZATION
EVOLUTION
The fertilization process in Lithocarpus dealbatus (Fagaceae) and its implication on the sexual reproduction evolution of Fagales
期刊论文
PLANTA, 2023, 卷号: 258, 期号: 2, 页码: 23
Authors:
Yao,Kaiping
;
Deng,Min
;
Lin,Lin
;
Hu,Jinjin
;
Yang,Xiaorui
;
Li,Qiansheng
;
Feng,Zhuo
View
  |  
Adobe PDF(4824Kb)
  |  
Favorite
  |  
View/Download:82/16
  |  
Submit date:2024/05/09
Adaptation
Delayed fertilization
Pollen tube growth
Pollination mode
Trait evolution
POLLEN-TUBE GROWTH
ACTING SELF-INCOMPATIBILITY
WIND-POLLINATION
PHYLOGENETIC ANALYSIS
INSECT POLLINATION
EMBRYO DEVELOPMENT
MATING PATTERNS
CASTANEA
BIOLOGY
MORPHOLOGY
Comparative pollination ecology, fruit and seed set in Corunastylis species (Orchidaceae)
期刊论文
PLANT SYSTEMATICS AND EVOLUTION, 2023, 卷号: 309, 期号: 2, 页码: 7
Authors:
Ren,Zong-Xin
;
Grimm,Wendy
;
Towle,Brian
;
Qiao,Qi
;
Bickel,Daniel J.
;
Outim,Soraya K. M.
;
Bernhardt,Peter
View
  |  
Adobe PDF(1144Kb)
  |  
Favorite
  |  
View/Download:64/16
  |  
Submit date:2024/05/09
Chloropidae
Embryo development
Fly pollination
Fruit set
Pollinaria
pollinia
FLORAL BIOLOGY
FUNGUS GNATS
RARE ORCHID
POPULATIONS