×
验证码:
换一张
Forgotten Password?
Stay signed in
×
Log In
Chinese
|
English
中国科学院昆明植物研究所知识管理系统
Knowledge Management System of Kunming Institute of Botany,CAS
Log In
Register
ALL
ORCID
Title
Creator
Subject Area
Keyword
Funding Project
Document Type
Source Publication
Indexed By
Publisher
Date Issued
Date Accessioned
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
News
Search in the results
Collection
共享文献 [240]
中国科学院东亚植... [173]
昆明植物所硕博研... [132]
资源植物与生物技术... [79]
中国西南野生生物种... [49]
植物化学与西部植物... [19]
More...
Authors
李德铢 [47]
Sun Hang [34]
Yang Yong... [30]
许建初 [28]
杨祝良 [22]
王红 [20]
More...
Document Type
Journal ... [619]
Thesis [132]
Book [64]
Academic p... [3]
Conference... [2]
Other [1]
More...
Date Issued
2021 [35]
2020 [68]
2019 [64]
2018 [42]
2017 [62]
2016 [62]
More...
Language
英语 [460]
中文 [110]
Source Publication
FUNGAL DI... [36]
植物分类与资源学报 [21]
MYCOSPHER... [20]
PLOS ONE [19]
Annu. Rev... [15]
JOURNAL O... [15]
More...
Funding Project
0.05). For some populations, germination capacity in 12-h photoperiod was significantly higher than that in completed darkness(W-FD: P < 0.01, W-JD: P < 0.05).Genetic variation within and among six populations was assessed using AFLP markers. Genetic diversity was higher at species level (PPL = 69.19%, HE = 0.221) than at population level (PPL = 26.22%, HE = 0.095, Is =0.140), and populations in southeast Yunnan were strongly differentiated from those in southwest Yunnan (Nei’s GST = 0.575; FST = 0.655). UPGMA analysis demonstrated a clear genetic division between the two populations from DeHong (SW Yunnan; D-JD and D-HG) and the four from WenShan (SE Yunnan; W-FD, W-LH, W-ML, and W-MG). Within-population genetic variation was significantly correlated with population isolation (r(PPL) = -0.94, P = 0.006; r(HE) = -0.85, P = 0.032; r(Is) = -0.87, P = 0.025), but not with population size (r(PPL) = 0.63, P = 0.178; r(HE) = 0.54, P = 0.268; r(Is) = 0.56, P = 0.249).","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3ACraigia%5C+yunnanensis%5C+W.%5C+W.%5C+Smith%5C+%5C%26%5C+W.%5C+E.%5C+Evans%5C+%5C%28Tiliaceae%5C%29%5C+is%5C+an%5C+endangered%5C+deciduous%5C+tree%5C+species%5C+which%5C+has%5C+high%5C+scientific%5C+and%5C+economic%5C+value.%5C+C.%5C+yunnanensis%5C+is%5C+seriously%5C+threatened%5C+and%5C+has%5C+been%5C+pushed%5C+to%5C+the%5C+verge%5C+of%5C+extinction%5C+due%5C+to%5C+vegetation%5C+destruction%5C+in%5C+China%5C+and%5C+consequent%5C+contraction%5C+of%5C+its%5C+distribution.%5C+Hence%2C%5C+it%5C+was%5C+listed%5C+as%5C+a%5C+nationally%5C+rare%5C+and%5C+endangered%5C+plant%5C+in%5C+1999%5C+and%5C+has%5C+also%5C+been%5C+proposed%5C+as%5C+a%5C+second%5C-ranked%5C+plant%5C+for%5C+national%5C+protection%5C+in%5C+China%5C+and%5C+included%5C+in%5C+IUCN%5C+red%5C+list.%5C+As%5C+a%5C+scientifically%5C+important%5C+and%5C+valued%5C+tree%5C+species%5C+with%5C+endangered%5C+status%2C%5C+the%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+therefore%5C+represent%5C+is%5C+a%5C+genetic%5C+resource%5C+that%5C+must%5C+be%5C+conserved.%5C+To%5C+provide%5C+basic%5C+information%5C+for%5C+its%5C+conservation%2C%5C+the%5C+population%5C+dynamics%5C+and%5C+population%5C+size%5C+structures%2C%5C+pollination%5C+biology%5C+and%5C+breeding%5C+system%2C%5C+eleven%5C+fitness%5C-related%5C+characters%5C+and%5C+the%5C+genetic%5C+variability%5C+based%5C+on%5C+AFLP%5C+were%5C+comprehensively%5C+studied.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A%5C+A%5C+total%5C+of%5C+six%5C+wild%5C+populations%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+found%5C+in%5C+two%5C+disjunct%5C+regions%5C+of%5C+Yunnan%2C%5C+i.e.%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%29%5C+and%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%29%2C%5C+from%5C+2005%5C+to%5C+2007.%5C+Additionally%2C%5C+in%5C+all%5C+but%5C+one%5C+of%5C+the%5C+populations%5C+we%5C+detected%2C%5C+mature%5C+trees%5C+were%5C+felled%5C+between%5C+2005%5C+and%5C+2007%2C%5C+so%5C+destruction%5C+of%5C+most%5C+of%5C+these%5C+populations%5C+is%5C+ongoing.%5C+Across%5C+the%5C+six%5C+populations%5C+of%5C+extant%5C+C.%5C+yunnanensis%5C+found%5C+during%5C+our%5C+study%2C%5C+the%5C+total%5C+number%5C+of%5C+mature%5C+%5C%28reproductive%5C%29%5C+individuals%5C+detected%5C+was%5C+584%5C+in%5C+2007%EF%BC%8Cplus%5C+larger%5C+numbers%5C+of%5C+seedling%5C+and%5C+resprouts%5C+from%5C+cut%5C+trunks.%5C+The%5C+result%5C+of%5C+surveying%5C+Population%5C+structure%5C+showed%5C+that%5C+there%5C+are%5C+two%5C+regeneration%5C+types%5C+which%5C+are%5C+seedlings%5C+and%5C+sprouts.%5C+Seedlings%5C+occurred%5C+abundantly%5C+in%5C+gaps%5C+or%5C+open%5C+areas%5C+and%5C+the%5C+size%5C+class%5C+frequency%5C+distributions%5C+were%5C+often%5C+discontinuous%2C%5C+and%5C+the%5C+same%5C+general%5C+pattern%5C+occurred%5C+in%5C+all%5C+the%5C+investigated%5C+populations%5C+for%5C+juveniles%5C+and%5C+adults.%5C+The%5C+numbers%5C+of%5C+seed%5C-origin%5C+individuals%5C+did%5C+however%5C+decline%5C+sharply%5C+with%5C+increasing%5C+size%2C%5C+indicating%5C+a%5C+high%5C+mortality%5C+rate%5C+going%5C+from%5C+seedling%5C+to%5C+sapling%5C+stage%5C+may%5C+be%5C+a%5C+problem%5C+for%5C+this%5C+species.%5C+Additionally%2C%5C+the%5C+cash%5C+crop%5C+cultivation%5C+and%5C+logging%5C+seriously%5C+threaten%5C+the%5C+survival%5C+of%5C+the%5C+species.%5C+We%5C+conducted%5C+field%5C+observations%5C+and%5C+artificial%5C+pollination%5C+experiments%5C+on%5C+the%5C+floral%5C+biology%2C%5C+pollination%5C+process%5C+and%5C+breeding%5C+system%5C+of%5C+Craigia%5C+yunnanensis%5C+in%5C+Fadou%2C%5C+Xichou%5C+county%5C+of%5C+Yunnan%5C+province.%5C+The%5C+lifespan%5C+of%5C+a%5C+single%5C+hermaphrodite%5C+flower%5C+is%5C+approximately%5C+3%5C-4%5C+days.%5C+A%5C+cyme%5C+has%5C+2%5C-9%5C+flowered.%5C+The%5C+flowering%5C+period%5C+of%5C+an%5C+inflorescence%5C+is%5C+usually%5C+5%5C-14%5C+days.%5C+The%5C+flowers%5C+of%5C+C.%5C+yunnanensis%5C+were%5C+protandrous.%5C+The%5C+stamens%5C+were%5C+within%5C+petal%5C-like%5C+staminodes%5C+in%5C+the%5C+opening%5C+flowers%5C+until%5C+the%5C+flower%5C+withered.%5C+Without%5C+touchment%2C%5C+the%5C+bractlike%5C+staminodes%5C+can%E2%80%99t%5C+open.%5C+Self%5C-pollination%5C+was%5C+partially%5C+avoided%5C+by%5C+temporal%5C+and%5C+spatial%5C+isolation%5C+of%5C+male%5C+and%5C+female%5C+organs%5C+within%5C+the%5C+same%5C+flower.%5C+However%2C%5C+autogamous%5C+and%5C+geitonogamous%5C+pollination%5C+is%5C+unavoidable%5C+because%5C+of%5C+the%5C+large%5C+number%5C+of%5C+flowers%5C+on%5C+a%5C+single%5C+tree%5C+and%5C+the%5C+action%5C+of%5C+pollinators.%5C+The%5C+values%5C+of%5C+both%5C+OCI%5C+%5C%28%E2%89%A54%5C%29%5C+and%5C+P%5C%2FO%5C+%5C%281381%5C%29%5C+and%5C+the%5C+results%5C+of%5C+bagging%5C+tests%5C+indicated%5C+there%5C+was%5C+no%5C+apomixes%5C+in%5C+C.%5C+yunnanensis%5C+and%5C+the%5C+breeding%5C+system%5C+of%5C+the%5C+species%5C+was%5C+outcrossing%5C+with%5C+partial%5C+self%5C-compatibility%5C+and%5C+the%5C+pollinators%5C+were%5C+required%5C+during%5C+the%5C+pollination%5C+process.%5C+The%5C+most%5C+frequent%5C+effective%5C+floral%5C+visitor%5C+was%5C+only%5C+beautiful%5C+fly%5C+%5C%28Chrysomyia%5C+megacephala%5C%29.%5C+Fruit%5C+set%5C+and%5C+seed%5C+set%5C+in%5C+natural%5C+condition%5C+were%5C+56.67%C2%B13.85%EF%BC%85%5C+and%5C+6.26%C2%B10.75%EF%BC%85%2C%5C+respectively.%5C+Therefore%2C%5C+lack%5C+of%5C+pollinators%2C%5C+low%5C+pollination%5C+efficiency%2C%5C+unavoidable%5C+geitonogamous%5C+pollination%5C+and%5C+partial%5C+self%5C-compatibility%5C+and%5C+inbreeding%5C+in%5C+small%5C+populations%5C+may%5C+account%5C+for%5C+the%5C+low%5C+fruit%5C+set%2C%5C+especially%5C+seed%5C+set.Variations%5C+in%5C+seed%5C+traits%2C%5C+seed%5C+germination%2C%5C+and%5C+seedling%5C+growth%5C+characters%5C+among%5C+six%5C+Craigia%5C+yunnanensis%5C+populations%5C+were%5C+evaluated.%5C+All%5C+seed%5C+and%5C+seedling%5C+traits%5C+exhibited%5C+significant%5C+differences%5C+among%5C+populations%5C+%5C%28P%5C+%3C%5C+0.05%5C%29.