|
|
|
|
|
|
Funding Project
GST, P < 0.05) were exhibited by this species. The SAMOVA revealed seven diverging groups of related chlorotypes, six of them had distinct nonoverlapping geographical ranges: one in the northeast comprising 10 populations, a second with a southeast distribution comprising 22 populations, and the remaning four groups comprising 15 populations located in the west part of the species’ range along different river valleys. The genetic clustering of populations into three regions was also supported by analysis of molecular variance, which showed that most genetic variation (82.43%) was found among these three regions. Two clusters were distinguished by both phylogenetic analysis and genealogical analysis of chlorotypes, one consisting of chlorotypes from the western region and the second consisting of those from the eastern region. Significant genetic differences between the two regions might be attributed to vicariance and restricted gene flow, and this vicariance could be explained by the physical environmental heterogeneity on each side of the Tanaka-Kaiyong Line. Following the uplift of the Tibetan Plateau, the reorganization of the major river drainages was primarily caused by river separation and capture events. These historical events could change the distribution of S. davidii from fragmented to continuous (Upper/Lower Jinshajiang and Yalongjiang/Daduhe), and from continuous to fragmented (Nujiang and Jinshajiang/Honghe). However, spatial and temporal patterns of phylogeographic divergence are strongly associated with historical disjunction rather than modern drainage connections. Moreover, the following north-south split in the eastern region and effective isolation with their genetic diversity were essentially modelled by genetic drift. The higher chlorotype richness and genetic divergence for populations in western region compared with other two regions suggests that there were multipe refugia or in situ survival of S. davidii in the Himalayan-Hengduan Mountain region. Fixation of chlorotypes in the northeastern region and near fixation in the southeastern region suggest a recent colonization of these areas. We further found that this species underwent past range expansion around 37-303 thousand years ago (kya). The southeastern populations likely experienced a demographic expansion via unidirectional gene flow along rivers, while northeastern populations underwent a more northward expansion, both from initial populations (s) (21, 22, 23) preserved on eastern refugia (Jinshajiang). This process might have been accompanied with a series of founder effects or bottlenecks making populations genetically impoverished. 3. Phylogeographic analysisbased on nuclear sequence,We sequenced the nuclear (ncpGS) region in all populations sampled, recovering 23 nuclear haplotypes. Compared to cpDNA, both NST (0.470) and GST (0.338) were relatively lower, but NST was also significantly larger than GST. 37.10% of the total variation was distributed among regions which was much lower than that shown by chlorotypes. Thus, more extensive distribution of nuclear haplotypes was exhibited across the geographical range instead of the strong population subdivision observed in chlorotypes. Similarly to the chloroplast data, we found that genetic differentiation of nDNA was positively correlated with the geographical distance, but the increase in the geographical distance between populations did not increase the genetic differentiation of nDNA as rapidly as that of cpDNA. These contrasting levels between the chloroplast and nuclear genomes of S. davidii are likely due to limited gene flow of cpDNA by seeds vs. the extensive gene flow of nDNA by wind-mediated pollen in the population history. We also determined from nuclear markers that haplotype diversity was reduced in the southeastern and northeastern regions due to the loss of rare haplotypes in western region. This reduction of gene diversity is also a signature of founder events or recent bottleneck during post-glacial colonization. However, nuclear diversity within populations remains high. This provides evidence that regionally pollen flow might be sufficiently high to blur the genetic identity of founder populations over a reasonably large spatial scale.3. Relationships among three varieties,The phylogenetic analysis identified two phylogroups of chlorotypes, corresponding to S. davidii var. davidii and var. chuansinesis. The former was distinguished by the abscence of predonminant nuclear haplotype H1 of the latter. The monophyletic group of chlorotypes in var. davidii and var. liangshanesis showed their relatively close relationship. And their genetic divergence from the third variety appears to be relative to their slight morphological difference in leaf size and the divergent environmental niche spaces they occupy. Thus, the observed differences in morphological characters between var. chuansinesis and other two varieties can be explained by the seed dispersal limitation illustrated above (as inferred by geographical separation) and by environmental heterogeneity (as inferred by precipitation or elevation) or by a combination of both. After all, the geological changes, drainage reorganization, and floristic differences following the Himalayan uplift have been suggested to affect the genetic structure of S. davidii. These results provide new insights into the phylogeographic pattern of plants in China. In addition, the unique population genetic structure found in S. davidii has provided important insights into the evolutionary history of this species. The genetic profile uncovered in this study is also critical for its conservation management. Our study has uncovered the existence of at least two ‘evolutionary significant units’ independent units within S. davidii, corresponding to var. davidii from eastern region and var. chuansinensis from western region. The conservation efforts should first focus on most western populations and on the southeastern ones exhibiting high levels of genetic diversity, while the genetically homogeneous northeastern populations located in the degraded Loess Plateau should require much greater conservation efforts.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3ASophora%5C+davidii%5C+%5C%28Franch.%5C%29%5C+Skeels%5C+is%5C+an%5C+endemic%5C+species%5C+to%5C+China%2C%5C+and%5C+widely%5C+distributed%5C+in%5C+the%5C+dry%5C+valleys%5C+of%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+Systems%2C%5C+the%5C+Yungui%5C+Plateau%2C%5C+the%5C+Qinling%5C+Mountain%2C%5C+the%5C+Loess%5C+Plateau%5C+and%5C+other%5C+places%5C+of%5C+China.%5C+Previous%5C+studies%5C+of%5C+plant%5C+phylogeography%5C+have%5C+focused%5C+mainly%5C+on%5C+some%5C+taxa%5C+from%5C+the%5C+mountainous%5C+areas%5C+of%5C+China%2C%5C+relatively%5C+few%5C+studies%5C+have%5C+been%5C+conducted%5C+on%5C+plant%5C+taxa%5C+from%5C+the%5C+river%5C+valleys.%5C+The%5C+population%5C+dynamics%5C+and%5C+evolutionary%5C+history%5C+of%5C+species%5C+in%5C+such%5C+habitat%5C+remain%5C+less%5C+unknown%2C%5C+including%5C+the%5C+factors%5C+affecting%5C+the%5C+population%5C+genetic%5C+structure%5C+and%5C+its%5C+potential%5C+refugia%5C+in%5C+glaciation.%5C+In%5C+this%5C+study%2C%5C+we%5C+first%5C+determine%5C+the%5C+chromosome%5C+number%2C%5C+ploidy%5C+and%5C+karyotype%5C+of%5C+most%5C+populations%5C+we%5C+sampled.%5C+Then%2C%5C+based%5C+on%5C+sequence%5C+data%5C+from%5C+two%5C+maternally%5C+inherited%5C+cpDNA%5C+and%5C+one%5C+biparentally%5C+inherited%5C+nuclear%5C+DNA%5C+fragments%2C%5C+our%5C+study%5C+revealed%5C+the%5C+genetic%5C+diversity%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii%5C+and%5C+factors%5C+affecting%5C+them.%5C+The%5C+demographic%5C+history%5C+and%5C+potential%5C+refugia%5C+of%5C+this%5C+speices%5C+were%5C+investigated%5C+and%5C+the%5C+genetic%5C+relationship%5C+among%5C+three%5C+varieties%5C+was%5C+also%5C+clarified.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Cytogeography%EF%BC%8CThe%5C+chromosome%5C+number%5C+and%5C+karyotypes%5C+of%5C+14%5C+S.%5C+davidii%5C+populations%5C+have%5C+been%5C+studied.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+choromosome%5C+number%5C+of%5C+all%5C+the%5C+populations%5C+is%5C+2n%5C+%3D%5C+18.%5C+The%5C+interphase%5C+nuclei%5C+and%5C+prophase%5C+chromosomes%5C+of%5C+the%5C+species%5C+were%5C+found%5C+to%5C+be%5C+of%5C+the%5C+complex%5C+chromosome%5C+type%5C+and%5C+interstitial%5C+type.%5C+The%5C+results%5C+of%5C+karyotype%5C+analysis%5C+showed%5C+that%5C+7%5C+of%5C+14%5C+materials%5C+has%5C+satellites%2C%5C+and%5C+the%5C+number%5C+and%5C+position%5C+of%5C+satellites%5C+differ%5C+among%5C+populations%2C%5C+and%5C+thus%5C+revealed%5C+a%5C+series%5C+of%5C+diversified%5C+karyotypes.%5C+With%5C+most%5C+populations%5C+being%5C+of%5C+ploidy%2C%5C+cytogenetical%5C+divergence%5C+within%5C+the%5C+species%5C+lied%5C+mainly%5C+in%5C+chromosome%5C+size%5C+and%5C+structure.%5C+The%5C+fact%5C+that%5C+polyploidization%5C+did%5C+not%5C+occur%5C+very%5C+often%5C+for%5C+variations%5C+in%5C+Southwest%5C+China%5C+was%5C+against%5C+viewpoint%5C+that%5C+polyploidization%5C+level%5C+in%5C+this%5C+area%5C+is%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+distribution%5C+areas%5C+due%5C+to%5C+the%5C+elevation%5C+of%5C+mountains%5C+and%5C+plateau.%5C+2.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+chloroplast%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+two%5C+cpDNA%5C+fragments%5C+rpl32%5C-trnL%5C%28UAG%5C%29intergenic%5C+spacer%5C+and%5C+trnH%5C-psbA%5C+spacer%5C+in%5C+40%5C+populations%5C+sampled%2C%5C+recovering%5C+22%5C+chlorotypes.%5C+The%5C+average%5C+with%5C-in%5C+population%5C+diversity%5C+%5C%28hS%5C+%3D%5C+0.171%5C%29%5C+was%5C+much%5C+lower%5C+than%5C+total%5C+genetic%5C+diversity%5C+%5C%28hT%5C+%3D%5C+0.857%5C%29.%5C+Population%5C+differentiation%5C+was%5C+high%5C+%5C%28NST%5C+%3D%5C+0.924%2C%5C+GST%5C+%3D%5C+0.801%5C%29%5C+indicating%5C+low%5C+levels%5C+of%5C+seed%5C-based%5C+gene%5C+flow%5C+and%5C+significant%5C+phylogeographical%5C+stucture%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+P%5C+%3C%5C+0.05%5C%29%5C+were%5C+exhibited%5C+by%5C+this%5C+species.%5C+The%5C+SAMOVA%5C+revealed%5C+seven%5C+diverging%5C+groups%5C+of%5C+related%5C+chlorotypes%2C%5C+six%5C+of%5C+them%5C+had%5C+distinct%5C+nonoverlapping%5C+geographical%5C+ranges%5C%3A%5C+one%5C+in%5C+the%5C+northeast%5C+comprising%5C+10%5C+populations%2C%5C+a%5C+second%5C+with%5C+a%5C+southeast%5C+distribution%5C+comprising%5C+22%5C+populations%2C%5C+and%5C+the%5C+remaning%5C+four%5C+groups%5C+comprising%5C+15%5C+populations%5C+located%5C+in%5C+the%5C+west%5C+part%5C+of%5C+the%5C+species%E2%80%99%5C+range%5C+along%5C+different%5C+river%5C+valleys.%5C+The%5C+genetic%5C+clustering%5C+of%5C+populations%5C+into%5C+three%5C+regions%5C+was%5C+also%5C+supported%5C+by%5C+analysis%5C+of%5C+molecular%5C+variance%2C%5C+which%5C+showed%5C+that%5C+most%5C+genetic%5C+variation%5C+%5C%2882.43%25%5C%29%5C+was%5C+found%5C+among%5C+these%5C+three%5C+regions.