×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
中国科学院东亚植... [179]
共享文献 [144]
昆明植物所硕博研究... [96]
资源植物与生物技术... [35]
中国西南野生生物种... [25]
植物化学与西部植物... [13]
More...
Authors
Sun Hang [66]
周浙昆 [43]
李德铢 [39]
龚洵 [37]
邓涛 [23]
Gao Lian-... [17]
More...
Document Type
Journal ... [460]
Thesis [96]
Book [15]
Academic p... [1]
Conference... [1]
Other [1]
More...
Date Issued
2021 [24]
2020 [33]
2019 [43]
2018 [36]
2017 [39]
2016 [40]
More...
Language
英语 [341]
中文 [105]
Source Publication
MOLECULAR... [27]
JOURNAL O... [25]
TAXON [17]
SCIENTIFI... [14]
REVIEW OF... [13]
ANNALS OF... [12]
More...
Funding Project
GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Pleistocene&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Flower scent is a very important character in rose breeding. However, many of 25,000 rose cultivars have no scent or weak scent. The tea scent of modern roses mainly originated from Rosa odorata (Andrews) Sweet, which is one of the most important ancestors of modern cultivated roses and the very important rose breeding resource. Due to the land expanding, habitat fragmentation and so on, R. odorata has been listed as an endangered species in ‘Chinese Plant Red Data Book—Rare and Endangered Plants’ and as the third-category endangered species in ‘Chinese Rare and Endangered Protective Plants List’. Therefore, it is urgent to protect this species and studying the conservation genetics of R. odorata is essentially important to work out a strategy of conservation.R. odorata comprises three double-petaled varieties (R. odorata var. odorata, R. odorata var. erubescens, and R. odorata var. pseudindica) and one single-petaled variety (R. odorata var. gigantea). The taxonomy of the three double-petaled varieties of R. odorata has been disputed for a long time. They have been treated as intraspecific taxa of R. odorata var. gigantea or R. chinensis by different botanist. According to the morphological analyses, Hurst (1941) inferred that R. odorata var. odorata was the hybrid between R. odorata var. gigantea and R. chinensis. Therefore, in order to clarify the right protective units, two single-copy nuclear genes (GAPDH and ncpGS), together with two plastid loci (trnL-F and psbA-trnH) were applied to study the hybrid origin of the three double-petaled varieties and to identify their possible parents. Our data suggested the hybrid origin of the three double-petaled varieties. We inferred that R. odorata var. gigantea could be the maternal parent and R. chinensis cultivars be the paternal parent. It is strongly suggested that the conservation of R. odorata is the conservation of its wild type, R. odorata var. gigantea. We first applied seven microsatellite loci (SSR) coupled with a single-copy nuclear gene GAPDH to study the genetic diversity and genetic structure of R. odorata var. gigantea. The main results are shown as follows:1. Genetic diversity:R. odorata var. gigantea maintains high degree of genetic diversity within and among populations (SSR: HT = 0.738, HS = 0.569, AR = 5.583, PPB = 97.35%, I = 1.703; GAPDH: HT = 0.739, HS = 0.540). We inferred that, outcrossing, long-lived tree species, clonal reproduction and general intraspecies hybridization between individuals, have contributed to the high degree of genetic diversity in R. odorata var. gigantea.2. Genetic differentiation and genetic structure:There was some degree of genetic differentiation among populations (SSR: GST = 0.229, FST = 0.240; GAPDH: GST = 0.269). The geographic isolation limited the dispersal of pollen or seeds, which resulted in the limitation of gene flow (Nm = 0.792). Then, the