Keywords Cloud

Research Outputs

Co-authors[TOP 5]

Usage Statistics


  Total Views
 7366

  Access Source
    internal: 1
    External: 7365
    Domestic: 7112
    Abroad: 254

  Annual Views
 2022

  Access Source
    internal: 0
    External: 2022
    Domestic: 1990
    Abroad: 32

  Monthly Views
 910

  Access Source
    internal: 0
    External: 910
    Domestic: 902
    Abroad: 8

Visits

Visits

1. Photosynthesis in relation to reproductive success of Cyptipedium .. [600]
2. In search of the first flower: A Jurassic angiosperm, Archaefructu.. [567]
3. Mapping non-wood forest product (matsutake mushrooms) using logist.. [552]
4. A new species of Begonia (Begoniaceae) from Guangxi, China [469]
5. Plant diversity and priority conservation areas of Northwestern Yu.. [433]
6. Land bridge and long-distance dispersal - Old views, new evidence [357]
7. Rescuing the Sichou oak Quercus sichourensis in China [343]
8. Biodiversity Conservation of the Genus Incarvillea Juss. (Bignonia.. [334]
9. 物种——老问题新看法 [333]
10. SYSTEMATIC SIGNIFICANCE OF THE DEVELOPMENT AND ANATOMY OF FLOWERS .. [328]
11. Late Miocene southwestern Chinese floristic diversity shaped by th.. [325]
12. LEAF MARGIN ANALYSIS: A NEW EQUATION FROM HUMID TO MESIC FORESTS I.. [323]
13. Photosynthetic performances of Quercus pannosa vary with altitude .. [322]
14. Parasitic loranthus from Loranthaceae rather than Viscaceae potent.. [319]
15. Integrating fossils in a molecular-based phylogeny and testing the.. [318]
16. Leaf architecture in Quercus subgenus Cyclobalanopsis (Fagaceae) f.. [316]
17. Large-scale phylogenetic analyses reveal fagalean diversification .. [314]
18. Genetic diversity of an endangered aquatic plant, Potamogeton luce.. [311]
19. Lectotypification and New Synonymy in Quercus subg. Cyclobalanopsi.. [309]
20. New fossil endocarps of Sambucus (Adoxaceae) from the upper Plioce.. [302]
21. Systematics of Fagaceae: Phylogenetic tests of reproductive trait .. [293]
22. 基于叶缘分析法定量重建中国始新世植物群的年均温 [291]
23. Fossils of Quercus sect. Heterobalanus can help explain the uplift.. [279]
24. Quantitative climate reconstructions of the late Miocene Xiaolongt.. [278]
25. A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwes.. [274]
26. First discovery of Cucubalus (Caryophyllaceae) fossil, and its bio.. [271]
27. Micropropagation of Cypripedium flavum through multiple shoots of .. [264]
28. Quantitative reconstruction of the Late Miocene monsoon climates o.. [263]
29. The earliest fossil evidence of the Hamamelidaceae: Late Cretaceou.. [246]
30. Climatic envelope of evergreen sclerophyllous oaks and their prese.. [246]
31. Phylogenetic studies of the core Alismatales inferred from morphol.. [245]
32. The higher-level phylogeny of monocots based on matK, rbcL and 18S.. [243]
33. Pinus prekesiya sp nov from the upper Miocene of Yunnan, southwest.. [243]
34. The evolution of Miocene climates in North China: Preliminary resu.. [237]
35. Paleoclimatic estimation reveals a weak winter monsoon in southwes.. [230]
36. Wood anatomy of Craigia (Malvales) from southeastern Yunnan, China [227]
37. Gas exchange and resource utilization in two alpine oaks at differ.. [226]
38. Fossil nothofagaceous leaves from the Eocene of western Antarctica.. [226]
39. Ditaxocladus (extinct Cupressaceae, Cupressoideae) from the Upper .. [226]
40. Karyomorphology of Incarvillea (Bignoniaceae) and its implications.. [224]
41. Taxonomic notes on the genus Cyclobalanopsis (Fagaceae) [224]
42. Environmental heterogeneity decides bio-heterogeneity of the Spira.. [223]
43. Geometric morphometrics: A powerful tool for the study of shape ev.. [220]
44. A new Quercus species from the upper Miocene of southwestern China.. [220]