%5C+Two%5C+clusters%5C+were%5C+distinguished%5C+by%5C+both%5C+phylogenetic%5C+analysis%5C+and%5C+genealogical%5C+analysis%5C+of%5C+chlorotypes%2C%5C+one%5C+consisting%5C+of%5C+chlorotypes%5C+from%5C+the%5C+western%5C+region%5C+and%5C+the%5C+second%5C+consisting%5C+of%5C+those%5C+from%5C+the%5C+eastern%5C+region.%5C+Significant%5C+genetic%5C+differences%5C+between%5C+the%5C+two%5C+regions%5C+might%5C+be%5C+attributed%5C+to%5C+vicariance%5C+and%5C+restricted%5C+gene%5C+flow%2C%5C+and%5C+this%5C+vicariance%5C+could%5C+be%5C+explained%5C+by%5C+the%5C+physical%5C+environmental%5C+heterogeneity%5C+on%5C+each%5C+side%5C+of%5C+the%5C+Tanaka%5C-Kaiyong%5C+Line.%5C+Following%5C+the%5C+uplift%5C+of%5C+the%5C+Tibetan%5C+Plateau%2C%5C+the%5C+reorganization%5C+of%5C+the%5C+major%5C+river%5C+drainages%5C+was%5C+primarily%5C+caused%5C+by%5C+river%5C+separation%5C+and%5C+capture%5C+events.%5C+These%5C+historical%5C+events%5C+could%5C+change%5C+the%5C+distribution%5C+of%5C+S.%5C+davidii%5C+from%5C+fragmented%5C+to%5C+continuous%5C+%5C%28Upper%5C%2FLower%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C%2FDaduhe%5C%29%2C%5C+and%5C+from%5C+continuous%5C+to%5C+fragmented%5C+%5C%28Nujiang%5C+and%5C+Jinshajiang%5C%2FHonghe%5C%29.%5C+However%2C%5C+spatial%5C+and%5C+temporal%5C+patterns%5C+of%5C+phylogeographic%5C+divergence%5C+are%5C+strongly%5C+associated%5C+with%5C+historical%5C+disjunction%5C+rather%5C+than%5C+modern%5C+drainage%5C+connections.%5C+Moreover%2C%5C+the%5C+following%5C+north%5C-south%5C+split%5C+in%5C+the%5C+eastern%5C+region%5C+and%5C+effective%5C+isolation%5C+with%5C+their%5C+genetic%5C+diversity%5C+were%5C+essentially%5C+modelled%5C+by%5C+genetic%5C+drift.%5C+The%5C+higher%5C+chlorotype%5C+richness%5C+and%5C+genetic%5C+divergence%5C+for%5C+populations%5C+in%5C+western%5C+region%5C+compared%5C+with%5C+other%5C+two%5C+regions%5C+suggests%5C+that%5C+there%5C+were%5C+multipe%5C+refugia%5C+or%5C+in%5C+situ%5C+survival%5C+of%5C+S.%5C+davidii%5C+in%5C+the%5C+Himalayan%5C-Hengduan%5C+Mountain%5C+region.%5C+Fixation%5C+of%5C+chlorotypes%5C+in%5C+the%5C+northeastern%5C+region%5C+and%5C+near%5C+fixation%5C+in%5C+the%5C+southeastern%5C+region%5C+suggest%5C+a%5C+recent%5C+colonization%5C+of%5C+these%5C+areas.%5C+We%5C+further%5C+found%5C+that%5C+this%5C+species%5C+underwent%5C+past%5C+range%5C+expansion%5C+around%5C+37%5C-303%5C+thousand%5C+years%5C+ago%5C+%5C%28kya%5C%29.%5C+The%5C+southeastern%5C+populations%5C+likely%5C+experienced%5C+a%5C+demographic%5C+expansion%5C+via%5C+unidirectional%5C+gene%5C+flow%5C+along%5C+rivers%2C%5C+while%5C+northeastern%5C+populations%5C+underwent%5C+a%5C+more%5C+northward%5C+expansion%2C%5C+both%5C+from%5C+initial%5C+populations%5C+%5C%28s%5C%29%5C+%5C%2821%2C%5C+22%2C%5C+23%5C%29%5C+preserved%5C+on%5C+eastern%5C+refugia%5C+%5C%28Jinshajiang%5C%29.%5C+This%5C+process%5C+might%5C+have%5C+been%5C+accompanied%5C+with%5C+a%5C+series%5C+of%5C+founder%5C+effects%5C+or%5C+bottlenecks%5C+making%5C+populations%5C+genetically%5C+impoverished.%5C+3.%5C+Phylogeographic%5C+analysisbased%5C+on%5C+nuclear%5C+sequence%EF%BC%8CWe%5C+sequenced%5C+the%5C+nuclear%5C+%5C%28ncpGS%5C%29%5C+region%5C+in%5C+all%5C+populations%5C+sampled%2C%5C+recovering%5C+23%5C+nuclear%5C+haplotypes.%5C+Compared%5C+to%5C+cpDNA%2C%5C+both%5C+NST%5C+%5C%280.470%5C%29%5C+and%5C+GST%5C+%5C%280.338%5C%29%5C+were%5C+relatively%5C+lower%2C%5C+but%5C+NST%5C+was%5C+also%5C+significantly%5C+larger%5C+than%5C+GST.%5C+37.10%25%5C+of%5C+the%5C+total%5C+variation%5C+was%5C+distributed%5C+among%5C+regions%5C+which%5C+was%5C+much%5C+lower%5C+than%5C+that%5C+shown%5C+by%5C+chlorotypes.%5C+Thus%2C%5C+more%5C+extensive%5C+distribution%5C+of%5C+nuclear%5C+haplotypes%5C+was%5C+exhibited%5C+across%5C+the%5C+geographical%5C+range%5C+instead%5C+of%5C+the%5C+strong%5C+population%5C+subdivision%5C+observed%5C+in%5C+chlorotypes.%5C+Similarly%5C+to%5C+the%5C+chloroplast%5C+data%2C%5C+we%5C+found%5C+that%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+was%5C+positively%5C+correlated%5C+with%5C+the%5C+geographical%5C+distance%2C%5C+but%5C+the%5C+increase%5C+in%5C+the%5C+geographical%5C+distance%5C+between%5C+populations%5C+did%5C+not%5C+increase%5C+the%5C+genetic%5C+differentiation%5C+of%5C+nDNA%5C+as%5C+rapidly%5C+as%5C+that%5C+of%5C+cpDNA.%5C+These%5C+contrasting%5C+levels%5C+between%5C+the%5C+chloroplast%5C+and%5C+nuclear%5C+genomes%5C+of%5C+S.%5C+davidii%5C+are%5C+likely%5C+due%5C+to%5C+limited%5C+gene%5C+flow%5C+of%5C+cpDNA%5C+by%5C+seeds%5C+vs.%5C+the%5C+extensive%5C+gene%5C+flow%5C+of%5C+nDNA%5C+by%5C+wind%5C-mediated%5C+pollen%5C+in%5C+the%5C+population%5C+history.%5C+We%5C+also%5C+determined%5C+from%5C+nuclear%5C+markers%5C+that%5C+haplotype%5C+diversity%5C+was%5C+reduced%5C+in%5C+the%5C+southeastern%5C+and%5C+northeastern%5C+regions%5C+due%5C+to%5C+the%5C+loss%5C+of%5C+rare%5C+haplotypes%5C+in%5C+western%5C+region.%5C+This%5C+reduction%5C+of%5C+gene%5C+diversity%5C+is%5C+also%5C+a%5C+signature%5C+of%5C+founder%5C+events%5C+or%5C+recent%5C+bottleneck%5C+during%5C+post%5C-glacial%5C+colonization.%5C+However%2C%5C+nuclear%5C+diversity%5C+within%5C+populations%5C+remains%5C+high.%5C+This%5C+provides%5C+evidence%5C+that%5C+regionally%5C+pollen%5C+flow%5C+might%5C+be%5C+sufficiently%5C+high%5C+to%5C+blur%5C+the%5C+genetic%5C+identity%5C+of%5C+founder%5C+populations%5C+over%5C+a%5C+reasonably%5C+large%5C+spatial%5C+scale.3.%5C+Relationships%5C+among%5C+three%5C+varieties%EF%BC%8CThe%5C+phylogenetic%5C+analysis%5C+identified%5C+two%5C+phylogroups%5C+of%5C+chlorotypes%2C%5C+corresponding%5C+to%5C+S.%5C+davidii%5C+var.%5C+davidii%5C+and%5C+var.%5C+chuansinesis.%5C+The%5C+former%5C+was%5C+distinguished%5C+by%5C+the%5C+abscence%5C+of%5C+predonminant%5C+nuclear%5C+haplotype%5C+H1%5C+of%5C+the%5C+latter.%5C+The%5C+monophyletic%5C+group%5C+of%5C+chlorotypes%5C+in%5C+var.%5C+davidii%5C+and%5C+var.%5C+liangshanesis%5C+showed%5C+their%5C+relatively%5C+close%5C+relationship.%5C+And%5C+their%5C+genetic%5C+divergence%5C+from%5C+the%5C+third%5C+variety%5C+appears%5C+to%5C+be%5C+relative%5C+to%5C+their%5C+slight%5C+morphological%5C+difference%5C+in%5C+leaf%5C+size%5C+and%5C+the%5C+divergent%5C+environmental%5C+niche%5C+spaces%5C+they%5C+occupy.%5C+Thus%2C%5C+the%5C+observed%5C+differences%5C+in%5C+morphological%5C+characters%5C+between%5C+var.%5C+chuansinesis%5C+and%5C+other%5C+two%5C+varieties%5C+can%5C+be%5C+explained%5C+by%5C+the%5C+seed%5C+dispersal%5C+limitation%5C+illustrated%5C+above%5C+%5C%28as%5C+inferred%5C+by%5C+geographical%5C+separation%5C%29%5C+and%5C+by%5C+environmental%5C+heterogeneity%5C+%5C%28as%5C+inferred%5C+by%5C+precipitation%5C+or%5C+elevation%5C%29%5C+or%5C+by%5C+a%5C+combination%5C+of%5C+both.%5C+After%5C+all%2C%5C+the%5C+geological%5C+changes%2C%5C+drainage%5C+reorganization%2C%5C+and%5C+floristic%5C+differences%5C+following%5C+the%5C+Himalayan%5C+uplift%5C+have%5C+been%5C+suggested%5C+to%5C+affect%5C+the%5C+genetic%5C+structure%5C+of%5C+S.%5C+davidii.%5C+These%5C+results%5C+provide%5C+new%5C+insights%5C+into%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+plants%5C+in%5C+China.%5C+In%5C+addition%2C%5C+the%5C+unique%5C+population%5C+genetic%5C+structure%5C+found%5C+in%5C+S.%5C+davidii%5C+has%5C+provided%5C+important%5C+insights%5C+into%5C+the%5C+evolutionary%5C+history%5C+of%5C+this%5C+species.%5C+The%5C+genetic%5C+profile%5C+uncovered%5C+in%5C+this%5C+study%5C+is%5C+also%5C+critical%5C+for%5C+its%5C+conservation%5C+management.%5C+Our%5C+study%5C+has%5C+uncovered%5C+the%5C+existence%5C+of%5C+at%5C+least%5C+two%5C+%E2%80%98evolutionary%5C+significant%5C+units%E2%80%99%5C+independent%5C+units%5C+within%5C+S.%5C+davidii%2C%5C+corresponding%5C+to%5C+var.%5C+davidii%5C+from%5C+eastern%5C+region%5C+and%5C+var.%5C+chuansinensis%5C+from%5C+western%5C+region.%5C+The%5C+conservation%5C+efforts%5C+should%5C+first%5C+focus%5C+on%5C+most%5C+western%5C+populations%5C+and%5C+on%5C+the%5C+southeastern%5C+ones%5C+exhibiting%5C+high%5C+levels%5C+of%5C+genetic%5C+diversity%2C%5C+while%5C+the%5C+genetically%5C+homogeneous%5C+northeastern%5C+populations%5C+located%5C+in%5C+the%5C+degraded%5C+Loess%5C+Plateau%5C+should%5C+require%5C+much%5C+greater%5C+conservation%5C+efforts."},{"jsname":"The Taxus wallichiana complex represents an old relict conifer lineage that survived through the Tertiary. It is currently distributed in the mountain forests in South and Southwest China south of the Qinling Mountains. In the present study, we explored phylogeography of the complex by using two chloroplast DNA regions, one nuclear ribosomal DNA spacer region and eight microsatellite (SSR) loci. The main conclusions can be summarized as follows:1. Phylogeographic pattern based on chloroplast haplotypes,There were 11 cpDNA haplotypes identified in the T. wallichiana complex The complex showed a high level of genetic diversity and obvious genetic differentiation. The 44 sampled populations showed obvious genetic structure, which could be divided into five groups, namely the Huanan group, the Daba group, the Emei group, the Yunnan group and the Qinling group. There was extremely high genetic differentiation among groups, but not significant within group. The divergence times of the five lineages, estimated using average mutation rates of trnL-trnF, fell in the Pliocene. 2. Phylogeographic patterns based on ITS sequences,These included 38 unique ‘haplotypes’ based on ITS data. Their analysis showed that the T. wallichiana complex possessed a high genetic diversity. These populations could be divided into four groups, namely the Huanan group, the Daba/Emei group, the Yunnan group and the Qinling group. Based on all results, it appears that the major lineages constituting the T. wallichiana complex have arisen before Quaternary glaciation cycles, and may have survived isolated in different refugia. During interglacial periods some lineages appear to have come in contact and hybridizedbut other lineages merged forming populations with mixed haplotypes without signs of hybridization. The present-day phylogeographical distribution pattern of the T. wallichiana complex might thus be the result of repeated expansion / contractions of populations during interglacial / glacial cycles.3. Population genetic analysis using microsatellite (SSR) markers,Eight SSR loci were used for population genetic analysis on the T. wallichiana complex. A lower level of genetic diversity at the population level and high genetic differentiation among population was detected. The results of structure analysis were similar to those on the ITS data, dividing the populations into four groups (lineages). According to the results here, it was deduced that each of the 4 lineages of the T. wallichiana complex may possessed respective glacial refugia, and some lineages (such as the Qinling and Huanan lineage) might have survived in multiple refugia in the Quaternay glaciations. The present distribution pattern of this complex was likely influenced by the uplift of the QTP and Quaternary glaciation.