limited gene flow should be accounted for the genetic differentiation. Both the results of SSR data and haplotype analysis of GAPDH indicated that, the studied populations were divided into two distinct groups by Honghe River. These two groups showed significant genetic differentiation and represented two separate evolutionary lineages, which should be recognized as two evolutionary significant units (ESUs) for conservation concerns.3. Conservation of R. odorata:R. odorata var. gigantea has been listed in the ‘National Key Protective Wild Species List (II)’. Therefore, the conservation of this species is urgent. We inferred that, the main endangered reasons should be the habitat fragmentation and the reduction of populations and individuals per population resulted from environmental damage and human activities. We proposed that the strategy of in-situ conservation combining with ex-situ conservation should be carried out.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Pleistocene&order=desc&&fq=dc.project.title_filter%3AFlower%5C+scent%5C+is%5C+a%5C+very%5C+important%5C+character%5C+in%5C+rose%5C+breeding.%5C+However%2C%5C+many%5C+of%5C+25%2C000%5C+rose%5C+cultivars%5C+have%5C+no%5C+scent%5C+or%5C+weak%5C+scent.%5C+The%5C+tea%5C+scent%5C+of%5C+modern%5C+roses%5C+mainly%5C+originated%5C+from%5C+Rosa%5C+odorata%5C+%5C%28Andrews%5C%29%5C+Sweet%2C%5C+which%5C+is%5C+one%5C+of%5C+the%5C+most%5C+important%5C+ancestors%5C+of%5C+modern%5C+cultivated%5C+roses%5C+and%5C+the%5C+very%5C+important%5C+rose%5C+breeding%5C+resource.%5C+Due%5C+to%5C+the%5C+land%5C+expanding%2C%5C+habitat%5C+fragmentation%5C+and%5C+so%5C+on%2C%5C+R.%5C+odorata%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Plant%5C+Red%5C+Data%5C+Book%E2%80%94Rare%5C+and%5C+Endangered%5C+Plants%E2%80%99%5C+and%5C+as%5C+the%5C+third%5C-category%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Rare%5C+and%5C+Endangered%5C+Protective%5C+Plants%5C+List%E2%80%99.%5C+Therefore%2C%5C+it%5C+is%5C+urgent%5C+to%5C+protect%5C+this%5C+species%5C+and%5C+studying%5C+the%5C+conservation%5C+genetics%5C+of%5C+R.%5C+odorata%5C+is%5C+essentially%5C+important%5C+to%5C+work%5C+out%5C+a%5C+strategy%5C+of%5C+conservation.R.%5C+odorata%5C+comprises%5C+three%5C+double%5C-petaled%5C+varieties%5C+%5C%28R.%5C+odorata%5C+var.%5C+odorata%2C%5C+R.%5C+odorata%5C+var.%5C+erubescens%2C%5C+and%5C+R.%5C+odorata%5C+var.%5C+pseudindica%5C%29%5C+and%5C+one%5C+single%5C-petaled%5C+variety%5C+%5C%28R.%5C+odorata%5C+var.%5C+gigantea%5C%29.%5C+The%5C+taxonomy%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+of%5C+R.%5C+odorata%5C+has%5C+been%5C+disputed%5C+for%5C+a%5C+long%5C+time.%5C+They%5C+have%5C+been%5C+treated%5C+as%5C+intraspecific%5C+taxa%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+or%5C+R.%5C+chinensis%5C+by%5C+different%5C+botanist.%5C+According%5C+to%5C+the%5C+morphological%5C+analyses%2C%5C+Hurst%5C+%5C%281941%5C%29%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+odorata%5C+was%5C+the%5C+hybrid%5C+between%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+and%5C+R.%5C+chinensis.%5C+Therefore%2C%5C+in%5C+order%5C+to%5C+clarify%5C+the%5C+right%5C+protective%5C+units%2C%5C+two%5C+single%5C-copy%5C+nuclear%5C+genes%5C+%5C%28GAPDH%5C+and%5C+ncpGS%5C%29%2C%5C+together%5C+with%5C+two%5C+plastid%5C+loci%5C+%5C%28trnL%5C-F%5C+and%5C+psbA%5C-trnH%5C%29%5C+were%5C+applied%5C+to%5C+study%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+and%5C+to%5C+identify%5C+their%5C+possible%5C+parents.%5C+Our%5C+data%5C+suggested%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties.%5C+We%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+could%5C+be%5C+the%5C+maternal%5C+parent%5C+and%5C+R.%5C+chinensis%5C+cultivars%5C+be%5C+the%5C+paternal%5C+parent.%5C+It%5C+is%5C+strongly%5C+suggested%5C+that%5C+the%5C+conservation%5C+of%5C+R.%5C+odorata%5C+is%5C+the%5C+conservation%5C+of%5C+its%5C+wild%5C+type%2C%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+We%5C+first%5C+applied%5C+seven%5C+microsatellite%5C+loci%5C+%5C%28SSR%5C%29%5C+coupled%5C+with%5C+a%5C+single%5C-copy%5C+nuclear%5C+gene%5C+GAPDH%5C+to%5C+study%5C+the%5C+genetic%5C+diversity%5C+and%5C+genetic%5C+structure%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+The%5C+main%5C+results%5C+are%5C+shown%5C+as%5C+follows%5C%3A1.%5C+Genetic%5C+diversity%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+maintains%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+within%5C+and%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+HT%5C+%3D%5C+0.738%2C%5C+HS%5C+%3D%5C+0.569%2C%5C+AR%5C+%3D%5C+5.583%2C%5C+PPB%5C+%3D%5C+97.35%25%2C%5C+I%5C+%3D%5C+1.703%5C%3B%5C+GAPDH%5C%3A%5C+HT%5C+%3D%5C+0.739%2C%5C+HS%5C+%3D%5C+0.540%5C%29.%5C+We%5C+inferred%5C+that%2C%5C+outcrossing%2C%5C+long%5C-lived%5C+tree%5C+species%2C%5C+clonal%5C+reproduction%5C+and%5C+general%5C+intraspecies%5C+hybridization%5C+between%5C+individuals%2C%5C+have%5C+contributed%5C+to%5C+the%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+in%5C+R.%5C+odorata%5C+var.%5C+gigantea.2.%5C+Genetic%5C+differentiation%5C+and%5C+genetic%5C+structure%EF%BC%9AThere%5C+was%5C+some%5C+degree%5C+of%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+GST%5C+%3D%5C+0.229%2C%5C+FST%5C+%3D%5C+0.240%5C%3B%5C+GAPDH%5C%3A%5C+GST%5C+%3D%5C+0.269%5C%29.%5C+The%5C+geographic%5C+isolation%5C+limited%5C+the%5C+dispersal%5C+of%5C+pollen%5C+or%5C+seeds%2C%5C+which%5C+resulted%5C+in%5C+the%5C+limitation%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.792%5C%29.%5C+Then%2C%5C+the%5C+limited%5C+gene%5C+flow%5C+should%5C+be%5C+accounted%5C+for%5C+the%5C+genetic%5C+differentiation.%5C+Both%5C+the%5C+results%5C+of%5C+SSR%5C+data%5C+and%5C+haplotype%5C+analysis%5C+of%5C+GAPDH%5C+indicated%5C+that%2C%5C+the%5C+studied%5C+populations%5C+were%5C+divided%5C+into%5C+two%5C+distinct%5C+groups%5C+by%5C+Honghe%5C+River.%5C+These%5C+two%5C+groups%5C+showed%5C+significant%5C+genetic%5C+differentiation%5C+and%5C+represented%5C+two%5C+separate%5C+evolutionary%5C+lineages%2C%5C+which%5C+should%5C+be%5C+recognized%5C+as%5C+two%5C+evolutionary%5C+significant%5C+units%5C+%5C%28ESUs%5C%29%5C+for%5C+conservation%5C+concerns.3.%5C+Conservation%5C+of%5C+R.%5C+odorata%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+has%5C+been%5C+listed%5C+in%5C+the%5C+%E2%80%98National%5C+Key%5C+Protective%5C+Wild%5C+Species%5C+List%5C+%5C%28II%5C%29%E2%80%99.%5C+Therefore%2C%5C+the%5C+conservation%5C+of%5C+this%5C+species%5C+is%5C+urgent.%5C+We%5C+inferred%5C+that%2C%5C+the%5C+main%5C+endangered%5C+reasons%5C+should%5C+be%5C+the%5C+habitat%5C+fragmentation%5C+and%5C+the%5C+reduction%5C+of%5C+populations%5C+and%5C+individuals%5C+per%5C+population%5C+resulted%5C+from%5C+environmental%5C+damage%5C+and%5C+human%5C+activities.%5C+We%5C+proposed%5C+that%5C+the%5C+strategy%5C+of%5C+in%5C-situ%5C+conservation%5C+combining%5C+with%5C+ex%5C-situ%5C+conservation%5C+should%5C+be%5C+carried%5C+out."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Pleistocene&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"lastIndexed","jscount":"2023-09-27"}],"Funding Project","dc.project.title_filter")'>
JSPS (Japa... [2]
National K... [2]
National N... [2]
973 Progra... [1]
Aconitum c... [1]
Applied an... [1]
More...