%5C+The%5C+fitness%5C+of%5C+seed%5C+as%5C+assessed%5C+by%5C+seed%5C+size%2C%5C+seed%5C+germination%5C+and%5C+seedling%5C+trait%5C+was%5C+independent%5C+of%5C+population%5C+size%2C%5C+except%5C+for%5C+the%5C+number%5C+of%5C+seeds%5C+per%5C+capsule%5C+%5C%28r%5C+%3D%5C+0.93%EF%BC%8CP%5C+%3C%5C+0.01%5C%29.%5C+Correlations%5C+between%5C+geo%5C-climatic%5C+variables%5C+of%5C+seed%5C+origin%5C+and%5C+seed%5C+and%5C+seedling%5C+related%5C+characters%5C+were%5C+insignificant%5C+%5C%28P%5C+%3E%5C+0.05%5C%29.%5C+For%5C+some%5C+populations%2C%5C+germination%5C+capacity%5C+in%5C+12%5C-h%5C+photoperiod%5C+was%5C+significantly%5C+higher%5C+than%5C+that%5C+in%5C+completed%5C+darkness%EF%BC%88W%5C-FD%5C%3A%5C+P%5C+%3C%5C+0.01%2C%5C+W%5C-JD%5C%3A%5C+P%5C+%3C%5C+0.05%EF%BC%89.Genetic%5C+variation%5C+within%5C+and%5C+among%5C+six%5C+populations%5C+was%5C+assessed%5C+using%5C+AFLP%5C+markers.%5C+Genetic%5C+diversity%5C+was%5C+higher%5C+at%5C+species%5C+level%5C+%5C%28PPL%5C+%3D%5C+69.19%25%2C%5C+HE%5C+%3D%5C+0.221%5C%29%5C+than%5C+at%5C+population%5C+level%5C+%5C%28PPL%5C+%3D%5C+26.22%25%2C%5C+HE%5C+%3D%5C+0.095%2C%5C+Is%5C+%3D0.140%5C%29%2C%5C+and%5C+populations%5C+in%5C+southeast%5C+Yunnan%5C+were%5C+strongly%5C+differentiated%5C+from%5C+those%5C+in%5C+southwest%5C+Yunnan%5C+%5C%28Nei%E2%80%99s%5C+GST%5C+%3D%5C+0.575%5C%3B%5C+FST%5C+%3D%5C+0.655%5C%29.%5C+UPGMA%5C+analysis%5C+demonstrated%5C+a%5C+clear%5C+genetic%5C+division%5C+between%5C+the%5C+two%5C+populations%5C+from%5C+DeHong%5C+%5C%28SW%5C+Yunnan%5C%3B%5C+D%5C-JD%5C+and%5C+D%5C-HG%5C%29%5C+and%5C+the%5C+four%5C+from%5C+WenShan%5C+%5C%28SE%5C+Yunnan%5C%3B%5C+W%5C-FD%2C%5C+W%5C-LH%2C%5C+W%5C-ML%2C%5C+and%5C+W%5C-MG%5C%29.%5C+Within%5C-population%5C+genetic%5C+variation%5C+was%5C+significantly%5C+correlated%5C+with%5C+population%5C+isolation%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+%5C-0.94%2C%5C+P%5C+%3D%5C+0.006%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+%5C-0.85%2C%5C+P%5C+%3D%5C+0.032%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+%5C-0.87%2C%5C+P%5C+%3D%5C+0.025%5C%29%2C%5C+but%5C+not%5C+with%5C+population%5C+size%5C+%5C%28r%5C%28PPL%5C%29%5C+%3D%5C+0.63%2C%5C+P%5C+%3D%5C+0.178%5C%3B%5C+r%5C%28HE%5C%29%5C+%3D%5C+0.54%2C%5C+P%5C+%3D%5C+0.268%5C%3B%5C+r%5C%28Is%5C%29%5C+%3D%5C+0.56%2C%5C+P%5C+%3D%5C+0.249%5C%29."},{"jsname":"Cycas micholitzii complex is composed of 5 species: C. micholitzii Dyer, C. bifida (Dyer) K. D. Hill,C. longipetiolula D. Y. Wang, C. debaoensis Y. C. Zhong et C J. Chen, C. multipinnata C J. Chen et S. Y. Yang,and distributed from southwest China to central Vietnam and eastern Laos. Based on sequence data from two maternally inherited cpDNA and one biparentally nuclear DNA fragments, our study revealed the population genetic structure of C. micholitzii complex and explored the potential causes. The evolutionary and demographic histories were investigated. The genetic relationship among species in the complex was also clarified.The results were summarized as follows: 1. Phylogeographic analysis based on chloroplast sequences,We examined chloroplast sequence variation of the atpB-rbcLand psbA-trnHintergenic spacers in 27 populations of C. micholitzii complex, recovering 26 haplotypes. The average within-population diversity (HS = 0.140) was low while total diversity (HT = 0.911) was high. Population differentiation was also high(GST = 0.846, NST = 0.919), indicating significant phylogeographical structure (NST > GST,p < 0.001) and low levels of seed-based gene flow. C. debaoensis (Cycadaceae) is an endangered species restricted to the border of Guangxi and Yunnan province in southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. We examined chloroplast sequence variation of the cpDNA sequences from 11 populations of this species. Significant population genetic differentiation was detected (GST= 0.684 and FST = 0.74160). There was marked genetic differentiation between populations in the sand and karst regions and no expansion was detected. Climate changes during glacial periods have had significant effects on the current distribution of cycads. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the original refugia in southwest China which have favorable habitats in glacial period. These results imply that small refugia were maintained in both sand and karst regions during the LGM (last glacial maximum). This species had no postglacial recolonization and only stayed in these refugia up to now. The low within-population diversity of C. debaoensis suggests that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. Relatively high genetic and haplotype diversities were detected in the newly discovered populations, which located at intermediate locality of sand regions and had morphological variation; this is probably the consequence of the admixture of different haplotypes colonizing the area from separate sources. C. micholitzii occurs in the Annan Highlands in central Vietnam near the Laos border. C. bifida occurs in North Vietnam; its distribution extends across the border into adjacent localities in Guangxi and Yunnan in China. For the comparability between them,theywere considered as the same species C. micholitzii by many academicians. The cpDNA sequences from 11 populations showed that these very controversial species, C. micholitzii and C. bifida, is paraphyletic and should belong to the same species C. micholitzii. AMOVA analysis showed that the component of among-population within region/species (76.46%) was unexpectedly larger than the among-species/region component (14.97%), which also indicates that there is no justification for recognizing two species as C. micholitzii and C. bifida. This hypothesis was also supported by the geological data, especially the neotectonic history of the indo-china block, which started to move south since Oligocene and cause the geographic isolation of these two groups. Therefore, the most likely explanation to the phenotypic similarities between these two groups may be the retention of ancestral polymorphisms in the paraphyletic group due to incomplete lineage sorting. Furthermore, the similarities may also be ascribed to pollen-mediated gene flow among geographically proximate populations and/or phenotypic convergence under similar selection schemes in the same region. C.micholitzi had the higest genetic diversity (HT = 0.980,) and genetic differentiation (GST = 0.830, NST = 0.915) among the C. micholitzii complex. The high genetic diversity might be attributed to its long evolutionary history, highly diverse habitats. The ineffective mode of seed dispersal and dramatic neotectonic movement in the distribution range of this species could result in the high genetic differentiation. 2. Phylogeographic analysis based on nuclear ribosomal sequences, We sequenced the nrDNA ITS in all 27 populations sampled, 7 haplotypes were identified, among which C. micholitzii had 6, while C. multipinnata, C. longipetiolula and C. debaoensis shared the remaining one. Compared to chloroplast genes, nuclear genes had higher correlation between genetic and geographical distance, but lower interspecies differentiation (54.42% vs 25.24%). Phylogeographical structure of C. micholitzii and C.bifida based on ITS Variation was consistent with the morphology differentiation. This similar in nuclear gene should be ascribed to pollen-mediated gene flow among geographically proximate populations.Long-distance gene flow over the two groups was clearly interrupted, which brought on the nrDNA genetic differenciation between the geographically isolated groups, to a certain extent affected the morphological variation. 