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3AThe%5C+Taxus%5C+wallichiana%5C+complex%5C+represents%5C+an%5C+old%5C+relict%5C+conifer%5C+lineage%5C+that%5C+survived%5C+through%5C+the%5C+Tertiary.%5C+It%5C+is%5C+currently%5C+distributed%5C+in%5C+the%5C+mountain%5C+forests%5C+in%5C+South%5C+and%5C+Southwest%5C+China%5C+south%5C+of%5C+the%5C+Qinling%5C+Mountains.%C2%A0In%5C+the%5C+present%5C+study%2C%5C+we%5C+explored%5C+phylogeography%5C+of%5C+the%5C+complex%5C+by%5C+using%5C+two%5C+chloroplast%5C+DNA%5C+regions%2C%5C+one%5C+nuclear%5C+ribosomal%5C+DNA%5C+spacer%5C+region%5C+and%5C+eight%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+loci.%5C+The%5C+main%5C+conclusions%5C+can%5C+be%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Phylogeographic%5C+pattern%5C+based%5C+on%5C+chloroplast%5C+haplotypes%EF%BC%8CThere%5C+were%5C+11%5C+cpDNA%5C+haplotypes%5C+identified%5C+in%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+The%5C+complex%5C+showed%5C+a%5C+high%5C+level%5C+of%5C+genetic%5C+diversity%5C+and%5C+obvious%5C+genetic%5C+differentiation.%5C+The%5C+44%5C+sampled%5C+populations%5C+showed%5C+obvious%5C+genetic%5C+structure%2C%5C+which%5C+could%5C+be%5C+divided%5C+into%5C+five%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C+group%2C%5C+the%5C+Emei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+There%5C+was%5C+extremely%5C+high%5C+genetic%5C+differentiation%5C+among%5C+groups%2C%5C+but%5C+not%5C+significant%5C+within%5C+group.%5C+The%5C+divergence%5C+times%5C+of%5C+the%5C+five%5C+lineages%2C%5C+estimated%5C+using%5C+average%5C+mutation%5C+rates%5C+of%5C+trnL%5C-trnF%2C%5C+fell%5C+in%5C+the%5C+Pliocene.%C2%A02.%5C+Phylogeographic%5C+patterns%5C+based%5C+on%5C+ITS%5C+sequences%EF%BC%8CThese%5C+included%5C+38%5C+unique%5C+%E2%80%98haplotypes%E2%80%99%5C+based%5C+on%5C+ITS%5C+data.%5C+Their%5C+analysis%5C+showed%5C+that%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+possessed%5C+a%5C+high%5C+genetic%5C+diversity.%C2%A0These%5C+populations%5C+could%5C+be%5C+divided%5C+into%5C+four%5C+groups%2C%5C+namely%5C+the%5C+Huanan%5C+group%2C%5C+the%5C+Daba%5C%2FEmei%5C+group%2C%5C+the%5C+Yunnan%5C+group%5C+and%5C+the%5C+Qinling%5C+group.%5C+Based%5C+on%5C+all%5C+results%2C%5C+it%5C+appears%5C+that%5C+the%5C+major%5C+lineages%5C+constituting%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+have%5C+arisen%5C+before%5C+Quaternary%5C+glaciation%5C+cycles%2C%5C+and%5C+may%5C+have%5C+survived%5C+isolated%5C+in%5C+different%5C+refugia.%5C+During%5C+interglacial%5C+periods%5C+some%5C+lineages%5C+appear%5C+to%5C+have%5C+come%5C+in%5C+contact%5C+and%5C+hybridizedbut%5C+other%5C+lineages%5C+merged%5C+forming%5C+populations%5C+with%5C+mixed%5C+haplotypes%5C+without%5C+signs%5C+of%5C+hybridization.%5C+The%5C+present%5C-day%5C+phylogeographical%5C+distribution%5C+pattern%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+might%5C+thus%5C+be%5C+the%5C+result%5C+of%5C+repeated%5C+expansion%5C+%5C%2F%5C+contractions%5C+of%5C+populations%5C+during%5C+interglacial%5C+%5C%2F%5C+glacial%5C+cycles.3.%5C+Population%5C+genetic%5C+analysis%5C+using%5C+microsatellite%5C+%5C%28SSR%5C%29%5C+markers%EF%BC%8CEight%5C+SSR%5C+loci%5C+were%5C+used%5C+for%5C+population%5C+genetic%5C+analysis%5C+on%5C+the%5C+T.%5C+wallichiana%5C+complex.%5C+A%5C+lower%5C+level%5C+of%5C+genetic%5C+diversity%5C+at%5C+the%5C+population%5C+level%5C+and%5C+high%5C+genetic%5C+differentiation%5C+among%5C+population%5C+was%5C+detected.%5C+The%5C+results%5C+of%5C+structure%5C+analysis%5C+were%5C+similar%5C+to%5C+those%5C+on%5C+the%5C+ITS%5C+data%2C%5C+dividing%5C+the%5C+populations%5C+into%5C+four%5C+groups%5C+%5C%28lineages%5C%29.%C2%A0According%5C+to%5C+the%5C+results%5C+here%2C%5C+it%5C+was%5C+deduced%5C+that%5C+each%5C+of%5C+the%5C+4%5C+lineages%5C+of%5C+the%5C+T.%5C+wallichiana%5C+complex%5C+may%5C+possessed%5C+respective%5C+glacial%5C+refugia%2C%5C+and%5C+some%5C+lineages%5C+%5C%28such%5C+as%5C+the%5C+Qinling%5C+and%5C+Huanan%5C+lineage%5C%29%5C+might%5C+have%5C+survived%5C+in%5C+multiple%5C+refugia%5C+in%5C+the%5C+Quaternay%5C+glaciations.%5C+The%5C+present%5C+distribution%5C+pattern%5C+of%5C+this%5C+complex%5C+was%5C+likely%5C+influenced%5C+by%5C+the%5C+uplift%5C+of%5C+the%5C+QTP%5C+and%5C+Quaternary%5C+glaciation."},{"jsname":"The Xianfeng flora and its palaeoclimte were studied using three quantitative methods. The vegetation and climatic change in Yunnan were also discussed in this paper. The results are summarized as follows:1) 34 species belonging to 9 families, 21 genera were identified in Xianfeng flora. The dominant families are Fagaceae and Lauraceae. Most genera are tropic and subtropic distribution. Consequently, Xianfeng flora is a typical subtropic flora dominanted by Fagaceae and Lauraceae.2)Two new coniferous species were identified, Pinus prekesiya and Tsuga miodumosa. P. prekesiya sp. nov., which belongs to subsection Pinus of subgenus Pinus shows a combination of characters of P. kesiya and P. yunnanensis, but has a closer affinity with P. kesiya which distributes in the humid region of Yunnan and therefore suggests a more humid climate in central Yunnan during the late Miocene than today. The general cooling trend during the late Neogene and topographic change due to the dramatic Tibetan uplift might have cause a vicariance origin of P. kesiya and P. yunnanensis from the ancestral P. prekesiya. Tsuga miodumosa shows a closest affinity with T. dumosa and might represent the ancestral stock of T. dumosa. The discovery of the Tsuga cone confirmed the presence of Tsuga in the Miocene of southwestern China and represents the earliest Tsuga megafossil record in China. The new species provides fossil evidence to support molecular phylogeny study that T. dumosa might be differentiated in the Miocene. It also support the hypothesis that diversification of the genus occurred mainly during Miocene and Pliocene time as global climate cooled and new habitats formed in response to major orogenic events.3)The MATs results from three methods (CA: 17.2-18.0°C;CLAMP3B: 15.7±1.33°C;LMA: 17.2±1.6°C) are higher than present. This indicates that the climate at late Miocene is warmer than today. The MAPs from CA and CLAMP are 1206-1537.4mm and 1297.0±184.7mm respectively, which are higher than today (1003.2mm) obviously. This indicates that the climate is more humid in late Miocene. The differences between precipitation in humid season and dry season suggest the existence of seasonality,but not so strong as today. The palaeoelevation was reconstructed using CA method; the result indicates a lower elevation (1330-1500m) of Xianfeng in late Miocene compared to today.4) The palaeoenvirmental change was discussed based on the comparisons of fossil records and paleoclimate constructions. The results show that, at late Miocene, most floras represented ever-green forests dominanted by Fagaceae and Lauraceae etc. The climate of Yunnan in Miocene was warmer and more humid than today. At Pliocene age, the vegetation type in West Yunnan is still typical ever-green forest, while in the Sanying flora, the species adapt to cold environment like Quercus sect. Heterobalnus increased greatly.5) Two monsoon sensitivity indices were used to illustrate the change of sensitivity of monsoon climate. The results suggest lower seasonality and monsoon sensitivity, especially the winter monsoon sensitivity during late Miocene.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3AThe%5C+Xianfeng%5C+flora%5C+and%5C+its%5C+palaeoclimte%5C+were%5C+studied%5C+using%5C+three%5C+quantitative%5C+methods.%5C+The%5C+vegetation%5C+and%5C+climatic%5C+change%5C+in%5C+Yunnan%5C+were%5C+also%5C+discussed%5C+in%5C+this%5C+paper.%5C+The%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1%EF%BC%89%5C+34%5C+species%5C+belonging%5C+to%5C+9%5C+families%2C%5C+21%5C+genera%5C+were%5C+identified%5C+in%5C+Xianfeng%5C+flora.%5C+The%5C+dominant%5C+families%5C+are%5C+Fagaceae%5C+and%5C+Lauraceae.%5C+Most%5C+genera%5C+are%5C+tropic%5C+and%5C+subtropic%5C+distribution.%5C+Consequently%2C%5C+Xianfeng%5C+flora%5C+is%5C+a%5C+typical%5C+subtropic%5C+flora%5C+dominanted%5C+by%5C+Fagaceae%5C+and%5C+Lauraceae.2%EF%BC%89Two%5C+new%5C+coniferous%5C+species%5C+were%5C+identified%2C%5C+Pinus%5C+prekesiya%5C+and%5C+Tsuga%5C+miodumosa.%5C+P.%5C+prekesiya%5C+sp.%5C+nov.%2C%5C+which%5C+belongs%5C+to%5C+subsection%5C+Pinus%5C+of%5C+subgenus%5C+Pinus%5C+shows%5C+a%5C+combination%5C+of%5C+characters%5C+of%5C+P.%5C+kesiya%5C+and%5C+P.%5C+yunnanensis%2C%5C+but%5C+has%5C+a%5C+closer%5C+affinity%5C+with%5C+P.%5C+kesiya%5C+which%5C+distributes%5C+in%5C+the%5C+humid%5C+region%5C+of%5C+Yunnan%5C+and%5C+therefore%5C+suggests%5C+a%5C+more%5C+humid%5C+climate%5C+in%5C+central%5C+Yunnan%5C+during%5C+the%5C+late%5C+Miocene%5C+than%5C+today.%5C+The%5C+general%5C+cooling%5C+trend%5C+during%5C+the%5C+late%5C+Neogene%5C+and%5C+topographic%5C+change%5C+due%5C+to%5C+the%5C+dramatic%5C+Tibetan%5C+uplift%5C+might%5C+have%5C+cause%5C+a%5C+vicariance%5C+origin%5C+of%5C+P.%5C+kesiya%5C+and%5C+P.%5C+yunnanensis%5C+from%5C+the%5C+ancestral%5C+P.%5C+prekesiya.%5C+Tsuga%5C+miodumosa%5C+shows%5C+a%5C+closest%5C+affinity%5C+with%5C+T.%5C+dumosa%5C+and%5C+might%5C+represent%5C+the%5C+ancestral%5C+stock%5C+of%5C+T.%5C+dumosa.%5C+The%5C+discovery%5C+of%5C+the%5C+Tsuga%5C+cone%5C+confirmed%5C+the%5C+presence%5C+of%5C+Tsuga%5C+in%5C+the%5C+Miocene%5C+of%5C+southwestern%5C+China%5C+and%5C+represents%5C+the%5C+earliest%5C+Tsuga%5C+megafossil%5C+record%5C+in%5C+China.%5C+The%5C+new%5C+species%5C+provides%5C+fossil%5C+evidence%5C+to%5C+support%5C+molecular%5C+phylogeny%5C+study%5C+that%5C+T.%5C+dumosa%5C+might%5C+be%5C+differentiated%5C+in%5C+the%5C+Miocene.%5C+It%5C+also%5C+support%5C+the%5C+hypothesis%5C+that%5C+diversification%5C+of%5C+the%5C+genus%5C+occurred%5C+mainly%5C+during%5C+Miocene%5C+and%5C+Pliocene%5C+time%5C+as%5C+global%5C+climate%5C+cooled%5C+and%5C+new%5C+habitats%5C+formed%5C+in%5C+response%5C+to%5C+major%5C+orogenic%5C+events.3%EF%BC%89The%5C+MATs%5C+results%5C+from%5C+three%5C+methods%5C+%5C%28CA%5C%3A%5C+17.2%5C-18.0%C2%B0C%EF%BC%9BCLAMP3B%5C%3A%5C+15.7%C2%B11.33%C2%B0C%EF%BC%9BLMA%5C%3A%5C+17.2%C2%B11.6%C2%B0C%5C%29%5C+are%5C+higher%5C+than%5C+present.%5C+This%5C+indicates%5C+that%5C+the%5C+climate%5C+at%5C+late%5C+Miocene%5C+is%5C+warmer%5C+than%5C+today.%5C+The%5C+MAPs%5C+from%5C+CA%5C+and%5C+CLAMP%5C+are%5C+1206%5C-1537.4mm%5C+and%5C+1297.0%C2%B1184.7mm%5C+respectively%2C%5C+which%5C+are%5C+higher%5C+than%5C+today%5C+%5C%281003.2mm%5C%29%5C+obviously.%5C+This%5C+indicates%5C+that%5C+the%5C+climate%5C+is%5C+more%5C+humid%5C+in%5C+late%5C+Miocene.