Indexed By
SCI [248]
CSCD [16]
SSCI [1]
Funding Organization
John D. an... [6]
National N... [6]
CAS/SAFEA ... [4]
NSFC [4]
National N... [4]
Yunnan Nat... [4]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 574
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
WOS Cited Times Ascending
WOS Cited Times Descending
Title Ascending
Title Descending
Submit date Ascending
Submit date Descending
Issue Date Ascending
Issue Date Descending
Author Ascending
Author Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Use of Substitute Species in Conservation Biology
期刊论文
Conservation Biology, 3111, 期号: 0, 页码: 1821-1826
Authors:
TIM CARO
;
JOHN EADIE
;
ANDREW SIH
Adobe PDF(172Kb)
  |  
Favorite
  |  
View/Download:71/1
  |  
Submit date:2017/07/24
THE PLEISTOCENE PLANT REMAINS OF THE COASTAL PLAIN OF EASTERN NORTH AMERICA
期刊论文
THE PALAEOBOTANIST, 3111, 期号: 0, 页码: 79-98
Authors:
E.WILLARD BERRY
Adobe PDF(1010Kb)
  |  
Favorite
  |  
View/Download:34/1
  |  
Submit date:2017/07/21
Chromosome-level genome assembly and population genetic analysis of a critically endangered rhododendron provide insights into its conservation
期刊论文
PLANT JOURNAL, 2021, 卷号: 107, 期号: 5, 页码: 1533-1545
Authors:
Ma,Hong
;
Liu,Yongbo
;
Liu,Detuan
;
Sun,Weibang
;
Liu,Xiongfang
;
Wan,Youming
;
Zhang,Xiujiao
;
Zhang,Rengang
;
Yun,Quanzheng
;
Wang,Jihua
;
Li,Zhenghong
;
Ma,Yongpeng
Favorite
  |  
View/Download:20/0
  |  
Submit date:2022/04/02
genome sequencing
rhododendrons
deleterious mutation
population demography
conservation
HI-C
ANNOTATION
YUNNAN
TOOL
SELECTION
SEQUENCE
PROGRAM
SYSTEM
TREE
Distinct late Pleistocene subtropical-tropical divergence revealed by fifteen low-copy nuclear genes in a dominant species in South-East China
期刊论文
SCIENTIFIC REPORTS, 2021, 卷号: 11, 期号: 1, 页码: 4147
Authors:
Ye,Jun-Wei
;
Li,De-Zhu
Favorite
  |  
View/Download:22/0
  |  
Submit date:2022/04/02
BROAD-LEAVED FOREST
PHYLOGEOGRAPHIC BREAKS
DNA-SEQUENCE
SEA
POLYMORPHISM
CHLOROPLAST
INFERENCE
DYNAMICS
HISTORY
FLOW
Phylogeny and biogeography of Fagus (Fagaceae) based on 28 nuclear single/low-copy loci
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021
Authors:
Jiang,Lu
;
Bao,Qin
;
He,Wei
;
Fan,Deng-Mei
;
Cheng,Shan-Mei
;
Lopez-Pujol,Jordi
;
Chung,Myong Gi
;
Sakaguchi,Shota
;
Sanchez-Gonzalez,Arturo
;
Gedik,Aysun
;
Li,De-Zhu
;
Kou,Yi-Xuan
;
Zhang,Zhi-Yong
Favorite
  |  
View/Download:12/0
  |  
Submit date:2022/04/02
biogeography
Fagus
nuclear single-copy gene
phylogeny
species tree
MULTINERVIS NAKAI FAGACEAE
NORTHERN-HEMISPHERE
GENETIC-VARIATION
TIBETAN PLATEAU
WESTERN EURASIA
LAND BRIDGES
SYLVATICA L.