3. Interspecies relationships among Cycas micholitzii complex, We analysed chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers in 27 populations sampled of C. micholitzii complex, AMOVA analysis showed that the component of among-species/region component (59.21%). However, phylogenic analysis showed that the haplotypes of C. micholitzii complex couldn`t grouped into four clusters closely corresponding to the narrowly defined C. micholitzi, C. multipinnata, C. debaoensis and C. longipetiolula. We concluded that the conflict may result from several factors: firstly incomplete lineage sorting of C. micholitzii; secondly hybridization/introgression of sympatrically cycads, which would be supported by evidence base on nrDNA ITS sequences; thirdly intramolecular recombination in cpDNA of cycads; eventually the neotectonic movement in the distribution range of this species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3ACycas%5C+micholitzii%5C+complex%5C+is%5C+composed%5C+of%5C+5%5C+species%5C%3A%5C+C.%5C+micholitzii%5C+Dyer%2C%5C+C.%5C+bifida%5C+%5C%28Dyer%5C%29%5C+K.%5C+D.%5C+Hill%2CC.%5C+longipetiolula%5C+D.%5C+Y.%5C+Wang%2C%5C+C.%5C+debaoensis%5C+Y.%5C+C.%5C+Zhong%5C+et%5C+C%5C+J.%5C+Chen%2C%5C+C.%5C+multipinnata%5C+C%5C+J.%5C+Chen%5C+et%5C+S.%5C+Y.%5C+Yang%EF%BC%8Cand%5C+distributed%5C+from%5C+southwest%5C+China%5C+to%5C+central%5C+Vietnam%5C+and%5C+eastern%5C+Laos.%5C+Based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+population%5C+genetic%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+and%5C+explored%5C+the%5C+potential%5C+causes.%5C+The%5C+evolutionary%5C+and%5C+demographic%5C+histories%5C+were%5C+investigated.%5C+The%5C+genetic%5C+relationship%5C+among%5C+species%5C+in%5C+the%5C+complex%5C+was%5C+also%5C+clarified.The%5C+results%5C+were%5C+summarized%5C+as%5C+follows%5C%3A%5C+1.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+chloroplast%5C+sequences%EF%BC%8CWe%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcLand%5C+psbA%5C-trnHintergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+recovering%5C+26%5C+haplotypes.%5C+The%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.140%5C%29%5C+was%5C+low%5C+while%5C+total%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.911%5C%29%5C+was%5C+high.%5C+Population%5C+differentiation%5C+was%5C+also%5C+high%5C%28GST%5C+%3D%5C+0.846%2C%5C+NST%5C+%3D%5C+0.919%5C%29%2C%5C+indicating%5C+significant%5C+phylogeographical%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2Cp%5C+%3C%5C+0.001%5C%29%5C+and%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow.%5C+C.%5C+debaoensis%5C+%5C%28Cycadaceae%5C%29%5C+is%5C+an%5C+endangered%5C+species%5C+restricted%5C+to%5C+the%5C+border%5C+of%5C+Guangxi%5C+and%5C+Yunnan%5C+province%5C+in%5C+southwest%5C+China.%5C+This%5C+species%5C+has%5C+been%5C+classified%5C+into%5C+two%5C+types%5C%3A%5C+sand%5C+and%5C+karst%2C%5C+according%5C+to%5C+the%5C+soil%5C+matrix%5C+they%5C+grow%5C+on.%5C+We%5C+examined%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+of%5C+this%5C+species.%5C+Significant%5C+population%5C+genetic%5C+differentiation%5C+was%5C+detected%5C+%5C%28GST%3D%5C+0.684%5C+and%5C+FST%5C+%3D%5C+0.74160%5C%29.%5C+There%5C+was%5C+marked%5C+genetic%5C+differentiation%5C+between%5C+populations%5C+in%5C+the%5C+sand%5C+and%5C+karst%5C+regions%5C+and%5C+no%5C+expansion%5C+was%5C+detected.%5C+Climate%5C+changes%5C+during%5C+glacial%5C+periods%5C+have%5C+had%5C+significant%5C+effects%5C+on%5C+the%5C+current%5C+distribution%5C+of%5C+cycads.%5C+The%5C+molecular%5C+phylogenetic%5C+data%2C%5C+together%5C+with%5C+the%5C+geographic%5C+distribution%5C+of%5C+the%5C+haplotypes%2C%5C+suggest%5C+that%5C+C.%5C+debaoensis%5C+experienced%5C+range%5C+contraction%5C+during%5C+glacial%5C+periods%2C%5C+and%5C+that%5C+the%5C+current%5C+populations%5C+are%5C+still%5C+confined%5C+to%5C+the%5C+original%5C+refugia%5C+in%5C+southwest%5C+China%5C+which%5C+have%5C+favorable%5C+habitats%5C+in%5C+glacial%5C+period.%5C+These%5C+results%5C+imply%5C+that%5C+small%5C+refugia%5C+were%5C+maintained%5C+in%5C+both%5C+sand%5C+and%5C+karst%5C+regions%5C+during%5C+the%5C+LGM%5C+%5C%28last%5C+glacial%5C+maximum%5C%29.%5C+This%5C+species%5C+had%5C+no%5C+postglacial%5C+recolonization%5C+and%5C+only%5C+stayed%5C+in%5C+these%5C+refugia%5C+up%5C+to%5C+now.%5C+The%5C+low%5C+within%5C-population%5C+diversity%5C+of%5C+C.%5C+debaoensis%5C+suggests%5C+that%5C+there%5C+were%5C+strong%5C+bottleneck%5C+events%5C+or%5C+founder%5C+effects%5C+within%5C+each%5C+separate%5C+region%5C+during%5C+the%5C+Quaternary%5C+climatic%5C+oscillations.%5C+Relatively%5C+high%5C+genetic%5C+and%5C+haplotype%5C+diversities%5C+were%5C+detected%5C+in%5C+the%5C+newly%5C+discovered%5C+populations%2C%5C+which%5C+located%5C+at%5C+intermediate%5C+locality%5C+of%5C+sand%5C+regions%5C+and%5C+had%5C+morphological%5C+variation%5C%3B%5C+this%5C+is%5C+probably%5C+the%5C+consequence%5C+of%5C+the%5C+admixture%5C+of%5C+different%5C+haplotypes%5C+colonizing%5C+the%5C+area%5C+from%5C+separate%5C+sources.%5C+%5C+C.%5C+micholitzii%5C+occurs%5C+in%5C+the%5C+Annan%5C+Highlands%5C+in%5C+central%5C+Vietnam%5C+near%5C+the%5C+Laos%5C+border.%5C+C.%5C+bifida%5C+occurs%5C+in%5C+North%5C+Vietnam%5C%3B%5C+its%5C+distribution%5C+extends%5C+across%5C+the%5C+border%5C+into%5C+adjacent%5C+localities%5C+in%5C+Guangxi%5C+and%5C+Yunnan%5C+in%5C+China.%5C+For%5C+the%5C+comparability%5C+between%5C+them%2Ctheywere%5C+considered%5C+as%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii%5C+by%5C+many%5C+academicians.%5C+The%5C+cpDNA%5C+sequences%5C+from%5C+11%5C+populations%5C+showed%5C+that%5C+these%5C+very%5C+controversial%5C+species%2C%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida%2C%5C+is%5C+paraphyletic%5C+and%5C+should%5C+belong%5C+to%5C+the%5C+same%5C+species%5C+C.%5C+micholitzii.%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-population%5C+within%5C+region%5C%2Fspecies%5C+%5C%2876.46%25%5C%29%5C+was%5C+unexpectedly%5C+larger%5C+than%5C+the%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2814.97%25%5C%29%2C%5C+which%5C+also%5C+indicates%5C+that%5C+there%5C+is%5C+no%5C+justification%5C+for%5C+recognizing%5C+two%5C+species%5C+as%5C+C.%5C+micholitzii%5C+and%5C+C.%5C+bifida.%5C+This%5C+hypothesis%5C+was%5C+also%5C+supported%5C+by%5C+the%5C+geological%5C+data%2C%5C+especially%5C+the%5C+neotectonic%5C+history%5C+of%5C+the%5C+indo%5C-china%5C+block%2C%5C+which%5C+started%5C+to%5C+move%5C+south%5C+since%5C+Oligocene%5C+and%5C+cause%5C+the%5C+geographic%5C+isolation%5C+of%5C+these%5C+two%5C+groups.%5C+Therefore%2C%5C+the%5C+most%5C+likely%5C+explanation%5C+to%5C+the%5C+phenotypic%5C+similarities%5C+between%5C+these%5C+two%5C+groups%5C+may%5C+be%5C+the%5C+retention%5C+of%5C+ancestral%5C+polymorphisms%5C+in%5C+the%5C+paraphyletic%5C+group%5C+due%5C+to%5C+incomplete%5C+lineage%5C+sorting.%5C+Furthermore%2C%5C+the%5C+similarities%5C+may%5C+also%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations%5C+and%5C%2For%5C+phenotypic%5C+convergence%5C+under%5C+similar%5C+selection%5C+schemes%5C+in%5C+the%5C+same%5C+region.%5C+C.micholitzi%5C+had%5C+the%5C+higest%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.980%2C%5C%29%5C+and%5C+genetic%5C+differentiation%5C+%5C%28GST%5C+%3D%5C+0.830%2C%5C+NST%5C+%3D%5C+0.915%5C%29%5C+among%5C+the%5C+C.%5C+micholitzii%5C+complex.%5C+The%5C+high%5C+genetic%5C+diversity%5C+might%5C+be%5C+attributed%5C+to%5C+its%5C+long%5C+evolutionary%5C+history%2C%5C+highly%5C+diverse%5C+habitats.%5C+The%5C+ineffective%5C+mode%5C+of%5C+seed%5C+dispersal%5C+and%5C+dramatic%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species%5C+could%5C+result%5C+in%5C+the%5C+high%5C+genetic%5C+differentiation.%5C+2.%5C+Phylogeographic%5C+analysis%5C+based%5C+on%5C+nuclear%5C+ribosomal%5C+sequences%2C%5C+We%5C+sequenced%5C+the%5C+nrDNA%5C+ITS%5C+in%5C+all%5C+27%5C+populations%5C+sampled%2C%5C+7%5C+haplotypes%5C+were%5C+identified%2C%5C+among%5C+which%5C+C.%5C+micholitzii%5C+had%5C+6%2C%5C+while%5C+C.%5C+multipinnata%2C%5C+C.%5C+longipetiolula%5C+and%5C+C.%5C+debaoensis%5C+shared%5C+the%5C+remaining%5C+one.%5C+Compared%5C+to%5C+chloroplast%5C+genes%2C%5C+nuclear%5C+genes%5C+had%5C+higher%5C+correlation%5C+between%5C+genetic%5C+and%5C+geographical%5C+distance%2C%5C+but%5C+lower%5C+interspecies%5C+differentiation%5C+%5C%2854.42%25%5C+vs%5C+25.24%25%5C%29.%5C+Phylogeographical%5C+structure%5C+of%5C+C.