%5C+The%5C+differences%5C+between%5C+precipitation%5C+in%5C+humid%5C+season%5C+and%5C+dry%5C+season%5C+suggest%5C+the%5C+existence%5C+of%5C+seasonality%EF%BC%8Cbut%5C+not%5C+so%5C+strong%5C+as%5C+today.%5C+The%5C+palaeoelevation%5C+was%5C+reconstructed%5C+using%5C+CA%5C+method%5C%3B%5C+the%5C+result%5C+indicates%5C+a%5C+lower%5C+elevation%5C+%5C%281330%5C-1500m%5C%29%5C+of%5C+Xianfeng%5C+in%5C+late%5C+Miocene%5C+compared%5C+to%5C+today.4%5C%29%5C+The%5C+palaeoenvirmental%5C+change%5C+was%5C+discussed%5C+based%5C+on%5C+the%5C+comparisons%5C+of%5C+fossil%5C+records%5C+and%5C+paleoclimate%5C+constructions.%5C+The%5C+results%5C+show%5C+that%2C%5C+at%5C+late%5C+Miocene%2C%5C+most%5C+floras%5C+represented%5C+ever%5C-green%5C+forests%5C+dominanted%5C+by%5C+Fagaceae%5C+and%5C+Lauraceae%5C+etc.%5C+The%5C+climate%5C+of%5C+Yunnan%5C+in%5C+Miocene%5C+was%5C+warmer%5C+and%5C+more%5C+humid%5C+than%5C+today.%5C+At%5C+Pliocene%5C+age%2C%5C+the%5C+vegetation%5C+type%5C+in%5C+West%5C+Yunnan%5C+is%5C+still%5C+typical%5C+ever%5C-green%5C+forest%2C%5C+while%5C+in%5C+the%5C+Sanying%5C+flora%2C%5C+the%5C+species%5C+adapt%5C+to%5C+cold%5C+environment%5C+like%5C+Quercus%5C+sect.%5C+Heterobalnus%5C+increased%5C+greatly.5%5C%29%5C+Two%5C+monsoon%5C+sensitivity%5C+indices%5C+were%5C+used%5C+to%5C+illustrate%5C+the%5C+change%5C+of%5C+sensitivity%5C+of%5C+monsoon%5C+climate.%5C+The%5C+results%5C+suggest%5C+lower%5C+seasonality%5C+and%5C+monsoon%5C+sensitivity%2C%5C+especially%5C+the%5C+winter%5C+monsoon%5C+sensitivity%5C+during%5C+late%5C+Miocene."},{"jsname":"The floritistic composition, characteristics, endemism, origin and evolution were studied on the base of literature checked, field investigation, specimens checked and previous research work. The main result are as follows: 1. Guishan Region is rich in seed-plants. The Guishan Region flora consists of 129 families and 488 genera and 1069 species of which 6 species in 5 genera and 3 families belong to Gymnosperm, 842 species in 381 genera and 100 families belong to dicotyledon, 421 species in 102 genera and 26 families belong to monocotyledon.2. Flora Composition: The floristic elements of 62.02% tropical families and 37.98% temperate one indicates that the flora of this region has a close relationship with tropical flora historically and geographically. The floristic elements of 44.68% tropical genera and 52.96% temperate one reveals dominant temperate property, which one of the typical floristic characters in subtropical mountain region; the floristic elements of 53.83% tropical species(excluding species which are endemic to china and distribute world-wide ), 46.17% temperate ones indicates that the flora is subtropical in nature. 433 species are endemic to China ,43.96% of all the species (excluding the species world-wide).Very few species (44 species endemic to China accounted for 10.16%) distribute to the North, most of which distribute only to Shanxi, Henan, Gansu Province., indicating weak feature of temperate flora of Guishan region in nature. Statistical analysis showed that indicates that the flora of this region has a close relationship with tropical flora historically and geographically, shows transitional features in flora between tropical to temperate flora.. 3. By the comparison with five adjacent limestone and non-limestone flora on the level of family and genus, we found that the flora of Guishan Region is most closely related to the flora of Shishan Mountain and Xiaobaicaoling and Wuliang Mountain all of which situate in Central Yunnan. So the flora position of Guishan Region is: Central Yunnan Plaetau Subregion, the Yunnan Plaetau Region, the Sino-Himalayan forest Subkingdom, the east Asiatic Kingdom.4. The endemic plants in Guishan Region are rich, and the flora of Guishan Region shows limestone features. 10 genera are endemic to China, 433 species are endemic to China. Among the Chineses endemic plants, 1 genes and 7 species are endemic to Guishan Region in which 1 genes(Parasiometrum) and 3 species (Begonia guishanensis, Petrocosmea guishanensis, Parasiometrum mileens) are limestone exclusive.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3AThe%5C+floritistic%5C+composition%2C%5C+characteristics%2C%5C+endemism%2C%5C+origin%5C+and%5C+evolution%5C+were%5C+studied%5C+on%5C+the%5C+base%5C+of%5C+literature%5C+checked%2C%5C+field%5C+investigation%2C%5C+specimens%5C+checked%5C+and%5C+previous%5C+research%5C+work.%5C+The%5C+main%5C+result%5C+are%5C+as%5C+follows%5C%3A%5C+1.%5C+Guishan%5C+Region%5C+is%5C+rich%5C+in%5C+seed%5C-plants.%5C+The%5C+Guishan%5C+Region%5C+flora%5C+consists%5C+of%5C+129%5C+families%5C+and%5C+488%5C+genera%5C+and%5C+1069%5C+species%5C+of%5C+which%5C+6%5C+species%5C+in%5C+5%5C+genera%5C+and%5C+3%5C+families%5C+belong%5C+to%5C+Gymnosperm%2C%5C+842%5C+species%5C+in%5C+381%5C+genera%5C+and%5C+100%5C+families%5C+belong%5C+to%5C+dicotyledon%2C%5C+421%5C+species%5C+in%5C+102%5C+genera%5C+and%5C+26%5C+families%5C+belong%5C+to%5C+monocotyledon.2.%5C+Flora%5C+Composition%5C%3A%5C+The%5C+floristic%5C+elements%5C+of%5C+62.02%25%5C+tropical%5C+families%5C+and%5C+37.98%25%5C+temperate%5C+one%5C+indicates%5C+that%5C+the%5C+flora%5C+of%5C+this%5C+region%5C+has%5C+a%5C+close%5C+relationship%5C+with%5C+tropical%5C+flora%5C+historically%5C+and%5C+geographically.%5C+The%5C+floristic%5C+elements%5C+of%5C+44.68%25%5C+tropical%5C+genera%5C+and%5C+52.96%25%5C+temperate%5C+one%5C+reveals%5C+dominant%5C+temperate%5C+property%2C%5C+which%5C+one%5C+of%5C+the%5C+typical%5C+floristic%5C+characters%5C+in%5C+subtropical%5C+mountain%5C+region%5C%3B%5C+the%5C+floristic%5C+elements%5C+of%5C+53.83%25%5C+tropical%5C+species%5C%28excluding%5C+species%5C+which%5C+are%5C+endemic%5C+to%5C+china%5C+and%5C+distribute%5C+world%5C-wide%5C+%5C%29%2C%5C+46.17%25%5C+temperate%5C+ones%5C+indicates%5C+that%5C+the%5C+flora%5C+is%5C+subtropical%5C+in%5C+nature.%5C+433%5C+species%5C+are%5C+endemic%5C+to%5C+China%5C+%2C43.96%25%5C+of%5C+all%5C+the%5C+species%5C+%5C%28excluding%5C+the%5C+%5C+species%5C+world%5C-wide%5C%29.Very%5C+few%5C+species%5C+%5C%2844%5C+species%5C+endemic%5C+to%5C+China%5C+accounted%5C+for%5C+10.16%25%5C%29%5C+distribute%5C+to%5C+the%5C+North%2C%5C+most%5C+of%5C+which%5C+distribute%5C+only%5C+to%5C+Shanxi%2C%5C+Henan%2C%5C+Gansu%5C+Province.%2C%5C+indicating%5C+weak%5C+feature%5C+of%5C+temperate%5C+flora%5C+of%5C+Guishan%5C+region%5C+in%5C+nature.%5C+Statistical%5C+analysis%5C+showed%5C+that%5C+%5C+indicates%5C+that%5C+the%5C+flora%5C+of%5C+this%5C+region%5C+has%5C+a%5C+close%5C+relationship%5C+with%5C+tropical%5C+flora%5C+historically%5C+and%5C+geographically%2C%5C+shows%5C+transitional%5C+features%5C+in%5C+flora%5C+between%5C+tropical%5C+to%5C+temperate%5C+flora..%5C+3.%5C+By%5C+the%5C+comparison%5C+with%5C+five%5C+adjacent%5C+limestone%5C+and%5C+non%5C-limestone%5C+flora%5C+on%5C+the%5C+level%5C+of%5C+family%5C+and%5C+genus%2C%5C+we%5C+found%5C+that%5C+the%5C+flora%5C+of%5C+Guishan%5C+Region%5C+is%5C+most%5C+closely%5C+related%5C+to%5C+the%5C+flora%5C+of%5C+Shishan%5C+Mountain%5C+and%5C+Xiaobaicaoling%5C+and%5C+Wuliang%5C+Mountain%5C+all%5C+of%5C+which%5C+situate%5C+in%5C+Central%5C+Yunnan.%5C+So%5C+the%5C+flora%5C+position%5C+of%5C+Guishan%5C+Region%5C+is%5C%3A%5C+Central%5C+Yunnan%5C+Plaetau%5C+Subregion%2C%5C+the%5C+Yunnan%5C+Plaetau%5C+Region%2C%5C+the%5C+Sino%5C-Himalayan%5C+forest%5C+Subkingdom%2C%5C+the%5C+east%5C+Asiatic%5C+Kingdom.4.%5C+The%5C+endemic%5C+plants%5C+in%5C+Guishan%5C+Region%5C+are%5C+rich%2C%5C+and%5C+the%5C+flora%5C+of%5C+Guishan%5C+Region%5C+shows%5C+limestone%5C+features.%5C+10%5C+genera%5C+are%5C+endemic%5C+to%5C+China%2C%5C+433%5C+species%5C+are%5C+endemic%5C+to%5C+China.%5C+Among%5C+the%5C+Chineses%5C+endemic%5C+plants%2C%5C+1%5C+genes%5C+and%5C+7%5C+species%5C+are%5C+endemic%5C+to%5C+Guishan%5C+Region%5C+in%5C+which%5C+1%5C+genes%5C%28Parasiometrum%5C%29%5C+and%5C+3%5C+species%5C+%5C%28Begonia%5C+guishanensis%2C%5C+Petrocosmea%5C+guishanensis%2C%5C+Parasiometrum%5C+mileens%5C%29%5C+are%5C+limestone%5C+exclusive."},{"jsname":"The origin center and diversity center of the genus Ligularia were considered to be central China and Hengduan Mountains Region (HMR) of China, respectively. In this research, we studied the phylogeographic pattern of L. hodgsonii and L. tongolensis, which was distributed in the origin center and diversity center, respectively. We aimed to infer the evolutionary process of Ligularia species. 1. The phylogeography of L. hodgsonii,Here, we investigated the phylogeographic history of L. hodgsonii disjunctively distributed in China and Japan. Two hundred and eighty individuals were collected from 29 natural populations, 23 located in China and 6 in Japan. A total of 19 haplotypes were identified with the combination of three chloroplast DNA (cpDNA) sequences variations (trnQ-5’rps16, trnL-rpl32 and psbA-trnH). At the species level, a high level of haplotype diversity (Hd) and total genetic diversity (HT) was detected. However, the average intrapopulation diversity (HS) was very low. Consequently, the population differentiation(NST = 0.989, GST = 0.933 ) was pronounced with a significant phylogeographic structure (NST > GST, p < 0.01). At the regional level, Chinese and Japanese L. hodgsonii had a similar estimate of genetic diversity (China: Hd = 0.847, HT = 0.869; Japan: Hd = 0.766, HT = 0.867). Populations from China and Japan possess unique sets of haplotypes, and no haplotypes were shared between the regions. Furthermore, both the phyloegenetic and network analyses recovered the haplotypes of China and Japan as two distinct clades. Thus, we suggested the disjunct distribution of L. hodgsonii in China and Japan may present the climatic vicariant relicts of the ancient widely distributed populations. After divergence, this species within each region experienced independent evolutionary process. In China, L. hodgsonii was distributed around the Sichuan Basin. This distribution range can be divided into five regions. They were Jiajin Mountain region, E’mei Mountain region, Yunnan-Guizhou Plateau region, Wushan-Wuling Mountain region and Qinling Mountain region. Twelve haplotypes were indentified within these regions. Each region had its own specific haplotypes, which had different ancestry in the network. We deduced that Chinese L. hodgsonii might survive the LGM in multiple isolated refugia around the Sichuan Basin. In Japan, L. hodgsonii was disjunctively distributed in northern Honshu and Hokkaido. Seven haplotypes were identified within this region. However, the genetic diversity in Honshu (Hd = 0.821) was much higher than that in Hokkaido (Hd = 0.513). And all haplotypes in Hokkaido were derived from Honshu. This haplotype distribution suggested that the northern Honshu could have served as refuge in Japan. Nested clade analysis (NCA) indicated multiple forces including the vicariance and long-distance dispersal affected the disjunctive distribution among populations of L. hodgsonii in Japan.2. The