SEQUENCE
BEECH
EVOLUTION
Geoclimatic factors influence the population genetic connectivity of Incarvillea arguta (Bignoniaceae) in the Himalaya-Hengduan Mountains biodiversity hotspot
期刊论文
JOURNAL OF SYSTEMATICS AND EVOLUTION, 2021, 卷号: 59, 期号: 1, 页码: 151-168
Authors:
Rana,Santosh Kumar
;
Luo,Dong
;
Rana,Hum Kala
;
O'Neill,Alexander Robert
;
Sun,Hang
Favorite
  |  
View/Download:14/0
  |  
Submit date:2022/04/02
geoclimatic factors
Himalaya-Hengduan Mountains
Incarvillea arguta
phylogeography
population genetic connectivity
species distribution modelling
TIBETAN PLATEAU
MOLECULAR PHYLOGENY
CLIMATE-CHANGE
DISTRIBUTION MODELS
QUATERNARY CLIMATE
PHYLOGEOGRAPHY
UPLIFT
GROWTH
EVOLUTION
RISE
Niche overlap and divergence times support niche conservatism in eastern Asia-Eastern North America disjunct plants
期刊论文
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 卷号: 30, 期号: 10, 页码: 1990-2003
Authors:
Yin,Xue
;
Jarvie,Scott
;
Guo,Wen-Yong
;
Deng,Tao
;
Mao,Lingfeng
;
Zhang,Minhua
;
Chu,Chengjin
;
Qian,Hong
;
Svenning,Jens-Christian
;
He,Fangliang
Adobe PDF(1818Kb)
  |  
Favorite
  |  
View/Download:28/2
  |  
Submit date:2022/04/02
divergence times
EAS-ENA plant disjunction
ensemble ecological niche models
niche conservatism
niche overlap
pairwise species
SPECIES DISTRIBUTION MODELS
SAMPLE-SIZE
PSEUDO-ABSENCES
VASCULAR PLANTS
EVOLUTION
ECOLOGY
DIVERSITY
DISTRIBUTIONS
ACCURACY
ANGIOSPERMS
Plastome phylogenomics of the East Asian endemic genus Dobinea
期刊论文
PLANT DIVERSITY, 2021, 卷号: 43, 期号: 1, 页码: 35-42
Authors:
Liu,Changkun
;
Yang,Jin
;
Jin,Lei
;
Wang,Shuying
;
Yang,Zhenyan
;
Ji,Yunheng
Adobe PDF(3229Kb)
  |  
Favorite
  |  
View/Download:26/1
  |  
Submit date:2022/04/02
Neo-endemism
Divergence
Dobinea delavayi
Dobinea vulgaris
Dobineeae
Anacardiaceae
QUANTITATIVE RECONSTRUCTION
MOLECULAR PHYLOGENETICS
EVOLUTIONARY HISTORY
CHLOROPLAST GENOME
SAPINDALES
MONSOON
NUCLEAR
CHINA
DIVERSIFICATION
ANACARDIACEAE
Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives
期刊论文
ECOLOGY AND EVOLUTION, 2021, 卷号: 11, 期号: 16, 页码: 10794-10812
Authors:
Wambulwa,Moses C.
;
Milne,Richard
;
Wu,Zeng-Yuan
;
Spicer,Robert A.
;
Provan,Jim
;
Luo,Ya-Huang
;
Zhu,Guang-Fu
;
Wang,Wan-Ting
;
Wang,Hong
;
Gao,Lian-Ming
;
Li,De-Zhu
;
Liu,Jie
Adobe PDF(2089Kb)
  |  
Favorite
  |  
View/Download:30/0
  |  
Submit date:2022/04/02
biodiversity hotspot
climate change
elevational gradient
Himalayan flora
mountain ecosystem
spatiotemporal diversification
SPECIES RICHNESS PATTERNS
QINGHAI-TIBET PLATEAU
SOUTH ASIAN MONSOON
ELEVATIONAL GRADIENT
HENGDUAN MOUNTAINS
CLIMATE-CHANGE
BETA-DIVERSITY
QUATERNARY GLACIATION
GENETIC CONSEQUENCES
ARTIFICIAL DISPERSAL
Species delimitation with distinct methods based on molecular data to elucidate species boundaries in the Cycas taiwaniana complex (Cycadaceae)
期刊论文
TAXON, 2021, 卷号: 70, 期号: 3, 页码: 477-491
Authors:
Feng,Xiu-Yan
;
Wang,Xin-Hui
;
Chiang,Yu-Chung
;
Jian,Shu-Guang
;
Gong,Xun
Adobe PDF(843Kb)
  |  
Favorite
  |  
View/Download:11/1
  |  
Submit date:2022/04/02
Cycas taiwaniana complex
phylogeny
species delimitation
species tree
unified species concept
DNA-SEQUENCES
HAPLOTYPE RECONSTRUCTION
MICROSATELLITE MARKERS
GENETIC DIVERSITY
CHLOROPLAST
MITOCHONDRIAL
BIOGEOGRAPHY
INFERENCE
LIZARDS
RATES