%5C+micholitzii%5C+and%5C+C.bifida%5C+based%5C+on%5C+ITS%5C+Variation%5C+was%5C+consistent%5C+with%5C+the%5C+morphology%5C+differentiation.%5C+This%5C+similar%5C+in%5C+nuclear%5C+gene%5C+should%5C+be%5C+ascribed%5C+to%5C+pollen%5C-mediated%5C+gene%5C+flow%5C+among%5C+geographically%5C+proximate%5C+populations.Long%5C-distance%5C+gene%5C+flow%5C+over%5C+the%5C+two%5C+groups%5C+was%5C+clearly%5C+interrupted%2C%5C+which%5C+brought%5C+on%5C+the%5C+nrDNA%5C+genetic%5C+differenciation%5C+between%5C+the%5C+geographically%5C+isolated%5C+groups%2C%5C+to%5C+a%5C+certain%5C+extent%5C+affected%5C+the%5C+morphological%5C+variation.%5C+3.%5C+Interspecies%5C+relationships%5C+among%5C+Cycas%5C+micholitzii%5C+complex%2C%5C+We%5C+analysed%5C+chloroplast%5C+sequence%5C+variation%5C+of%5C+the%5C+atpB%5C-rbcL%5C+and%5C+psbA%5C-trnH%5C+intergenic%5C+spacers%5C+in%5C+27%5C+populations%5C+sampled%5C+of%5C+C.%5C+micholitzii%5C+complex%2C%5C+AMOVA%5C+analysis%5C+showed%5C+that%5C+the%5C+component%5C+of%5C+among%5C-species%5C%2Fregion%5C+component%5C+%5C%2859.21%25%5C%29.%5C+However%2C%5C+phylogenic%5C+analysis%5C+showed%5C+that%5C+the%5C+haplotypes%5C+of%5C+C.%5C+micholitzii%5C+complex%5C+couldn%60t%5C+grouped%5C+into%5C+four%5C+clusters%5C+closely%5C+corresponding%5C+to%5C+the%5C+narrowly%5C+defined%5C+C.%5C+micholitzi%2C%5C+C.%5C+multipinnata%2C%5C+C.%5C+debaoensis%5C+and%5C+C.%5C+longipetiolula.%5C+We%5C+concluded%5C+that%5C+the%5C+conflict%5C+may%5C+result%5C+from%5C+several%5C+factors%5C%3A%5C+firstly%5C+incomplete%5C+lineage%5C+sorting%5C+of%5C+C.%5C+micholitzii%5C%3B%5C+secondly%5C+hybridization%5C%2Fintrogression%5C+of%5C+sympatrically%5C+cycads%2C%5C+which%5C+would%5C+be%5C+supported%5C+by%5C+evidence%5C+base%5C+on%5C+nrDNA%5C+ITS%5C+sequences%5C%3B%5C+thirdly%5C+intramolecular%5C+recombination%5C+in%5C+cpDNA%5C+of%5C+cycads%5C%3B%5C+eventually%5C+the%5C+neotectonic%5C+movement%5C+in%5C+the%5C+distribution%5C+range%5C+of%5C+this%5C+species."},{"jsname":"Flower scent is a very important character in rose breeding. However, many of 25,000 rose cultivars have no scent or weak scent. The tea scent of modern roses mainly originated from Rosa odorata (Andrews) Sweet, which is one of the most important ancestors of modern cultivated roses and the very important rose breeding resource. Due to the land expanding, habitat fragmentation and so on, R. odorata has been listed as an endangered species in ‘Chinese Plant Red Data Book—Rare and Endangered Plants’ and as the third-category endangered species in ‘Chinese Rare and Endangered Protective Plants List’. Therefore, it is urgent to protect this species and studying the conservation genetics of R. odorata is essentially important to work out a strategy of conservation.R. odorata comprises three double-petaled varieties (R. odorata var. odorata, R. odorata var. erubescens, and R. odorata var. pseudindica) and one single-petaled variety (R. odorata var. gigantea). The taxonomy of the three double-petaled varieties of R. odorata has been disputed for a long time. They have been treated as intraspecific taxa of R. odorata var. gigantea or R. chinensis by different botanist. According to the morphological analyses, Hurst (1941) inferred that R. odorata var. odorata was the hybrid between R. odorata var. gigantea and R. chinensis. Therefore, in order to clarify the right protective units, two single-copy nuclear genes (GAPDH and ncpGS), together with two plastid loci (trnL-F and psbA-trnH) were applied to study the hybrid origin of the three double-petaled varieties and to identify their possible parents. Our data suggested the hybrid origin of the three double-petaled varieties. We inferred that R. odorata var. gigantea could be the maternal parent and R. chinensis cultivars be the paternal parent. It is strongly suggested that the conservation of R. odorata is the conservation of its wild type, R. odorata var. gigantea. We first applied seven microsatellite loci (SSR) coupled with a single-copy nuclear gene GAPDH to study the genetic diversity and genetic structure of R. odorata var. gigantea. The main results are shown as follows:1. Genetic diversity:R. odorata var. gigantea maintains high degree of genetic diversity within and among populations (SSR: HT = 0.738, HS = 0.569, AR = 5.583, PPB = 97.35%, I = 1.703; GAPDH: HT = 0.739, HS = 0.540). We inferred that, outcrossing, long-lived tree species, clonal reproduction and general intraspecies hybridization between individuals, have contributed to the high degree of genetic diversity in R. odorata var. gigantea.2. Genetic differentiation and genetic structure:There was some degree of genetic differentiation among populations (SSR: GST = 0.229, FST = 0.240; GAPDH: GST = 0.269). The geographic isolation limited the dispersal of pollen or seeds, which resulted in the limitation of gene flow (Nm = 0.792). Then, the limited gene flow should be accounted for the genetic differentiation. Both the results of SSR data and haplotype analysis of GAPDH indicated that, the studied populations were divided into two distinct groups by Honghe River. These two groups showed significant genetic differentiation and represented two separate evolutionary lineages, which should be recognized as two evolutionary significant units (ESUs) for conservation concerns.3. Conservation of R. odorata:R. odorata var. gigantea has been listed in the ‘National Key Protective Wild Species List (II)’. Therefore, the conservation of this species is urgent. We inferred that, the main endangered reasons should be the habitat fragmentation and the reduction of populations and individuals per population resulted from environmental damage and human activities. We proposed that the strategy of in-situ conservation combining with ex-situ conservation should be carried out.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AFlower%5C+scent%5C+is%5C+a%5C+very%5C+important%5C+character%5C+in%5C+rose%5C+breeding.%5C+However%2C%5C+many%5C+of%5C+25%2C000%5C+rose%5C+cultivars%5C+have%5C+no%5C+scent%5C+or%5C+weak%5C+scent.%5C+The%5C+tea%5C+scent%5C+of%5C+modern%5C+roses%5C+mainly%5C+originated%5C+from%5C+Rosa%5C+odorata%5C+%5C%28Andrews%5C%29%5C+Sweet%2C%5C+which%5C+is%5C+one%5C+of%5C+the%5C+most%5C+important%5C+ancestors%5C+of%5C+modern%5C+cultivated%5C+roses%5C+and%5C+the%5C+very%5C+important%5C+rose%5C+breeding%5C+resource.%5C+Due%5C+to%5C+the%5C+land%5C+expanding%2C%5C+habitat%5C+fragmentation%5C+and%5C+so%5C+on%2C%5C+R.%5C+odorata%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Plant%5C+Red%5C+Data%5C+Book%E2%80%94Rare%5C+and%5C+Endangered%5C+Plants%E2%80%99%5C+and%5C+as%5C+the%5C+third%5C-category%5C+endangered%5C+species%5C+in%5C+%E2%80%98Chinese%5C+Rare%5C+and%5C+Endangered%5C+Protective%5C+Plants%5C+List%E2%80%99.%5C+Therefore%2C%5C+it%5C+is%5C+urgent%5C+to%5C+protect%5C+this%5C+species%5C+and%5C+studying%5C+the%5C+conservation%5C+genetics%5C+of%5C+R.%5C+odorata%5C+is%5C+essentially%5C+important%5C+to%5C+work%5C+out%5C+a%5C+strategy%5C+of%5C+conservation.R.%5C+odorata%5C+comprises%5C+three%5C+double%5C-petaled%5C+varieties%5C+%5C%28R.%5C+odorata%5C+var.%5C+odorata%2C%5C+R.%5C+odorata%5C+var.%5C+erubescens%2C%5C+and%5C+R.%5C+odorata%5C+var.%5C+pseudindica%5C%29%5C+and%5C+one%5C+single%5C-petaled%5C+variety%5C+%5C%28R.%5C+odorata%5C+var.%5C+gigantea%5C%29.%5C+The%5C+taxonomy%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+of%5C+R.%5C+odorata%5C+has%5C+been%5C+disputed%5C+for%5C+a%5C+long%5C+time.%5C+They%5C+have%5C+been%5C+treated%5C+as%5C+intraspecific%5C+taxa%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+or%5C+R.%5C+chinensis%5C+by%5C+different%5C+botanist.%5C+According%5C+to%5C+the%5C+morphological%5C+analyses%2C%5C+Hurst%5C+%5C%281941%5C%29%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+odorata%5C+was%5C+the%5C+hybrid%5C+between%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+and%5C+R.%5C+chinensis.