phylogeography of L. tongolensis,Ligularia tongolensis was distributed along the Jinshajiang watershed, Yalongjiang watershed and Wumeng Mountain. In order to deduce the demographic history of this species, we sequenced two chloroplast DNA (cpDNA) intergenic spacers (trnQ-5’rps16, trnL-rpl32) in 140 individuals from 14 populations of three groups (Jinshajiang vs. Yalongjiang vs. Wumeng) within this species range. High levels of haplotype diversity (Hd = 0.814) and total genetic diversity (HT = 0.862) were detected at the species level, based on a total oftwelve haplotypes identified. However, the intrapopulation diversity (HS = 0.349) was low, which led to the high levels of genetic divergence (GST = 0.595, NST = 0.614, FST = 0.597). In consideration of the speciation of L. tongolensis resulting from the uplifts of the Qinghai-Tibetan Plateau (QTP), we thought the present genetic structure of L. tongolensis was shaped by the fragmentation of ancestral populations during the courses of QTP uplifts. This was further supported by the absence of IBD tests (r = –0.291, p = 0.964), which suggest that the differentiation had not occurred in accordance with the isolation by distance model. The genetic differentiation in L. tongolensis appears to be associated with historical events. Meanwhile, H2 and H5, the dominant haplotypes that located on internal nodes and deviated from extinct ancestral haplotype in the network, were detected to be shared between Jinshajiang and Yalongjiang groups. We deduced that ancestral populations of this species might have had a continuous distribution range, which was then fragmented and isolated by the following tectonic events. Finally, the ancestral polymorphism, H2 and H5, were randomly allocated in Jinshajiang watershed and Yalongjiang watershed. Meanwhile, H5 was the dominant haplotype in Jinshajiang watershed; H7 was the domiant haplotype in Yalongjiang watershed and Wumeng Mountain. This haplotype distribution pattern indicated that each group might have served as a refuge for L. tongolensis during the Quaternary Glaciation. Postglacial demographic expansion was supported by unimodal mismatch distribution and star-like phylogenies, with expansion ages of 274 ka B. P. for this species","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3AThe%5C+origin%5C+center%5C+and%5C+diversity%5C+center%5C+of%5C+the%5C+genus%5C+Ligularia%5C+were%5C+considered%5C+to%5C+be%5C+central%5C+China%5C+and%5C+Hengduan%5C+Mountains%5C+Region%5C+%5C%28HMR%5C%29%5C+of%5C+China%2C%5C+respectively.%5C+In%5C+this%5C+research%2C%5C+we%5C+studied%5C+the%5C+phylogeographic%5C+pattern%5C+of%5C+L.%5C+hodgsonii%5C+and%5C+L.%5C+tongolensis%2C%5C+which%5C+was%5C+distributed%5C+in%5C+the%5C+origin%5C+center%5C+and%5C+diversity%5C+center%2C%5C+respectively.%5C+We%5C+aimed%5C+to%5C+infer%5C+the%5C+evolutionary%5C+process%5C+of%5C+Ligularia%5C+species.%5C+1.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+hodgsonii%EF%BC%8CHere%2C%5C+we%5C+investigated%5C+the%5C+phylogeographic%5C+history%5C+of%5C+L.%5C+hodgsonii%5C+disjunctively%5C+distributed%5C+in%5C+China%5C+and%5C+Japan.%5C+Two%5C+hundred%5C+and%5C+eighty%5C+individuals%5C+were%5C+collected%5C+from%5C+29%5C+natural%5C+populations%2C%5C+23%5C+located%5C+in%5C+China%5C+and%5C+6%5C+in%5C+Japan.%5C+A%5C+total%5C+of%5C+19%5C+haplotypes%5C+were%5C+identified%5C+with%5C+the%5C+combination%5C+of%5C+three%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+sequences%5C+variations%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C+and%5C+psbA%5C-trnH%5C%29.%5C+At%5C+the%5C+species%5C+level%2C%5C+a%5C+high%5C+level%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C%29%5C+and%C2%A0total%5C+genetic%5C+diversity%5C+%5C%28HT%5C%29%5C+was%5C+detected.%5C+However%2C%5C+the%5C+average%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C%29%5C+was%5C+very%5C+low.%5C+Consequently%2C%5C+the%5C+population%5C+differentiation%5C%28NST%5C+%3D%5C+0.989%2C%5C+GST%5C+%3D%5C+0.933%5C+%5C%29%5C+was%5C+pronounced%5C+with%5C+a%5C+significant%5C+phylogeographic%5C+structure%5C+%5C%28NST%5C+%3E%5C+GST%2C%5C+p%5C+%3C%5C+0.01%5C%29.%5C+At%5C+the%5C+regional%5C+level%2C%5C+Chinese%5C+and%5C+Japanese%5C+L.%5C+hodgsonii%5C+had%5C+a%5C+similar%5C+estimate%5C+of%5C+genetic%5C+diversity%5C+%5C%28China%5C%3A%5C+Hd%5C+%3D%5C+0.847%2C%5C+HT%5C+%3D%5C+0.869%5C%3B%5C+Japan%5C%3A%5C+Hd%5C+%3D%5C+0.766%2C%5C+HT%5C+%3D%5C+0.867%5C%29.%5C+Populations%5C+from%5C+China%5C+and%5C+Japan%5C+possess%5C+unique%5C+sets%5C+of%5C+haplotypes%2C%5C+and%5C+no%5C+haplotypes%5C+were%5C+shared%5C+between%5C+the%5C+regions.%5C+Furthermore%2C%5C+both%5C+the%5C+phyloegenetic%5C+and%5C+network%5C+analyses%5C+recovered%5C+the%5C+haplotypes%5C+of%5C+China%5C+and%5C+Japan%5C+as%5C+two%5C+distinct%5C+clades.%5C+Thus%2C%5C+we%5C+suggested%5C+the%5C+disjunct%5C+distribution%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+China%5C+and%5C+Japan%5C+may%5C+present%5C+the%5C+climatic%5C+vicariant%5C+relicts%5C+of%5C+the%5C+ancient%5C+widely%5C+distributed%5C+populations.%5C+After%5C+divergence%2C%5C+this%5C+species%5C+within%5C+each%5C+region%5C+experienced%5C+independent%5C+evolutionary%5C+process.%5C+In%5C+China%2C%5C+L.%5C+hodgsonii%5C+was%5C+distributed%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+This%5C+distribution%5C+range%5C+can%5C+be%5C+divided%5C+into%5C+five%5C+regions.%5C+They%5C+were%5C+Jiajin%5C+Mountain%5C+region%2C%5C+E%E2%80%99mei%5C+Mountain%5C+region%2C%5C+Yunnan%5C-Guizhou%5C+Plateau%5C+region%2C%5C+Wushan%5C-Wuling%5C+Mountain%5C+region%5C+and%5C+Qinling%5C+Mountain%5C+region.%5C+Twelve%5C+haplotypes%5C+were%5C+indentified%5C+within%5C+these%5C+regions.%5C+Each%5C+region%5C+had%5C+its%5C+own%5C+specific%5C+haplotypes%2C%5C+which%5C+had%5C+different%5C+ancestry%5C+in%5C+the%5C+network.%5C+We%5C+deduced%5C+that%5C+Chinese%5C+L.%5C+hodgsonii%5C+might%5C+survive%5C+the%5C+LGM%5C+in%5C+multiple%5C+isolated%5C+refugia%5C+around%5C+the%5C+Sichuan%5C+Basin.%5C+In%5C+Japan%2C%5C+L.%5C+hodgsonii%5C+was%5C+disjunctively%5C+distributed%5C+in%5C+northern%5C+Honshu%5C+and%5C+Hokkaido.%5C+Seven%5C+haplotypes%5C+were%5C+identified%5C+within%5C+this%5C+region.%5C+However%2C%5C+the%5C+genetic%5C+diversity%5C+in%5C+Honshu%5C+%5C%28Hd%5C+%3D%5C+0.821%5C%29%5C+was%5C+much%5C+higher%5C+than%5C+that%5C+in%5C+Hokkaido%5C+%5C%28Hd%5C+%3D%5C+0.513%5C%29.%5C+And%5C+all%5C+haplotypes%5C+in%5C+Hokkaido%5C+were%5C+derived%5C+from%5C+Honshu.%5C+This%5C+haplotype%5C+distribution%5C+suggested%5C+that%5C+the%5C+northern%5C+Honshu%5C+could%5C+have%5C+served%5C+as%5C+refuge%5C+in%5C+Japan.%5C+Nested%5C+clade%5C+analysis%5C+%5C%28NCA%5C%29%5C+indicated%5C+multiple%5C+forces%5C+including%5C+the%5C+vicariance%5C+and%5C+long%5C-distance%5C+dispersal%5C+affected%5C+the%5C+disjunctive%5C+distribution%5C+among%5C+populations%5C+of%5C+L.%5C+hodgsonii%5C+in%5C+Japan.2.%5C+The%5C+phylogeography%5C+of%5C+L.%5C+tongolensis%EF%BC%8CLigularia%5C+tongolensis%5C+was%5C+distributed%5C+along%5C+the%5C+Jinshajiang%5C+watershed%2C%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+In%5C+order%5C+to%5C+deduce%5C+the%5C+demographic%5C+history%5C+of%5C+this%5C+species%2C%5C+we%5C+sequenced%5C+two%5C+chloroplast%5C+DNA%5C+%5C%28cpDNA%5C%29%5C+intergenic%5C+spacers%5C+%5C%28trnQ%5C-5%E2%80%99rps16%2C%5C+trnL%5C-rpl32%5C%29%5C+in%5C+140%5C+individuals%5C+from%5C+14%5C+populations%5C+of%5C+three%5C+groups%5C+%5C%28Jinshajiang%5C+vs.%5C+Yalongjiang%5C+vs.%5C+Wumeng%5C%29%5C+within%5C+this%5C+species%5C+range.%5C+High%5C+levels%5C+of%5C+haplotype%5C+diversity%5C+%5C%28Hd%5C+%3D%5C+0.814%5C%29%5C+and%5C+total%5C+genetic%5C+diversity%5C+%5C%28HT%5C+%3D%5C+0.862%5C%29%5C+were%5C+detected%5C+at%5C+the%5C+species%5C+level%2C%5C+based%5C+on%5C+a%5C+total%5C+oftwelve%5C+haplotypes%5C+identified.%5C+However%2C%5C+the%5C+intrapopulation%5C+diversity%5C+%5C%28HS%5C+%3D%5C+0.349%5C%29%5C+was%5C+low%2C%5C+which%5C+led%5C+to%5C+the%5C+high%5C+levels%5C+of%5C+genetic%5C+divergence%5C+%5C%28GST%5C+%3D%5C+0.595%2C%5C+NST%5C+%3D%5C+0.614%2C%5C+FST%5C+%3D%5C+0.597%5C%29.%5C+In%5C+consideration%5C+of%5C+the%5C+speciation%5C+of%5C+L.%5C+tongolensis%5C+resulting%5C+from%5C+the%5C+uplifts%5C+of%5C+the%5C+Qinghai%5C-Tibetan%5C+Plateau%5C+%5C%28QTP%5C%29%2C%5C+we%5C+thought%5C+the%5C+present%5C+genetic%5C+structure%5C+of%5C+L.%5C+tongolensis%5C+was%5C+shaped%5C+by%5C+the%5C+fragmentation%5C+of%5C+ancestral%5C+populations%5C+during%5C+the%5C+courses%5C+of%5C+QTP%5C+uplifts.%5C+This%5C+was%5C+further%5C+supported%5C+by%5C+the%5C+absence%5C+of%5C+IBD%5C+tests%5C+%5C%28r%5C+%3D%5C+%E2%80%930.291%2C%5C+p%5C+%3D%5C+0.964%5C%29%2C%5C+which%5C+suggest%5C+that%5C+the%5C+differentiation%5C+had%5C+not%5C+occurred%5C+in%5C+accordance%5C+with%5C+the%5C+isolation%5C+by%5C+distance%5C+model.%5C+The%5C+genetic%5C+differentiation%5C+in%5C+L.%5C+tongolensis%5C+appears%5C+to%5C+be%5C+associated%5C+with%5C+historical%5C+events.%5C+Meanwhile%2C%5C+H2%5C+and%5C+H5%2C%5C+the%5C+dominant%5C+haplotypes%5C+that%5C+located%5C+on%5C+internal%5C+nodes%5C+and%5C+deviated%5C+from%5C+extinct%5C+ancestral%5C+haplotype%5C+in%5C+the%5C+network%2C%5C+were%5C+detected%5C+to%5C+be%5C+shared%5C+between%5C+Jinshajiang%5C+and%5C+Yalongjiang%5C+groups.%5C+We%5C+deduced%5C+that%5C+ancestral%5C+populations%5C+of%5C+this%5C+species%5C+might%5C+have%5C+had%5C+a%5C+continuous%5C+distribution%5C+range%2C%5C+which%5C+was%5C+then%5C+fragmented%5C+and%5C+isolated%5C+by%5C+the%5C+following%5C+tectonic%5C+events.%5C+Finally%2C%5C+the%5C+ancestral%5C+polymorphism%2C%5C+H2%5C+and%5C+H5%2C%5C+were%5C+randomly%5C+allocated%5C+in%5C+Jinshajiang%5C+watershed%5C+and%5C+Yalongjiang%5C+watershed.%5C+Meanwhile%2C%5C+H5%5C+was%5C+the%5C+dominant%5C+haplotype%5C+in%5C+Jinshajiang%5C+watershed%5C%3B%5C+H7%5C+was%5C+the%5C+domiant%5C+haplotype%5C+in%5C+Yalongjiang%5C+watershed%5C+and%5C+Wumeng%5C+Mountain.%5C+This%5C+haplotype%5C+distribution%5C+pattern%5C+indicated%5C+that%5C+each%5C+group%5C+might%5C+have%5C+served%5C+as%5C+a%5C+refuge%5C+for%5C+L.%5C+tongolensis%5C+during%5C+the%5C+Quaternary%5C+Glaciation.%5C+Postglacial%5C+demographic%5C+expansion%5C+was%5C+supported%5C+by%5C+unimodal%5C+mismatch%5C+distribution%5C+and%5C+star%5C-like%5C+phylogenies%2C%5C+with%5C+expansion%5C+ages%5C+of%5C+274%5C+ka%5C+B.%5C+P.