%5C+Therefore%2C%5C+in%5C+order%5C+to%5C+clarify%5C+the%5C+right%5C+protective%5C+units%2C%5C+two%5C+single%5C-copy%5C+nuclear%5C+genes%5C+%5C%28GAPDH%5C+and%5C+ncpGS%5C%29%2C%5C+together%5C+with%5C+two%5C+plastid%5C+loci%5C+%5C%28trnL%5C-F%5C+and%5C+psbA%5C-trnH%5C%29%5C+were%5C+applied%5C+to%5C+study%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties%5C+and%5C+to%5C+identify%5C+their%5C+possible%5C+parents.%5C+Our%5C+data%5C+suggested%5C+the%5C+hybrid%5C+origin%5C+of%5C+the%5C+three%5C+double%5C-petaled%5C+varieties.%5C+We%5C+inferred%5C+that%5C+R.%5C+odorata%5C+var.%5C+gigantea%5C+could%5C+be%5C+the%5C+maternal%5C+parent%5C+and%5C+R.%5C+chinensis%5C+cultivars%5C+be%5C+the%5C+paternal%5C+parent.%5C+It%5C+is%5C+strongly%5C+suggested%5C+that%5C+the%5C+conservation%5C+of%5C+R.%5C+odorata%5C+is%5C+the%5C+conservation%5C+of%5C+its%5C+wild%5C+type%2C%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+We%5C+first%5C+applied%5C+seven%5C+microsatellite%5C+loci%5C+%5C%28SSR%5C%29%5C+coupled%5C+with%5C+a%5C+single%5C-copy%5C+nuclear%5C+gene%5C+GAPDH%5C+to%5C+study%5C+the%5C+genetic%5C+diversity%5C+and%5C+genetic%5C+structure%5C+of%5C+R.%5C+odorata%5C+var.%5C+gigantea.%5C+The%5C+main%5C+results%5C+are%5C+shown%5C+as%5C+follows%5C%3A1.%5C+Genetic%5C+diversity%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+maintains%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+within%5C+and%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+HT%5C+%3D%5C+0.738%2C%5C+HS%5C+%3D%5C+0.569%2C%5C+AR%5C+%3D%5C+5.583%2C%5C+PPB%5C+%3D%5C+97.35%25%2C%5C+I%5C+%3D%5C+1.703%5C%3B%5C+GAPDH%5C%3A%5C+HT%5C+%3D%5C+0.739%2C%5C+HS%5C+%3D%5C+0.540%5C%29.%5C+We%5C+inferred%5C+that%2C%5C+outcrossing%2C%5C+long%5C-lived%5C+tree%5C+species%2C%5C+clonal%5C+reproduction%5C+and%5C+general%5C+intraspecies%5C+hybridization%5C+between%5C+individuals%2C%5C+have%5C+contributed%5C+to%5C+the%5C+high%5C+degree%5C+of%5C+genetic%5C+diversity%5C+in%5C+R.%5C+odorata%5C+var.%5C+gigantea.2.%5C+Genetic%5C+differentiation%5C+and%5C+genetic%5C+structure%EF%BC%9AThere%5C+was%5C+some%5C+degree%5C+of%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+%5C%28SSR%5C%3A%5C+GST%5C+%3D%5C+0.229%2C%5C+FST%5C+%3D%5C+0.240%5C%3B%5C+GAPDH%5C%3A%5C+GST%5C+%3D%5C+0.269%5C%29.%5C+The%5C+geographic%5C+isolation%5C+limited%5C+the%5C+dispersal%5C+of%5C+pollen%5C+or%5C+seeds%2C%5C+which%5C+resulted%5C+in%5C+the%5C+limitation%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.792%5C%29.%5C+Then%2C%5C+the%5C+limited%5C+gene%5C+flow%5C+should%5C+be%5C+accounted%5C+for%5C+the%5C+genetic%5C+differentiation.%5C+Both%5C+the%5C+results%5C+of%5C+SSR%5C+data%5C+and%5C+haplotype%5C+analysis%5C+of%5C+GAPDH%5C+indicated%5C+that%2C%5C+the%5C+studied%5C+populations%5C+were%5C+divided%5C+into%5C+two%5C+distinct%5C+groups%5C+by%5C+Honghe%5C+River.%5C+These%5C+two%5C+groups%5C+showed%5C+significant%5C+genetic%5C+differentiation%5C+and%5C+represented%5C+two%5C+separate%5C+evolutionary%5C+lineages%2C%5C+which%5C+should%5C+be%5C+recognized%5C+as%5C+two%5C+evolutionary%5C+significant%5C+units%5C+%5C%28ESUs%5C%29%5C+for%5C+conservation%5C+concerns.3.%5C+Conservation%5C+of%5C+R.%5C+odorata%EF%BC%9AR.%5C+odorata%5C+var.%5C+gigantea%5C+has%5C+been%5C+listed%5C+in%5C+the%5C+%E2%80%98National%5C+Key%5C+Protective%5C+Wild%5C+Species%5C+List%5C+%5C%28II%5C%29%E2%80%99.%5C+Therefore%2C%5C+the%5C+conservation%5C+of%5C+this%5C+species%5C+is%5C+urgent.%5C+We%5C+inferred%5C+that%2C%5C+the%5C+main%5C+endangered%5C+reasons%5C+should%5C+be%5C+the%5C+habitat%5C+fragmentation%5C+and%5C+the%5C+reduction%5C+of%5C+populations%5C+and%5C+individuals%5C+per%5C+population%5C+resulted%5C+from%5C+environmental%5C+damage%5C+and%5C+human%5C+activities.%5C+We%5C+proposed%5C+that%5C+the%5C+strategy%5C+of%5C+in%5C-situ%5C+conservation%5C+combining%5C+with%5C+ex%5C-situ%5C+conservation%5C+should%5C+be%5C+carried%5C+out."},{"jsname":"Following the rapid uplift of the Himalaya, the reorganization of the major river drainages was primarily caused by river capture events,e.g. those of the Jinshajiang River (comprising the Upper, Middle and Lower Jinshajiang) and its tributaries (Yalongjiang, Daduhe, Jialingjiang), the Nujiang, the Lancangjiang, and the Honghe. We selected Terminalia franchetii var. franchetii and T. franchetii var. intricata in the Sino-Himalayan region to study the relationship with Honghe diversion events. The distribution of this species is predicted to have retained genetic signatures of past hydrological landscape structures. The major result as flowing:1. Chloroplast phylogeography of T. franchetii based on haplotype analysis,Based on a range-wide sampling comprising 28 populations and 258 individuals, and using chloroplast DNA sequences (trnL-trnF, petL-psbE), we detected 12 haplotypes. Terminalia franchetii was found to harbour high haplotype diversity (hT = 0.784) but low average within-population diversity (hS = 0.124). The analysis of genetic structure using SAMOVA showed that the number of population groups equaled five, and all the haplotypes can be divided into five groups. Group B and C identified exhibited a disjunctive distribution of dominant haplotypes between northern and southern valleys, corresponding to the geography of past rather than modern drainage systems.Mismatch distribution (multimodal curve) and neutral tests provided no evidence of recent demographic population growth. We suggest that the modern disjunctive distribution of T. franchetii, and associated patterns of cpDNA haplotype variation, result from vicariance caused by several historical river separation and capture events. By assuming a common mutation rate of the cpDNA-IGS regions, our inferred timings of these events (0.82-4.39 Mya) broadly agrees with both previous geological and molecular estimated time of drainage rearrangements in this region. So we conclude that there were several historical vicariance events play a major role for the distribution of T. franchetii in this region.2. Genetic diversity and structure of T. franchetii var. franchetii based on AFLP analysis,We determined the genotype of 251 individuals of T. franchetii var. franchetii from 21 populations using amplified fragment length polymorphism (AFLP), for our aim is only investigated the relationship between the modern distribution of T. franchetii and geological changes in drainage patterns. The overall estimate of genetic structure (Gst) was 0.249, indicating that clear genetic differentiation existed among the populations. Estimates of gene flow (Nm = 0.754) between populations based on the Gst value revealed that the number of migrants per generation is not frequently.Using Neighbor-Joining tree, Principal Coordinates Analysis, STRUCTURE and network methods, Analyses of AFLP markers identified two main population groups (I and II) and four subgroups (A – D) of T. franchetii. Genetic diversity was lower in Group I than in Group II. The results show that Groups I and II probably once occupied continuous areas respectively along ancient drainage systems and there were several historical separation and capture events that can account for the distribution of T. franchetii in this region. After all,these are good examples of the way in which historical events can change a species’ distribution from continuous to fragmented (Jinshajiang/ Yalongjiang and Honghe), and a disjunct distribution to a continuous one (Upper/Lower Jinshajiang and Yalongjiang). The results provide new insights into the phylogeographic pattern of plants in southwest China.3. Relationships between T. franchetii var. franchetii and T. franchetii var. intricata ,While T. franchetii var. Franchetii and var. intricata slightly differ in overall size and leaf hairiness, these taxa did not exhibit reciprocal monophyly. As results show, the genetic difference between the two varieties is much smaller than that within var. franchetii (Salween population vs. other populationsof this variety). It is also revealed in a phylogenetic analysis of ITS region of Combretoideae. The habitats of var. franchetii and var. intricata have obviously difference. Thus, the differences between the two varieties in overall size and leaf hairiness might reflect different phenotypic responses to environmental changes and the divergent environmental niche spaces they occupy. Based on the reasoning above, we agree with Flora of China that “T. intricata” represents a variety of T. franchetii rather than a separate species.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AFollowing%5C+the%5C+rapid%5C+uplift%5C+of%5C+the%5C+Himalaya%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+capture%5C+events%EF%BC%8Ce.g.%5C+those%5C+of%5C+the%5C+Jinshajiang%5C+River%5C+%5C%28comprising%5C+the%5C+Upper%2C%5C+Middle%5C+and%5C+Lower%5C+Jinshajiang%5C%29%5C+and%5C+its%5C+tributaries%5C+%5C%28Yalongjiang%2C%5C+Daduhe%2C%5C+Jialingjiang%5C%29%2C%5C+the%5C+Nujiang%2C%5C+the%5C+Lancangjiang%2C%5C+and%5C+the%5C+Honghe.%5C+We%5C+selected%5C+Terminalia%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+in%5C+the%5C+Sino%5C-Himalayan%5C+region%5C+to%5C+study%5C+the%5C+relationship%5C+with%5C+Honghe%5C+diversion%5C+events.%5C+The%5C+distribution%5C+of%5C+this%5C+species%5C+is%5C+predicted%5C+to%5C+have%5C+retained%5C+genetic%5C+signatures%5C+of%5C+past%5C+hydrological%5C+landscape%5C+structures.%5C+The%5C+major%5C+result%5C+as%5C+flowing%5C%3A1.%5C+Chloroplast%5C+phylogeography%5C+of%5C+T.%5C+franchetii%5C+based%5C+on%5C+haplotype%5C+analysis%EF%BC%8CBased%5C+on%5C+a%5C+range%5C-wide%5C+sampling%5C+comprising%5C+28%5C+populations%5C+and%5C+258%5C+individuals%2C%5C+and%5C+using%5C+chloroplast%5C+DNA%5C+sequences%5C+%5C%28trnL%5C-trnF%2C%5C+petL%5C-psbE%5C%29%2C%5C+we%5C+detected%5C+12%5C+haplotypes.%5C+Terminalia%5C+franchetii%5C+was%5C+found%5C+to%5C+harbour%5C+high%5C+haplotype%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.784%5C%29%5C+but%5C+low%5C+average%5C+within%5C-population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.124%5C%29.%5C+The%5C+analysis%5C+of%5C+genetic%5C+structure%5C+using%5C+SAMOVA%5C+showed%5C+that%5C+the%5C+number%5C+of%5C+population%5C+groups%5C+equaled%5C+five%2C%5C+and%5C+all%5C+the%5C+haplotypes%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+groups.%5C+Group%5C+B%5C+and%5C+C%5C+identified%5C+exhibited%5C+a%5C+disjunctive%5C+distribution%5C+of%5C+dominant%5C+haplotypes%5C+between%5C+northern%5C+and%5C+southern%5C+valleys%2C%5C+corresponding%5C+to%5C+the%5C+geography%5C+of%5C+past%5C+rather%5C+than%5C+modern%5C+drainage%5C+systems.Mismatch%5C+distribution%5C+%5C%28multimodal%5C+curve%5C%29%5C+and%5C+neutral%5C+tests%5C+provided%5C+no%5C+evidence%5C+of%5C+recent%5C+demographic%5C+population%5C+growth.%5C+We%5C+suggest%5C+that%5C+the%5C+modern%5C+disjunctive%5C+distribution%5C+of%5C+T.%5C+franchetii%2C%5C+and%5C+associated%5C+patterns%5C+of%5C+cpDNA%5C+haplotype%5C+variation%2C%5C+result%5C+from%5C+vicariance%5C+caused%5C+by%5C+several%5C+historical%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+By%5C+assuming%5C+a%5C+common%5C+mutation%5C+rate%5C+of%5C+the%5C+cpDNA%5C-IGS%5C+regions%2C%5C+our%5C+inferred%5C+timings%5C+of%5C+these%5C+events%5C+%5C%280.82%5C-4.39%5C+Mya%5C%29%5C+broadly%5C+agrees%5C+with%5C+both%5C+previous%5C+geological%5C+and%5C+molecular%5C+estimated%5C+time%5C+of%5C+drainage%5C+rearrangements%5C+in%5C+this%5C+region.%5C+So%5C+we%5C+conclude%5C+that%5C+there%5C+were%5C+several%5C+historical%5C+vicariance%5C+events%5C+play%5C+a%5C+major%5C+role%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.2.%5C+Genetic%5C+diversity%5C+and%5C+structure%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+based%5C+on%5C+AFLP%5C+analysis%EF%BC%8CWe%5C+determined%5C+the%5C+genotype%5C+of%5C+251%5C+individuals%5C+of%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+from%5C+21%5C+populations%5C+using%5C+amplified%5C+fragment%5C+length%5C+polymorphism%5C+%5C%28AFLP%5C%29%2C%5C+for%5C+our%5C+aim%5C+is%5C+only%5C+investigated%5C+the%5C+relationship%5C+between%5C+the%5C+modern%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+and%5C+geological%5C+changes%5C+in%5C+drainage%5C+patterns.%5C+The%5C+overall%5C+estimate%5C+of%5C+genetic%5C+structure%5C+%5C%28Gst%5C%29%5C+was%5C+0.249%2C%5C+indicating%5C+that%5C+clear%5C+genetic%5C+differentiation%5C+existed%5C+among%5C+the%5C+populations.%5C+Estimates%5C+of%5C+gene%5C+flow%5C+%5C%28Nm%5C+%3D%5C+0.754%5C%29%5C+between%5C+populations%5C+based%5C+on%5C+the%5C+Gst%5C+value%5C+revealed%5C+that%5C+the%5C+number%5C+of%5C+migrants%5C+per%5C+generation%5C+is%5C+not%5C+frequently.Using%5C+Neighbor%5C-Joining%5C+tree%2C%5C+Principal%5C+Coordinates%5C+Analysis%2C%5C+STRUCTURE%5C+and%5C+network%5C+methods%2C%5C+Analyses%5C+of%5C+AFLP%5C+markers%5C+identified%5C+two%5C+main%5C+population%5C+groups%5C+%5C%28I%5C+and%5C+II%5C%29%5C+and%5C+four%5C+subgroups%5C+%5C%28A%5C+%E2%80%93%5C+D%5C%29%5C+of%5C+T.%5C+franchetii.%5C+Genetic%5C+diversity%5C+was%5C+lower%5C+in%5C+Group%5C+I%5C+than%5C+in%5C+Group%5C+II.%5C+The%5C+results%5C+show%5C+that%5C+Groups%5C+I%5C+and%5C+II%5C+probably%5C+once%5C+occupied%5C+continuous%5C+areas%5C+respectively%5C+along%5C+ancient%5C+drainage%5C+systems%5C+and%5C+there%5C+were%5C+several%5C+historical%5C+separation%5C+and%5C+capture%5C+events%5C+that%5C+can%5C+account%5C+for%5C+the%5C+distribution%5C+of%5C+T.%5C+franchetii%5C+in%5C+this%5C+region.%5C+After%5C+all%EF%BC%8Cthese%5C+are%5C+good%5C+examples%5C+of%5C+the%5C+way%5C+in%5C+which%5C+historical%5C+events%5C+can%5C+change%5C+a%5C+species%E2%80%99%5C+distribution%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Jinshajiang%5C%2F%5C+Yalongjiang%5C+and%5C+Honghe%5C%29%2C%5C+and%5C+a%5C+disjunct%5C+distribution%5C+to%5C+a%5C+continuous%5C+one%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%29.%5C+The%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+southwest%5C+China.3.%5C+Relationships%5C+between%5C+T.%5C+franchetii%5C+var.%5C+franchetii%5C+and%5C+T.%5C+franchetii%5C+var.%5C+intricata%5C+%EF%BC%8CWhile%5C+T.%5C+franchetii%5C+var.%5C+Franchetii%5C+and%5C+var.%5C+intricata%5C+slightly%5C+differ%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%2C%5C+these%5C+taxa%5C+did%5C+not%5C+exhibit%5C+reciprocal%5C+monophyly.%5C+As%5C+results%5C+show%2C%5C+the%5C+genetic%5C+difference%5C+between%5C+the%5C+two%5C+varieties%5C+is%5C+much%5C+smaller%5C+than%5C+that%5C+within%5C+var.%5C+franchetii%5C+%5C%28Salween%5C+population%5C+vs.%5C+other%5C+populationsof%5C+this%5C+variety%5C%29.%5C+It%5C+is%5C+also%5C+revealed%5C+in%5C+a%5C+phylogenetic%5C+analysis%5C+of%5C+ITS%5C+region%5C+of%5C+Combretoideae.%5C+The%5C+habitats%5C+of%5C+var.%5C+franchetii%5C+and%5C+var.%5C+intricata%5C+have%5C+obviously%5C+difference.%5C+Thus%2C%5C+the%5C+differences%5C+between%5C+the%5C+two%5C+varieties%5C+in%5C+overall%5C+size%5C+and%5C+leaf%5C+hairiness%5C+might%5C+reflect%5C+different%5C+phenotypic%5C+responses%5C+to%5C+environmental%5C+changes%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Based%5C+on%5C+the%5C+reasoning%5C+above%2C%5C+we%5C+agree%5C+with%5C+Flora%5C+of%5C+China%5C+that%5C+%E2%80%9CT.%5C+intricata%E2%80%9D%5C+represents%5C+a%5C+variety%5C+of%5C+T.%5C+franchetii%5C+rather%5C+than%5C+a%5C+separate%5C+species."