%5C+for%5C+this%5C+species"},{"jsname":"Trigonobalanus doichangensis is an endangered plant. In this paper, the megasporogenesis and development of female gametophyte, seed morphological traits and seed germination, seed conservation, micropropagation and acclimatization of this species were studied. Combined with the published results of cytology, molecular genetics and other researches,the mechanisms of extinction, basic biology and technology of germplasm conservation and acclimatization of T. doichangensis were discussed. The main results are summarized as follows:1. Megasporogenesis and development of female gametophyte,Stamens exist under the stigma of T. doichangensis, and the pollen is aborted on the later development stage of pistil, therefore, the pistillate flower in function is hermaphrodite flower in morphology. The ovule is anatropous, bitegmic and crassinucellate. The primary archesporium is hypodermal and single-celled and the sporogenous cell of the nucellus functions directly as a megaspore mother cell which goes meiosis to form a linear tetrad. The chalazal megaspore of the tetrad is functional. The development of embryo sac conforms to the polygonum type. There are six ovules in the ovary of T. doichangensis, and only one develops into a seed in normal fruits. In the process of megasporogenesis and development of female gametophyte, there are several links of abortion, and 93.3% of mature embryo sacs is aborted.2. Morphological characters and germination of seeds,Most of the variation occurred among individual trees within populations in seed morphological traits (length, width and 1000-seed weight) and germination-related indices (germination percentage, germination index and vigor index). In addition, the variation in percentage of well-developed seeds among populations and among individual trees within populations is equal, each accounting for 48%. Each of seed morphological traits has significantly positive correlation with each other (p < 0.01), but they have no significant correlation with percentage of well-developed seeds and germination-related indices. In the same batch of seeds of T. doichangensis, there are light-colored and dark-colored seed coats, and development of light-colored seeds is significantly poorer than that of dark-colored seeds.The sensitivity of seeds to high temperature varys in different stages of seed imbibition. In each stage, heat acclimatization don’t increase germination percentage, germination index and fresh weight of seedlings. If the distilled water is substituted by solution of SA during seed imbibition, seed germination and germination index after heat shock are not significantly different from control, but they are significantly higher than that of other treatments. Moreover, when the seeds are treatmented with SA, the fresh weight of seedlings is significantly higher than that of control and other treatments.3. Seed conservation,Seeds of T. doichangensis belong to orthodox seeds which can tolerate certain level of dehydration. The condition of low temperature and low water content of seeds is conducive to seed conservation.Germination of fresh seeds shows significant variation among populations, howerer, germination of the seeds after storage for one year in room temperature shows no significant variation among populations.High temperature and high relative humidity damages the seeds more severely than high temperature does. In addition, low water content of seeds enable the seeds to be more tolerant to high temperature.The electrical conductivity, dehydrogenase activity and germination percentage have no significant correlation with each other.4. Micropropagation and in vitro conservation,Cotyledonary nodes are a kind of efficient explants. Low salt media are conducive to shoot propagation and root induction.The maximum multiplication rate (20-25 shoots/explant within 4 months) is achieved on quarter-strength Murashige and Skoog (1/4 MS) medium supplemented with 1 mg·L-1 6-benzyladenine (6-BA) and 0.05 mg·L-1 α-naphthaleneacetic acid (NAA).Rooting is promoted by auxins, however, IBA alone or low concentrations of NAA are preferable due to small amount of callus induced. The research has established an efficient protocol for micropropagation of T. doichangensis, and it provides technology support for in vitro conservation of special germplasm of the species.5. Acclimatization,Quercus variabilis, Cyclobalanopsis glaucoides and T. doichangensis belong to the family of Fagaceae, and the natural distribution ranges of the 3 species are decreasing in turn. The research suggests that the ranges of temperature tolerance of the 3 species are decreasing corresponding to their distribution ranges.The high and low semi-lethal temperature of one-year old T. doichangensis is 49.5℃ and -5℃ respectively. It suggests that T. doichangensis has a wide range of basic temperature tolerance. Short-term heat and cold acclimatization cannot expand the range of temperature tolerance. It can be inferred that T. doichangensis may lack induced tolerance to temperature. Under proper conditions, ABA can increase the cold tolerance, and SA can increase the heat tolerance of leaf discs of T. doichangensis.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3ATrigonobalanus%5C+doichangensis%5C+is%5C+an%5C+endangered%5C+plant.%5C+In%5C+this%5C+paper%2C%5C+the%5C+megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%2C%5C+seed%5C+morphological%5C+traits%5C+and%5C+seed%5C+germination%2C%5C+seed%5C+conservation%2C%5C+micropropagation%5C+and%5C+acclimatization%5C+of%5C+this%5C+species%5C+were%5C+studied.%5C+Combined%5C+with%5C+the%5C+published%5C+results%5C+of%5C+cytology%2C%5C+molecular%5C+genetics%5C+and%5C+other%5C+researches%2Cthe%5C+mechanisms%5C+of%5C+extinction%2C%5C+basic%5C+biology%5C+and%5C+technology%5C+of%5C+germplasm%5C+conservation%5C+and%5C+acclimatization%5C+of%5C+T.%5C+doichangensis%5C+were%5C+discussed.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%EF%BC%8CStamens%5C+exist%5C+under%5C+the%5C+stigma%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+the%5C+pollen%5C+is%5C+aborted%5C+on%5C+the%5C+later%5C+development%5C+stage%5C+of%5C+pistil%2C%5C+therefore%2C%5C+the%5C+pistillate%5C+flower%5C+in%5C+function%5C+is%5C+hermaphrodite%5C+flower%5C+in%5C+morphology.%5C+The%5C+ovule%5C+is%5C+anatropous%2C%5C+bitegmic%5C+and%5C+crassinucellate.%5C+The%5C+primary%5C+archesporium%5C+is%5C+hypodermal%5C+and%5C+single%5C-celled%5C+and%5C+the%5C+sporogenous%5C+cell%5C+of%5C+the%5C+nucellus%5C+functions%5C+directly%5C+as%5C+a%5C+megaspore%5C+mother%5C+cell%5C+which%5C+goes%5C+meiosis%5C+to%5C+form%5C+a%5C+linear%5C+tetrad.%5C+The%5C+chalazal%5C+megaspore%5C+of%5C+the%5C+tetrad%5C+is%5C+functional.%5C+The%5C+development%5C+of%5C+embryo%5C+sac%5C+conforms%5C+to%5C+the%5C+polygonum%5C+type.%5C+There%5C+are%5C+six%5C+ovules%5C+in%5C+the%5C+ovary%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+only%5C+one%5C+develops%5C+into%5C+a%5C+seed%5C+in%5C+normal%5C+fruits.%5C+In%5C+the%5C+process%5C+of%5C+megasporogenesis%5C+and%5C+development%5C+of%5C+female%5C+gametophyte%2C%5C+there%5C+are%5C+several%5C+links%5C+of%5C+abortion%2C%5C+and%5C+93.3%25%5C+of%5C+mature%5C+embryo%5C+sacs%5C+is%5C+aborted.2.%5C+Morphological%5C+characters%5C+and%5C+germination%5C+of%5C+seeds%EF%BC%8CMost%5C+of%5C+the%5C+variation%5C+occurred%5C+among%5C+individual%5C+trees%5C+within%5C+populations%5C+in%5C+seed%5C+morphological%5C+traits%5C+%5C%28length%2C%5C+width%5C+and%5C+1000%5C-seed%5C+weight%5C%29%5C+and%5C+germination%5C-related%5C+indices%5C+%5C%28germination%5C+percentage%2C%5C+germination%5C+index%5C+and%5C+vigor%5C+index%5C%29.%5C+In%5C+addition%2C%5C+the%5C+variation%5C+in%5C+percentage%5C+of%5C+well%5C-developed%5C+seeds%5C+among%5C+populations%5C+and%5C+among%5C+individual%5C+trees%5C+within%5C+populations%5C+is%5C+equal%2C%5C+each%5C+accounting%5C+for%5C+48%25.%5C+Each%5C+of%5C+seed%5C+morphological%5C+traits%5C+has%5C+significantly%5C+positive%5C+correlation%5C+with%5C+each%5C+other%5C+%5C%28p%5C+%3C%5C+0.01%5C%29%2C%5C+but%5C+they%5C+have%5C+no%5C+significant%5C+correlation%5C+with%5C+percentage%5C+of%5C+well%5C-developed%5C+seeds%5C+and%5C+germination%5C-related%5C+indices.%5C+In%5C+the%5C+same%5C+batch%5C+of%5C+seeds%5C+of%5C+T.%5C+doichangensis%2C%5C+there%5C+are%5C+light%5C-colored%5C+and%5C+dark%5C-colored%5C+seed%5C+coats%2C%5C+and%5C+development%5C+of%5C+light%5C-colored%5C+seeds%5C+is%5C+significantly%5C+poorer%5C+than%5C+that%5C+of%5C+dark%5C-colored%5C+seeds.The%5C+sensitivity%5C+of%5C+seeds%5C+to%5C+high%5C+temperature%5C+varys%5C+in%5C+different%5C+stages%5C+of%5C+seed%5C+imbibition.%5C+In%5C+each%5C+stage%2C%5C+heat%5C+acclimatization%5C+don%E2%80%99t%5C+increase%5C+germination%5C+percentage%2C%5C+germination%5C+index%5C+and%5C+fresh%5C+weight%5C+of%5C+seedlings.%5C+If%5C+the%5C+distilled%5C+water%5C+is%5C+substituted%5C+by%5C+solution%5C+of%5C+SA%5C+during%5C+seed%5C+imbibition%2C%5C+seed%5C+germination%5C+and%5C+germination%5C+index%5C+after%5C+heat%5C+shock%5C+are%5C+not%5C+significantly%5C+different%5C+from%5C+control%2C%5C+but%5C+they%5C+are%5C+significantly%5C+higher%5C+than%5C+that%5C+of%5C+other%5C+treatments.%5C+Moreover%2C%5C+when%5C+the%5C+seeds%5C+are%5C+treatmented%5C+with%5C+SA%2C%5C+the%5C+fresh%5C+weight%5C+of%5C+seedlings%5C+is%5C+significantly%5C+higher%5C+than%5C+that%5C+of%5C+control%5C+and%5C+other%5C+treatments.3.%5C+Seed%5C+conservation%EF%BC%8CSeeds%5C+of%5C+T.%5C+doichangensis%5C+belong%5C+to%5C+orthodox%5C+seeds%5C+which%5C+can%5C+tolerate%5C+certain%5C+level%5C+of%5C+dehydration.%5C+The%5C+condition%5C+of%5C+low%5C+temperature%5C+and%5C+low%5C+water%5C+content%5C+of%5C+seeds%5C+is%5C+conducive%5C+to%5C+seed%5C+conservation.Germination%5C+of%5C+fresh%5C+seeds%5C+shows%5C+significant%5C+variation%5C+among%5C+populations%2C%5C+howerer%2C%5C+germination%5C+of%5C+the%5C+seeds%5C+after%5C+storage%5C+for%5C+one%5C+year%5C+in%5C+room%5C+temperature%5C+shows%5C+no%5C+significant%5C+variation%5C+among%5C+populations.High%5C+temperature%5C+and%5C+high%5C+relative%5C+humidity%5C+damages%5C+the%5C+seeds%5C+more%5C+severely%5C+than%5C+high%5C+temperature%5C+does.%5C+In%5C+addition%2C%5C+low%5C+water%5C+content%5C+of%5C+seeds%5C+enable%5C+the%5C+seeds%5C+to%5C+be%5C+more%5C+tolerant%5C+to%5C+high%5C+temperature.The%5C+electrical%5C+conductivity%2C%5C+dehydrogenase%5C+activity%5C+and%5C+germination%5C+percentage%5C+have%5C+no%5C+significant%5C+correlation%5C+with%5C+each%5C+other.4.%5C+Micropropagation%5C+and%5C+in%5C+vitro%5C+conservation%EF%BC%8CCotyledonary%5C+nodes%5C+are%5C+a%5C+kind%5C+of%5C+efficient%5C+explants.%5C+Low%5C+salt%5C+media%5C+are%5C+conducive%5C+to%5C+shoot%5C+propagation%5C+and%5C+root%5C+induction.The%5C+maximum%5C+multiplication%5C+rate%5C+%5C%2820%5C-25%5C+shoots%5C%2Fexplant%5C+within%5C+4%5C+months%5C%29%5C+is%5C+achieved%5C+on%5C+quarter%5C-strength%5C+Murashige%5C+and%5C+Skoog%5C+%5C%281%5C%2F4%5C+MS%5C%29%5C+medium%5C+supplemented%5C+with%5C+1%5C+mg%C2%B7L%5C-1%5C+6%5C-benzyladenine%5C+%5C%286%5C-BA%5C%29%5C+and%5C+0.05%5C+mg%C2%B7L%5C-1%5C+%CE%B1%5C-naphthaleneacetic%5C+acid%5C+%5C%28NAA%5C%29.Rooting%5C+is%5C+promoted%5C+by%5C+auxins%2C%5C+however%2C%5C+IBA%5C+alone%5C+or%5C+low%5C+concentrations%5C+of%5C+NAA%5C+are%5C+preferable%5C+due%5C+to%5C+small%5C+amount%5C+of%5C+callus%5C+induced.%5C+The%5C+research%5C+has%5C+established%5C+an%5C+efficient%5C+protocol%5C+for%5C+micropropagation%5C+of%5C+T.