},{"jsname":"Hong Kong Research Grants Council[CRCG 10205773]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AHong%5C+Kong%5C+Research%5C+Grants%5C+Council%5C%5BCRCG%5C+10205773%5C%5D"},{"jsname":"Hong Kong Research Grants Council[HKU 7322/04 M]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AHong%5C+Kong%5C+Research%5C+Grants%5C+Council%5C%5BHKU%5C+7322%5C%2F04%5C+M%5C%5D"},{"jsname":"How has natural selection determined the evolution of gene regulation by acting on major regulatory factors? This question has been attractive to many evolutionary biologists for a long time. MicroRNAs (miRNAs) are endogenous posttranscriptional repressors and play essential roles in diverse biological processes in plants. To understand how natural selection has targeted on the entire lay of miRNA regulatory modules during flower development, we resequenced 31 miRNA target sites involved in flower development from five rice populations. We found that purifying selection serves as a major evolutionary force to act on the conserved miRNA binding sites, leading to the globally reduced genetic variation in highly conserved miRNA binding sequences within the entire rice samples. Conversely, positive selection allows variations at nonconserved miRNA binding sites and acts on them in a population-specific behaviour. Further analysis revealed that the polymorphisms within target sites may serve as raw materials for diverse functions of miRNAs by means of the destabilization of duplex, abolishment of existing target sites, and creation of novel ones. Together, the above-mentioned results indicate that variations at conserved binding sites are likely deleterious during rice flower development, whereas variants at nonconserved binding sites may be conductive to flower development-related phenotypic diversities and rice population adaption to variable environmental conditions as well. To further assess functional effects and evolutionary significance of variable alleles at the target genes, we reported the detailed characterization of the haplotype and linkage disequilibrium (LD) patterns of the entire target gene (LOC_Os01g18850,SPL 1) and the 1.4 Mb flanking regions in three rice populations, namely japonica, indica and O. rufipogon. The genetic profile of SNPs at target site and its flanking regions revealed high haplotype frequency, low haplotype diversity and strong LD in two cultivatedricepopulations. By contrast, we observed the opposite phenomena in O. rufipogon. Using the long-range haplotype (LRT) test, we found strong evidence of recent positive selection for SNP 3C/T alleles at target site in the combined O. sativa. Comparsion between the two rice subpopulations indicated that the major haplotype mh 2 containing SNP 3C accounts for half of all haplotypes in indica, while mh 3 containing SNP 3T is 91% in japonica. Moreover, the extent of LD is stronger in japonica than that in inidca. These differences suggest that independent evolutionary events may have occurred in target sequences of two cultivated rice populations and stronger positive selection acted on japonica. Next, we examined geographic distribution of polymorphic variants at target sites. We found that the major alleles SNP 3T and tightly linked SNP 4A in japonica appear to be associated with the adaption to the northern climates during rice flower development.","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AHow%5C+has%5C+natural%5C+selection%5C+determined%5C+the%5C+evolution%5C+of%5C+gene%5C+regulation%5C+by%5C+acting%5C+on%5C+major%5C+regulatory%5C+factors%5C%3F%5C+This%5C+question%5C+has%5C+been%5C+attractive%5C+to%5C+many%5C+evolutionary%5C+biologists%5C+for%5C+a%5C+long%5C+time.%5C+MicroRNAs%5C+%5C%28miRNAs%5C%29%5C+are%5C+endogenous%5C+posttranscriptional%5C+repressors%5C+and%5C+play%5C+essential%5C+roles%5C+in%5C+diverse%5C+biological%5C+processes%5C+in%5C+plants.%5C+To%5C+understand%5C+how%5C+natural%5C+selection%5C+has%5C+targeted%5C+on%5C+the%5C+entire%5C+lay%5C+of%5C+miRNA%5C+regulatory%5C+modules%5C+during%5C+flower%5C+development%2C%5C+we%5C+resequenced%5C+31%5C+miRNA%5C+target%5C+sites%5C+involved%5C+in%5C+flower%5C+development%5C+from%5C+five%5C+rice%5C+populations.%5C+We%5C+found%5C+that%5C+purifying%5C+selection%5C+serves%5C+as%5C+a%5C+major%5C+evolutionary%5C+force%5C+to%5C+act%5C+on%5C+the%5C+conserved%5C+miRNA%5C+binding%5C+sites%2C%5C+leading%5C+to%5C+the%5C+globally%5C+reduced%5C+genetic%5C+variation%5C+in%5C+highly%5C+conserved%5C+miRNA%5C+binding%5C+sequences%5C+within%5C+the%5C+entire%5C+rice%5C+samples.%5C+Conversely%2C%5C+positive%5C+selection%5C+allows%5C+variations%5C+at%5C+nonconserved%5C+miRNA%5C+binding%5C+sites%5C+and%5C+acts%5C+on%5C+them%5C+in%5C+a%5C+population%5C-specific%5C+behaviour.%5C+Further%5C+analysis%5C+revealed%5C+that%5C+the%5C+polymorphisms%5C+within%5C+target%5C+sites%5C+may%5C+serve%5C+as%5C+raw%5C+materials%5C+for%5C+diverse%5C+functions%5C+of%5C+miRNAs%5C+by%5C+means%5C+of%5C+the%5C+destabilization%5C+of%5C+duplex%2C%5C+abolishment%5C+of%5C+existing%5C+target%5C+sites%2C%5C+and%5C+creation%5C+of%5C+novel%5C+ones.%5C+Together%2C%5C+the%5C+above%5C-mentioned%5C+results%5C+indicate%5C+that%5C+variations%5C+at%5C+conserved%5C+binding%5C+sites%5C+are%5C+likely%5C+deleterious%5C+during%5C+rice%5C+flower%5C+development%2C%5C+whereas%5C+variants%5C+at%5C+nonconserved%5C+binding%5C+sites%5C+may%5C+be%5C+conductive%5C+to%5C+flower%5C+development%5C-related%5C+phenotypic%5C+diversities%5C+and%5C+rice%5C+population%5C+adaption%5C+to%5C+variable%5C+environmental%5C+conditions%5C+as%5C+well.%5C+To%5C+further%5C+assess%5C+functional%5C+effects%5C+and%5C+evolutionary%5C+significance%5C+of%5C+variable%5C+alleles%5C+at%5C+the%5C+target%5C+genes%2C%5C+we%5C+reported%5C+the%5C+detailed%5C+characterization%5C+of%5C+the%5C+haplotype%5C+and%5C+linkage%5C+disequilibrium%5C+%5C%28LD%5C%29%5C+patterns%5C+of%5C+the%5C+entire%5C+target%5C+gene%5C+%5C%28LOC_Os01g18850%EF%BC%8CSPL%5C+1%5C%29%5C+and%5C+the%5C+1.4%5C+Mb%5C+flanking%5C+regions%5C+in%5C+three%5C+rice%5C+populations%2C%5C+namely%5C+japonica%2C%5C+indica%5C+and%5C+O.%5C+rufipogon.%5C+The%5C+genetic%5C+profile%5C+of%5C+SNPs%5C+at%5C+target%5C+site%5C+and%5C+its%5C+flanking%5C+regions%5C+revealed%5C+high%5C+haplotype%5C+frequency%2C%5C+low%5C+haplotype%5C+diversity%5C+and%5C+strong%5C+LD%5C+in%5C+two%5C+cultivatedricepopulations.%5C+By%5C+contrast%2C%5C+we%5C+observed%5C+the%5C+opposite%5C+phenomena%5C+in%5C+O.%5C+rufipogon.%5C+Using%5C+the%5C+long%5C-range%5C+haplotype%5C+%5C%28LRT%5C%29%5C+test%2C%5C+we%5C+found%5C+strong%5C+evidence%5C+of%5C+recent%5C+positive%5C+selection%5C+for%5C+SNP%5C+3C%5C%2FT%5C+alleles%5C+at%5C+target%5C+site%5C+in%5C+the%5C+combined%5C+O.%5C+sativa.%5C+Comparsion%5C+between%5C+the%5C+two%5C+rice%5C+subpopulations%5C+indicated%5C+that%5C+the%5C+major%5C+haplotype%5C+mh%5C+2%5C+containing%5C+SNP%5C+3C%5C+accounts%5C+for%5C+half%5C+of%5C+all%5C+haplotypes%5C+in%5C+indica%2C%5C+while%5C+mh%5C+3%5C+containing%5C+SNP%5C+3T%5C+is%5C+91%25%5C+in%5C+japonica.%5C+Moreover%2C%5C+the%5C+extent%5C+of%5C+LD%5C+is%5C+stronger%5C+in%5C+japonica%5C+than%5C+that%5C+in%5C+inidca.%5C+These%5C+differences%5C+suggest%5C+that%5C+independent%5C+evolutionary%5C+events%5C+may%5C+have%5C+occurred%5C+in%5C+target%5C+sequences%5C+of%5C+two%5C+cultivated%5C+rice%5C+populations%5C+and%5C+stronger%5C+positive%5C+selection%5C+acted%5C+on%5C+japonica.%5C+Next%2C%5C+we%5C+examined%5C+geographic%5C+distribution%5C+of%5C+polymorphic%5C+variants%5C+at%5C+target%5C+sites.%5C+We%5C+found%5C+that%5C+the%5C+major%5C+alleles%5C+SNP%5C+3T%5C+and%5C+tightly%5C+linked%5C+SNP%5C+4A%5C+in%5C+japonica%5C+appear%5C+to%5C+be%5C+associated%5C+with%5C+the%5C+adaption%5C+to%5C+the%5C+northern%5C+climates%5C+during%5C+rice%5C+flower%5C+development."},{"jsname":"ITC Research Fund from the Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, the Netherlands","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AITC%5C+Research%5C+Fund%5C+from%5C+the%5C+Faculty%5C+of%5C+Geo%5C-Information%5C+Science%5C+and%5C+Earth%5C+Observation%5C+%5C%28ITC%5C%29%2C%5C+University%5C+of%5C+Twente%2C%5C+the%5C+Netherlands"},{"jsname":"Mae Fah Luang University","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University"},{"jsname":"Mae Fah Luang University[592010200112]","jscount":"1","jsurl":"/simple-search?field1=all&rpp=10&accurate=false&advanced=false&sort_by=2&isNonaffiliated=false&search_type=-1&query1=Phenotypic%2Bdiversity&order=desc&&fq=dc.project.title_filter%3AMae%5C+Fah%5C+Luang%5C+University%5C%5B592010200112%5C%5D"},{"jsname":"lastIndexed","jscount":"2025-04-24"}],"Funding Project","dc.project.title_filter")'>
Chiang Mai... [2]
Chinese Ac... [2]
1. Seed do... [1]
13th Five-... [1]
Bambusoide... [1]
Basic Expe... [1]
More...
Indexed By
SCI [317]
CSCD [9]
SSCI [2]
Funding Organization
CAS/SAFEA ... [9]
Chinese Ac... [7]
National K... [6]
31590823) [3]
Chinese Ac... [3]
Chinese Ac... [3]
More...
×
Knowledge Map
KIB OpenIR
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
QQ
Weibo
Feedback
Browse/Search Results:
1-10 of 821
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Author Ascending
Author Descending
Submit date Ascending
Submit date Descending
Effector-triggered immunity by the plantpathogen Phytophthora
期刊论文
TRENDS in Microbiology, 3111, 卷号: 14, 期号: 11, 页码: 470-473
Authors:
Dinah Qutob
;
Jennifer Tedman-Jones
;
Mark Gijzen
Adobe PDF(152Kb)
  |  
Favorite
  |  
View/Download:227/2
  |  
Submit date:2017/07/24
Evolutionary ecology of plant-plant interactions
期刊论文
出版物, 3111, 页码: 1-144
Authors:
Zuo Z(作者)
Adobe PDF(717Kb)
  |  
Favorite
  |  
View/Download:377/4
  |  
Submit date:2017/07/19
Reproductive Allocation in Plants
期刊论文
Reproductive Allocation in Plants, 3111, 页码: 1—30
Authors:
Shuhei Tanaka
;
Shin-ichiro Kochi
;
Heigo Kunita
;
Shin-ichi Ito
;
Mitsuro Kameya-Iwaki
Adobe PDF(180Kb)
  |  
Favorite
  |  
View/Download:264/1
  |  
Submit date:2017/07/19
Staying in situ or shifting range under ongoing climate change: A case of an endemic herb in the Himalaya-Hengduan Mountains across elevational gradients
期刊论文
DIVERSITY AND DISTRIBUTIONS, 2023, 卷号: 29, 期号: 4, 页码: 524-542
Authors:
Lin,Nan
;
Liu,Qun
;
Landis,Jacob B.
;
Rana,Hum Kala
;
Li,Zhimin
;
Wang,Hengchang
;
Sun,Hang
;
Deng,Tao
View
  |  
Adobe PDF(19019Kb)
  |  
Favorite
  |  
View/Download:108/20
  |  
Submit date:2024/07/10
adaptive evolution
elevational gradients
global climate change
migration
morphological variation
RADseq
HIGH-ALTITUDE ADAPTATION
LOCAL ADAPTATION
GENE FLOW
PHENOTYPIC PLASTICITY
EVOLUTIONARY RESPONSES
RESOURCE-ALLOCATION
POPULATION-GENETICS
NICHE CONSERVATISM
GENOMIC BASIS
BIODIVERSITY
Red fruits exhibit lower colour diversity than red flowers as perceived by birds
期刊论文
FUNCTIONAL ECOLOGY, 2023, 卷号: 37, 期号: 12, 页码: 3164-3176
Authors:
Chen,Zhe
;
Nevo,Omer
;
Valenta,Kim
;
Sun,Hang
;
Niu,Yang
View
  |  
Adobe PDF(3962Kb)
  |  
Favorite
  |  
View/Download:193/22
  |  
Submit date:2024/07/10
bird
colour vision
evolutionary history
flower
fruit
pollination
red
seed dispersal
INTERSPECIFIC POLLEN TRANSFER
HUMMINGBIRD POLLINATION
SPECTRAL SENSITIVITY
SEED SIZE
EVOLUTION
DISPERSAL
VISION
BEE
DIVERSIFICATION
CONVERGENCE
Phylogeny and phenotypic adjustments drive functional traits in Rhododendron across elevations in its diversity hot-spot in W-China
期刊论文
ALPINE BOTANY, 2023
Authors:
Liu,Jin-Mei
;
de Vos,Jurriaan M.
;
Korner,Christian
;
Yang,Yang
View
  |  
Adobe PDF(3420Kb)
  |  
Favorite
  |  
View/Download:125/21
  |  
Submit date:2024/05/09
Adaptation
Atmospheric pressure
Elevation
Evolution
Mountains
Temperature
Woody species
CARBON-ISOTOPE DISCRIMINATION
FLORAL TRAITS
PLANT-GROWTH
LEAF
ERICACEAE
DETERMINANTS
MORPHOLOGY
DIVERSIFICATION
CONDUCTANCE
MOUNTAINS
Profile of Bionectriaceae, Calcarisporiaceae, Hypocreaceae, Nectriaceae, Tilachlidiaceae, Ijuhyaceae fam. nov., Stromatonectriaceae fam. nov. and Xanthonectriaceae fam. nov
期刊论文
FUNGAL DIVERSITY, 2023
Authors:
Perera,R. H.
;
Hyde,K. D.
;
Jones,E. B. G.
;
Maharachchikumbura,S. S. N.
;
Bundhun,D.
;
Camporesi,E.
;
Akulov,A.
;
Liu,J. K.
;
Liu,Z. Y.
View
  |  
Adobe PDF(55227Kb)
  |  
Favorite
  |  
View/Download:129/32
  |  
Submit date:2024/05/09
15 New taxa
Genera incertae sedis
Hypocreales
New records
Outline
Phylogeny
Sordariomycetes
Taxonomy
CLONOSTACHYS-ROSEA
LICHENICOLOUS FUNGI
MOLECULAR PHYLOGENY
BIOLOGICAL-CONTROL
LEAF-BLIGHT
GEN. NOV.
SP. NOV.
CYLINDROCLADIUM ANAMORPHS
TRICHODERMA HYPOCREACEAE
MYCOGONE-PERNICIOSA
高山流石滩两种伪装紫堇的表型变异与群体遗传结构
学位论文
: 中国科学院大学, 2022
Authors:
郭泽敏
Adobe PDF(5492Kb)
  |  
Favorite
  |  
View/Download:42/0
  |  
Submit date:2024/05/14
伪装植物
Plant camouflage
表型多样性
Phenotypic diversity
多态性
Polymorphism
自然选择
Natural selection
高山冰缘带
Alpine subnival zone
迎阳报春复合群遗传标记开发和应用
学位论文
: 中国科学院大学, 2022
Authors:
曾志华
Adobe PDF(34210Kb)
  |  
Favorite
  |  
View/Download:96/0
  |  
Submit date:2024/05/14
异型花柱
Heterostyly
遗传标记开发
Genetic marker development
交配系统
Mating system
表型自交综合征
Phenotypic selfing syndrome
遗传自交综合征
Genetic selfing syndrome
基于Snakemake构建不同杂合度区间的基因组组装流程
学位论文
: 中国科学院大学, 2022
Authors:
黄艺伟
Adobe PDF(11168Kb)
  |  
Favorite
  |  
View/Download:29/0
  |  
Submit date:2024/05/14
Snakemake,基因组组装,杂合度,兰属
Snakemake, Genome Assembly, Heterozygosity, Cymbidium