%5C+doichangensis%2C%5C+and%5C+it%5C+provides%5C+technology%5C+support%5C+for%5C+in%5C+vitro%5C+conservation%5C+of%5C+special%5C+germplasm%5C+of%5C+the%5C+species.5.%5C+Acclimatization%EF%BC%8CQuercus%5C+variabilis%2C%5C+Cyclobalanopsis%5C+glaucoides%5C+and%5C+T.%5C+doichangensis%5C+belong%5C+to%5C+the%5C+family%5C+of%5C+Fagaceae%2C%5C+and%5C+the%5C+natural%5C+distribution%5C+ranges%5C+of%5C+the%5C+3%5C+species%5C+are%5C+decreasing%5C+in%5C+turn.%5C+The%5C+research%5C+suggests%5C+that%5C+the%5C+ranges%5C+of%5C+temperature%5C+tolerance%5C+of%5C+the%5C+3%5C+species%5C+are%5C+decreasing%5C+corresponding%5C+to%5C+their%5C+distribution%5C+ranges.The%5C+high%5C+and%5C+low%5C+semi%5C-lethal%5C+temperature%5C+of%5C+one%5C-year%5C+old%5C+T.%5C+doichangensis%5C+is%5C+49.5%E2%84%83%5C+and%5C+%5C-5%E2%84%83%5C+respectively.%5C+It%5C+suggests%5C+that%5C+T.%5C+doichangensis%5C+has%5C+a%5C+wide%5C+range%5C+of%5C+basic%5C+temperature%5C+tolerance.%5C+Short%5C-term%5C+heat%5C+and%5C+cold%5C+acclimatization%5C+cannot%5C+expand%5C+the%5C+range%5C+of%5C+temperature%5C+tolerance.%5C+It%5C+can%5C+be%5C+inferred%5C+that%5C+T.%5C+doichangensis%5C+may%5C+lack%5C+induced%5C+tolerance%5C+to%5C+temperature.%5C+Under%5C+proper%5C+conditions%2C%5C+ABA%5C+can%5C+increase%5C+the%5C+cold%5C+tolerance%2C%5C+and%5C+SA%5C+can%5C+increase%5C+the%5C+heat%5C+tolerance%5C+of%5C+leaf%5C+discs%5C+of%5C+T.%5C+doichangensis."},{"jsname":"Tupistra pingbianensis J. L. Huang & X. Z. Liu, is a newly described perennial herb narrowly distributed in South-east Yunnan, China. It belongs to genera Tupistra Ker Gawler(Liliaceae). It usually occurs on outcrops of bare rock, or occasionally as an epiphyte on tree trunks covered with humus and moss. T. pingbianensis is unusual in that it exhibits rarity according to three different ways of measuring rarity, i.e. it has a small geographical range, is a habitat specialist, and always has low abundance where it occurs. Because of this, T. pingbianensis has been listed as an endangered species and catalogued in the Chinese Species Red List. In order to discuss the causes of rarity of T. pingbianensis, the multidisciplinary investigations of the seed and seedling establishment, cytology, breeding system, and population genetic structure of the endangered T. pingbianensis were performed in this thesis. Besides, the corresponding conservation strategies were also proposed according to the above-mentioned. The main results are summarized as follows:1. Biological traits of T. pingbianensis,T. pingbianensis is a perennial herbaceous with a creeping rhizome, thick basal leaves, and an inflorescence that is a terminal spike. Florescence is from November to December, while fruiting occurs between November and December in the next year. Reproduction and spread also occurs clonally via rhizomes, most seeds simply fall from the mother plant and germinate where they land. It occurs on outcrops of bare rock, or occasionally as an epiphyte on tree trunks covered with humus and moss, which are naturally rare habitat. Throughout its small geographical range, T. pingbianensis occurs as discrete, small populations size. 2. Seed germination traits of T. pingbianensis,Seed morphology was observed and effects of substrates soil types, light, sowing depth on germination percentage of the species T. pingbianensis were investigated primarily. The results showed that the average seed size was (1.17±0.02) cm × (0.79±0.01) cm × (0.77±0.01) cm (length × width × thickness), per-hundred-seed-weight was about 35.03±0.12g. Among the three different substrates soil types and sowing depths, seeds of T. pingbianensis germinate best in alkalescence soil and shallow sowing depth (2cm). It could germinate in the both light and dark, but the germination rate can be accelerated by light obviously. Its seed has high germination rate not just in greenhouse, but also in the field. We considered that this is a good strategy to expand its population in the special habit.3. Karyotype evolution status of T. pingbianensis,The karyotype of total eight species in Campylandra, Tupistra and Aspidistra from China were reported. Considering Tupistra has the similar morphological character with Campylandra but resemble Aspidistra in karyotype. The results support the earlier study that Tupistra is a transition between Compylandra and Aspidistra. Besides, our results also showes that the T. pingbianensis and T. fungilliformis has higher karyotype asymmetry than other species in this genera, which means these species have higher karyotype evolution status. 4. Reproduction ecology of T. pingbianensis, The flower phenology, pollinators of T. pingbianensis were documented herein. We also examined the breeding system of T. pingbianensis and seed fitness traits to determine what forms of pollination and mating occur in this naturally rare species, and is there evidence of inbreeding depression in its populations. The results shows that the flowers opened 10-15 days, which suggest stigma and pollen can keep high vitality for a long time (10-15 days). The only pollinators observed on T. pingbianensis flowers were ants (Aphaenogaster smythiesii Forel,Formicidea), springtail (Hypogastrura sp., Hypogastruridae, Collembola) and one species of beetles (Anomala corpulenta Motsch, Rutelidae). These pollinators generally have restricted movement capacities and hence promote geitonogamy or mating between individuals in close proximity within populations. The results of out crossing index (OCI) pollination experiments in our study suggest that T. pingbianensis has an animal-pollinated, mixed selfing and outcrossing breeding systems. However, a pollination experiment also fail to detect significant inbreeding depression upon F1 fruit set, seed weight and germinate rate fitness-traits. Since naturally rare species T. pingbianensis is not seriously genetically impoverished and likely to have adapted to tolerating a high level of inbreeding early in its history. 5. Conservation genetic of T. pingbianensis, The levels and partitioning of genetic diversity were investigated in Tupistra pingbianensis. Here genetic diversity and patterns of genetic variation within and among 11 populations were analyzed using AFLP markers with 97 individuals across its whole geographical range. High levels of genetic variation were revealed both at the species level (P99 = 96.012%; Ht = 0.302) and at the population level (P99 = 51.41%; Hs = 0.224). Strong genetic differentiation among populations was also detected (FST = 0.2961; ⍬Ⅱ= 0.281), which corresponded to results reported for typical animal-pollinated, mixed selfing and outcrossing plant species. Special habitat and its life history traits may play an important role in shaping the genetic diversity and the genetic structure of this species. Based on the special habitat in T. pingbianensis, the most suitable strategy for its conservation is the protection of its habitat. Moreover, given the observed strong genetic differentiation among populations of T. pingbianensis, the preservation of genetic diversity in this species will require the protection of many populations as possible to maintain the current levels of genetic variability.","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3ATupistra%5C+pingbianensis%5C+J.%5C+L.%5C+Huang%5C+%5C%26%5C+X.%5C+Z.%5C+Liu%2C%5C+is%5C+a%5C+newly%5C+described%5C+perennial%5C+herb%5C+narrowly%5C+distributed%5C+in%5C+South%5C-east%5C+Yunnan%2C%5C+China.%5C+It%5C+belongs%5C+to%5C+genera%5C+Tupistra%5C+Ker%5C+Gawler%5C%28Liliaceae%5C%29.%5C+It%5C+usually%5C+occurs%5C+on%5C+outcrops%5C+of%5C+bare%5C+rock%2C%5C+or%5C+occasionally%5C+as%5C+an%5C+epiphyte%5C+on%5C+tree%5C+trunks%5C+covered%5C+with%5C+humus%5C+and%5C+moss.%5C+T.%5C+pingbianensis%5C+is%5C+unusual%5C+in%5C+that%5C+it%5C+exhibits%5C+rarity%5C+according%5C+to%5C+three%5C+different%5C+ways%5C+of%5C+measuring%5C+rarity%2C%5C+i.e.%5C+it%5C+has%5C+a%5C+small%5C+geographical%5C+range%2C%5C+is%5C+a%5C+habitat%5C+specialist%2C%5C+and%5C+always%5C+has%5C+low%5C+abundance%5C+where%5C+it%5C+occurs.%5C+Because%5C+of%5C+this%2C%5C+T.%5C+pingbianensis%5C+has%5C+been%5C+listed%5C+as%5C+an%5C+endangered%5C+species%5C+and%5C+catalogued%5C+in%5C+the%5C+Chinese%5C+Species%5C+Red%5C+List.%5C+In%5C+order%5C+to%5C+discuss%5C+the%5C+causes%5C+of%5C+rarity%5C+of%5C+T.%5C+pingbianensis%2C%5C+the%5C+multidisciplinary%5C+investigations%5C+of%5C+the%5C+seed%5C+and%5C+seedling%5C+establishment%2C%5C+cytology%2C%5C+breeding%5C+system%2C%5C+and%5C+population%5C+genetic%5C+structure%5C+of%5C+the%5C+endangered%5C+T.%5C+pingbianensis%5C+were%5C+performed%5C+in%5C+this%5C+thesis.%5C+Besides%2C%5C+the%5C+corresponding%5C+conservation%5C+strategies%5C+were%5C+also%5C+proposed%5C+according%5C+to%5C+the%5C+above%5C-mentioned.%5C+The%5C+main%5C+results%5C+are%5C+summarized%5C+as%5C+follows%5C%3A1.%5C+Biological%5C+traits%5C+of%5C+T.%5C+pingbianensis%2CT.%5C+pingbianensis%5C+is%5C+a%5C+perennial%5C+herbaceous%5C+with%5C+a%5C+creeping%5C+rhizome%2C%5C+thick%5C+basal%5C+leaves%2C%5C+and%5C+an%5C+inflorescence%5C+that%5C+is%5C+a%5C+terminal%5C+spike.%5C+Florescence%5C+is%5C+from%5C+November%5C+to%5C+December%2C%5C+while%5C+fruiting%5C+occurs%5C+between%5C+November%5C+and%5C+December%5C+in%5C+the%5C+next%5C+year.%5C+Reproduction%5C+and%5C+spread%5C+also%5C+occurs%5C+clonally%5C+via%5C+rhizomes%2C%5C+most%5C+seeds%5C+simply%5C+fall%5C+from%5C+the%5C+mother%5C+plant%5C+and%5C+germinate%5C+where%5C+they%5C+land.%5C+It%5C+occurs%5C+on%5C+outcrops%5C+of%5C+bare%5C+rock%2C%5C+or%5C+occasionally%5C+as%5C+an%5C+epiphyte%5C+on%5C+tree%5C+trunks%5C+covered%5C+with%5C+humus%5C+and%5C+moss%2C%5C+which%5C+are%5C+naturally%5C+rare%5C+habitat.%5C+Throughout%5C+its%5C+small%5C+geographical%5C+range%2C%5C+T.%5C+pingbianensis%5C+occurs%5C+as%5C+discrete%2C%5C+small%5C+populations%5C+size.%5C+2.%5C+Seed%5C+germination%5C+traits%5C+of%5C+T.%5C+pingbianensis%2CSeed%5C+morphology%5C+was%5C+observed%5C+and%5C+effects%5C+of%5C+substrates%5C+soil%5C+types%2C%5C+light%2C%5C+sowing%5C+depth%5C+on%5C+germination%5C+percentage%5C+of%5C+the%5C+species%5C+T.%5C+pingbianensis%5C+were%5C+investigated%5C+primarily.%5C+The%5C+results%5C+showed%5C+that%5C+the%5C+average%5C+seed%5C+size%5C+was%5C+%5C%281.17%C2%B10.02%5C%29%5C+cm%5C+%C3%97%5C+%5C%280.79%C2%B10.01%5C%29%5C+cm%5C+%C3%97%5C+%5C%280.77%C2%B10.01%5C%29%5C+cm%5C+%5C%28length%5C+%C3%97%5C+width%5C+%C3%97%5C+thickness%5C%29%2C%5C+per%5C-hundred%5C-seed%5C-weight%5C+was%5C+about%5C+35.03%C2%B10.12g.%5C+Among%5C+the%5C+three%5C+different%5C+substrates%5C+soil%5C+types%5C+and%5C+sowing%5C+depths%2C%5C+seeds%5C+of%5C+T.%5C+pingbianensis%5C+germinate%5C+best%5C+in%5C+alkalescence%5C+soil%5C+and%5C+shallow%5C+sowing%5C+depth%5C+%5C%282cm%5C%29.%5C+It%5C+could%5C+germinate%5C+in%5C+the%5C+both%5C+light%5C+and%5C+dark%2C%5C+but%5C+the%5C+germination%5C+rate%5C+can%5C+be%5C+accelerated%5C+by%5C+light%5C+obviously.%5C+Its%5C+seed%5C+has%5C+high%5C+germination%5C+rate%5C+not%5C+just%5C+in%5C+greenhouse%2C%5C+but%5C+also%5C+in%5C+the%5C+field.%5C+We%5C+considered%5C+that%5C+this%5C+is%5C+a%5C+good%5C+strategy%5C+to%5C+expand%5C+its%5C+population%5C+in%5C+the%5C+special%5C+habit.3.%5C+Karyotype%5C+evolution%5C+status%5C+of%5C+T.%5C+pingbianensis%2CThe%5C+karyotype%5C+of%5C+total%5C+eight%5C+species%5C+in%5C+Campylandra%2C%5C+Tupistra%5C+and%5C+Aspidistra%5C+from%5C+China%5C+were%5C+reported.%5C+Considering%5C+Tupistra%5C+has%5C+the%5C+similar%5C+morphological%5C+character%5C+with%5C+Campylandra%5C+but%5C+resemble%5C+Aspidistra%5C+in%5C+karyotype.%5C+The%5C+results%5C+support%5C+the%5C+earlier%5C+study%5C+that%5C+Tupistra%5C+is%5C+a%5C+transition%5C+between%5C+Compylandra%5C+and%5C+Aspidistra.%5C+Besides%2C%5C+our%5C+results%5C+also%5C+showes%5C+that%5C+the%5C+T.%5C+pingbianensis%5C+and%5C+T.%5C+fungilliformis%5C+has%5C+higher%5C+karyotype%5C+asymmetry%5C+than%5C+other%5C+species%5C+in%5C+this%5C+genera%2C%5C+which%5C+means%5C+these%5C+species%5C+have%5C+higher%5C+karyotype%5C+evolution%5C+status.%5C+4.%5C+Reproduction%5C+ecology%5C+of%5C+T.%5C+pingbianensis%2C%5C+The%5C+flower%5C+phenology%2C%5C+pollinators%5C+of%5C+T.%5C+pingbianensis%5C+were%5C+documented%5C+herein.%5C+We%5C+also%5C+examined%5C+the%5C+breeding%5C+system%5C+of%5C+T.%5C+pingbianensis%5C+and%5C+seed%5C+fitness%5C+traits%5C+to%5C+determine%5C+what%5C+forms%5C+of%5C+pollination%5C+and%5C+mating%5C+occur%5C+in%5C+this%5C+naturally%5C+rare%5C+species%2C%5C+and%5C+is%5C+there%5C+evidence%5C+of%5C+inbreeding%5C+depression%5C+in%5C+its%5C+populations.%5C+The%5C+results%5C+shows%5C+that%5C+the%5C+flowers%5C+opened%5C+10%5C-15%5C+days%2C%5C+which%5C+suggest%5C+stigma%5C+and%5C+pollen%5C+can%5C+keep%5C+high%5C+vitality%5C+for%5C+a%5C+long%5C+time%5C+%5C%2810%5C-15%5C+days%5C%29.%5C+The%5C+only%5C+pollinators%5C+observed%5C+on%5C+T.%5C+pingbianensis%5C+flowers%5C+were%5C+ants%5C+%5C%28Aphaenogaster%5C+smythiesii%5C+Forel%2CFormicidea%5C%29%2C%5C+springtail%5C+%5C%28Hypogastrura%5C+sp.%2C%5C+Hypogastruridae%2C%5C+Collembola%5C%29%5C+and%5C+one%5C+species%5C+of%5C+beetles%5C+%5C%28Anomala%5C+corpulenta%5C+Motsch%2C%5C+Rutelidae%5C%29.%5C+These%5C+pollinators%5C+generally%5C+have%5C+restricted%5C+movement%5C+capacities%5C+and%5C+hence%5C+promote%5C+geitonogamy%5C+or%5C+mating%5C+between%5C+individuals%5C+in%5C+close%5C+proximity%5C+within%5C+populations.%5C+The%5C+results%5C+of%5C+out%5C+crossing%5C+index%5C+%5C%28OCI%5C%29%5C+pollination%5C+experiments%5C+in%5C+our%5C+study%5C+suggest%5C+that%5C+T.%5C+pingbianensis%5C+has%5C+an%5C+animal%5C-pollinated%2C%5C+mixed%5C+selfing%5C+and%5C+outcrossing%5C+breeding%5C+systems.%5C+However%2C%5C+a%5C+pollination%5C+experiment%5C+also%5C+fail%5C+to%5C+detect%5C+significant%5C+inbreeding%5C+depression%5C+upon%5C+F1%5C+fruit%5C+set%2C%5C+seed%5C+weight%5C+and%5C+germinate%5C+rate%5C+fitness%5C-traits.%5C+Since%5C+naturally%5C+rare%5C+species%5C+T.%5C+pingbianensis%5C+is%5C+not%5C+seriously%5C+genetically%5C+impoverished%5C+and%5C+likely%5C+to%5C+have%5C+adapted%5C+to%5C+tolerating%5C+a%5C+high%5C+level%5C+of%5C+inbreeding%5C+early%5C+in%5C+its%5C+history.%5C+5.%5C+Conservation%5C+genetic%5C+of%5C+T.%5C+pingbianensis%2C%5C+The%5C+levels%5C+and%5C+partitioning%5C+of%5C+genetic%5C+diversity%5C+were%5C+investigated%5C+in%5C+Tupistra%5C+pingbianensis.%5C+Here%5C+genetic%5C+diversity%5C+and%5C+patterns%5C+of%5C+genetic%5C+variation%5C+within%5C+and%5C+among%5C+11%5C+populations%5C+were%5C+analyzed%5C+using%5C+AFLP%5C+markers%5C+with%5C+97%5C+individuals%5C+across%5C+its%5C+whole%5C+geographical%5C+range.%5C+High%5C+levels%5C+of%5C+genetic%5C+variation%5C+were%5C+revealed%5C+both%5C+at%5C+the%5C+species%5C+level%5C+%5C%28P99%5C+%3D%5C+96.012%25%5C%3B%5C+Ht%5C+%3D%5C+0.302%5C%29%5C+and%5C+at%5C+the%5C+population%5C+level%5C+%5C%28P99%5C+%3D%5C+51.41%25%5C%3B%5C+Hs%5C+%3D%5C+0.224%5C%29.%5C+Strong%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+was%5C+also%5C+detected%5C+%5C%28FST%5C+%3D%5C+0.2961%5C%3B%5C+%E2%8D%AC%E2%85%A1%3D%5C+0.281%5C%29%2C%5C+which%5C+corresponded%5C+to%5C+results%5C+reported%5C+for%5C+typical%5C+animal%5C-pollinated%2C%5C+mixed%5C+selfing%5C+and%5C+outcrossing%5C+plant%5C+species.%5C+Special%5C+habitat%5C+and%5C+its%5C+life%5C+history%5C+traits%5C+may%5C+play%5C+an%5C+important%5C+role%5C+in%5C+shaping%5C+the%5C+genetic%5C+diversity%5C+and%5C+the%5C+genetic%5C+structure%5C+of%5C+this%5C+species.%5C+Based%5C+on%5C+the%5C+special%5C+habitat%5C+in%5C+T.%5C+pingbianensis%2C%5C+the%5C+most%5C+suitable%5C+strategy%5C+for%5C+its%5C+conservation%5C+is%5C+the%5C+protection%5C+of%5C+its%5C+habitat.%5C+Moreover%2C%5C+given%5C+the%5C+observed%5C+strong%5C+genetic%5C+differentiation%5C+among%5C+populations%5C+of%5C+T.%5C+pingbianensis%2C%5C+the%5C+preservation%5C+of%5C+genetic%5C+diversity%5C+in%5C+this%5C+species%5C+will%5C+require%5C+the%5C+protection%5C+of%5C+many%5C+populations%5C+as%5C+possible%5C+to%5C+maintain%5C+the%5C+current%5C+levels%5C+of%5C+genetic%5C+variability."},{"jsname":"the combination of Rodgersia, Astilboides, Darmera, Oresitrophe, Bergenia, and Mukdenia by Soltis with the name of Darmera group was supported. The key taxonomic traits of leave arrangement and pubescence were not suppoted by molecular result, especially for taxa from Hengduan Mountains and Himalayas. Multiple sampled Rodgersia aesculifolia was not monophyly, samples from Hengduan Mountains (R. henrici = R. aesculifolia var. henrici) were nested with R. pinnata and R. sambucifolia, while samples from southeast Tibet (R. henrici = R. aesculifolia var. henrici) form a clade sister to the former taxa. Samples of R. aesculifolia from Qingling and Daba mountains (R. aesculifolia var. aesculifolia = Triditional R. asculifolia) are distinct with all the above. R. aesculifolia var. henrici is distinct from A. aesculifolia var. aesculifolia and is suggested be raised to spcies level again as Rosgersia henrici Franchet. Populations of R. henrici from western Yunnan are grouping with R. pinnata, natural hybridization are supposed to occur. Rodgersia podophylla from Korea and Japan is sister to Chinese Rodgersia. The furthermore study of infraspecific taxonomy of R. aesculifolia is suggested.The relict Rodgersia nepalensis from eastern Nepal branched first in the combined ITS and plastid tree, which is different from evidences of the traditional morphology and cytology. This might due to its narrow distribution disjuct from other species of Rodgersia, low level of gene flow and subsequent conserved genetic system. It may evolved by polyploidy, the spcecialized morphological character of R. nepalensis may be a strategy for ecological tolerance and self-protection. Our molecular phylogeny of Rodgersia is accordant with the former morphological and cytological evidences. Hybridization and polyploidy may play an important role in evolution and speciation in Rodgersia. Rodgersia may origin from northestern Asia and migrated into Hengduan mountains and Himalayas through Qingling and Daba mountains. Based on present molecular results, as well as original description papers and Type specimen, six species and two variaties were recognized in Rodgersia. Rodgersia henrici was recognized in our study, and was supported to be raised to species level again","jscount":"1","jsurl":"/simple-search?field1=all&field=dc.type_filter&advanced=false&query1=%25E6%25A4%258D%25E7%2589%25A9%25E5%259C%25B0%25E7%2590%2586&&fq=dc.project.title_filter%3Athe%5C+combination%5C+of%5C+Rodgersia%2C%5C+Astilboides%2C%5C+Darmera%2C%5C+Oresitrophe%2C%5C+Bergenia%2C%5C+and%5C+Mukdenia%5C+by%5C+Soltis%5C+with%5C+the%5C+name%5C+of%5C+Darmera%5C+group%5C+was%5C+supported.%5C+The%5C+key%5C+taxonomic%5C+traits%5C+of%5C+leave%5C+arrangement%5C+and%5C+pubescence%5C+were%5C+not%5C+suppoted%5C+by%5C+molecular%5C+result%2C%5C+especially%5C+for%5C+taxa%5C+from%5C+Hengduan%5C+Mountains%5C+and%5C+Himalayas.%5C+Multiple%5C+sampled%5C+Rodgersia%5C+aesculifolia%5C+was%5C+not%5C+monophyly%2C%5C+samples%5C+from%5C+Hengduan%5C+Mountains%5C+%5C%28R.%5C+henrici%5C+%3D%5C+R.%5C+aesculifolia%5C+var.%5C+henrici%5C%29%5C+were%5C+nested%5C+with%5C+R.%5C+pinnata%5C+and%5C+R.%5C+sambucifolia%2C%5C+while%5C+samples%5C+from%5C+southeast%5C+Tibet%5C+%5C%28R.%5C+henrici%5C+%3D%5C+R.%5C+aesculifolia%5C+var.%5C+henrici%5C%29%5C+form%5C+a%5C+clade%5C+sister%5C+to%5C+the%5C+former%5C+taxa.%5C+Samples%5C+of%5C+R.%5C+aesculifolia%5C+from%5C+Qingling%5C+and%5C+Daba%5C+mountains%5C+%5C%28R.%5C+aesculifolia%5C+var.%5C+aesculifolia%5C+%3D%5C+Triditional%5C+R.%5C+asculifolia%5C%29%5C+are%5C+distinct%5C+with%5C+all%5C+the%5C+above.%5C+R.%5C+aesculifolia%5C+var.%5C+henrici%5C+is%5C+distinct%5C+from%5C+A.%5C+aesculifolia%5C+var.%5C+aesculifolia%5C+and%5C+is%5C+suggested%5C+be%5C+raised%5C+to%5C+spcies%5C+level%5C+again%5C+as%5C+Rosgersia%5C+henrici%5C+Franchet.%5C+Populations%5C+of%5C+R.%5C+henrici%5C+from%5C+western%5C+Yunnan%5C+are%5C+grouping%5C+with%5C+R.%5C+pinnata%2C%5C+natural%5C+hybridization%5C+are%5C+supposed%5C+to%5C+occur.%5C+Rodgersia%5C+podophylla%5C+from%5C+Korea%5C+and%5C+Japan%5C+is%5C+sister%5C+to%5C+Chinese%5C+Rodgersia.%5C+The%5C+furthermore%5C+study%5C+of%5C+infraspecific%5C+taxonomy%5C+of%5C+R.%5C+aesculifolia%5C+is%5C+suggested.The%5C+relict%5C+Rodgersia%5C+nepalensis%5C+from%5C+eastern%5C+Nepal%5C+branched%5C+first%5C+in%5C+the%5C+combined%5C+ITS%5C+and%5C+plastid%5C+tree%2C%5C+which%5C+is%5C+different%5C+from%5C+evidences%5C+of%5C+the%5C+traditional%5C+morphology%5C+and%5C+cytology.%5C+This%5C+might%5C+due%5C+to%5C+its%5C+narrow%5C+distribution%5C+disjuct%5C+from%5C+other%5C+species%5C+of%5C+Rodgersia%2C%5C+low%5C+level%5C+of%5C+gene%5C+flow%5C+and%5C+subsequent%5C+conserved%5C+genetic%5C+system.%5C+It%5C+may%5C+evolved%5C+by%5C+polyploidy%2C%5C+the%5C+spcecialized%5C+morphological%5C+character%5C+of%5C+R.%5C+nepalensis%5C+may%5C+be%5C+a%5C+strategy%5C+for%5C+ecological%5C+tolerance%5C+and%5C+self%5C-protection.%5C+Our%5C+molecular%5C+phylogeny%5C+of%5C+Rodgersia%5C+is%5C+accordant%5C+with%5C+the%5C+former%5C+morphological%5C+and%5C+cytological%5C+evidences.%5C+Hybridization%5C+and%5C+polyploidy%5C+may%5C+play%5C+an%5C+important%5C+role%5C+in%5C+evolution%5C+and%5C+speciation%5C+in%5C+Rodgersia.%5C+Rodgersia%5C+may%5C+origin%5C+from%5C+northestern%5C+Asia%5C+and%5C+migrated%5C+into%5C+Hengduan%5C+mountains%5C+and%5C+Himalayas%5C+through%5C+Qingling%5C+and%5C+Daba%5C+mountains.%5C+Based%5C+on%5C+present%5C+molecular%5C+results%2C%5C+as%5C+well%5C+as%5C+original%5C+description%5C+papers%5C+and%5C+Type%5C+specimen%2C%5C+six%5C+species%5C+and%5C+two%5C+variaties%5C+were%5C+recognized%5C+in%5C+Rodgersia.%5C+Rodgersia%5C+henrici%5C+was%5C+recognized%5C+in%5C+our%5C+study%2C%5C+and%5C+was%5C+supported%5C+to%5C+be%5C+raised%5C+to%5C+species%5C+level%5C+again"},{"jsname":"lastIndexed","jscount":"2023-05-30"}],"Funding Project","dc.project.title_filter")'>
|
|
|