45. Revised taxonomy of selected fossil endocarp species in the Menisp.. [217]
46. Using species distribution modeling to improve conservation and la.. [205]
47. Scanning electron microscopy of fruits in the West African Polygon.. [202]
48. Leaf physiognomy and climate: Are monsoon systems different? [202]
49. The intensification of the East Asian winter monsoon contributed t.. [201]
50. Neogene climate evolution in Eastern Eurasia with special referenc.. [200]
51. Molecular phylogeny of Incarvillea (Bignoniaceae) based on its and.. [197]
52. Continuous existence of Zanthoxylum (Rutaceae) in Southwest China .. [197]
53. Fossil fruits of Ailanthus confucii from the Upper Miocene of Wens.. [195]
54. Microula pentagona sp nov and M-galactantha sp nov (Boraginaceae) .. [193]
55. The earliest fossil bamboos of China (middle Miocene, Yunnan) and .. [192]
56. Photosynthetic performances of transplanted Cypripedium flavum pla.. [191]
57. Major declines of woody plant species ranges under climate change .. [186]
58. Elsholtzia litangensis sp nov (Lamiaceae) endemic to China [184]
59. Regional constraints on leaf physiognomy and precipitation regress.. [183]
60. Agapetes subsessilifolia (Ericaceae), a new species from the easte.. [181]
61. The first fossil Microsoroid fern (Palaeosorum ellipticum gen. et .. [179]
62. A hypothesis on cupule evolution and the evidence from molecular p.. [176]
63. New insights into the species problem [171]
64. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus S.. [164]
65. Phylogeny and classification of Paris (Melanthiaceae) inferred fro.. [162]
66. Large-scale dataset from China gives new insights into leaf margin.. [156]
67. First fossil of Pterolobium (Leguminosae) from the Middle Miocene .. [155]
68. Sladenia integrifolia (Sladeniaceae), a new species from China [153]
69. Evolution of stomatal and trichome density of the Quercus delavayi.. [153]
70. A new subgenus of Incarvillea (Bignoniaceae) [150]
71. A global-scale test for monsoon indices used in palaeoclimatic rec.. [143]
72. Fire dynamics under monsoonal climate in Yunnan, SW China: past, p.. [140]
73. Paris xichouensis, a new combination of Trilliaceae from China [134]
74. Warm-cold colonization: response of oaks to uplift of the Himalaya.. [133]
75. Late Miocene vegetation dynamics under monsoonal climate in southw.. [131]
76. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integr.. [130]
77. A new positive relationship between pCO(2) and stomatal frequency .. [123]
78. A tropical forest of the middle Miocene of Fujian (SE China) revea.. [118]
79. Variations in Leaf Morphological Traits of Quercus guyavifolia (Fa.. [116]
80. Habitat, climate and potential plant food resources for the late M.. [113]
81. Endemic wild ornamental plants from northwestern Yunnan, China [103]
82. Nutlet micro-morphology of the genus Microula (Boraginaceae) from .. [100]
83. A Miocene leaf fossil record of Rosa (R-fortuita n. sp.) from its .. [96]
84. A New Species of Tsuga (Pinaceae) based on Lignified Wood from the.. [95]
85. 中中新世气候适宜期环境变化:来自中国西南部湖泊沉积地球化学的证据 [95]
86. MIOCENE LEAVES OF ELAEAGNUS (ELAEAGNACEAE) FROM THE QINGHAI-TIBET .. [94]
87. NEW MIDDLE MIOCENE FOSSIL WOOD OF WATARIA (MALVACEAE) FROM SOUTHWE.. [94]
88. Evolutionary History of Atmospheric CO2 during the Late Cenozoic f.. [91]
89. Rubus (Rosaceae) diversity in the late Pliocene of Yunnan, southwe.. [88]
90. 鹤庆栎(Quercus heqingensis n.sp.)的发现及其在古大气CO_2浓度重建中.. [87]
91. Paris caobangensis Y. H. Ji, H. Li & Z. K. Zhou (Trilliaceae), a n.. [86]
92. Gradual expansion of moisture sensitive Abies spectabilis forest i.. [86]
93. Lake geochemistry reveals marked environmental change in Southwest.. [77]
94. Pre-dispersal strategies by Quercus schottkyana to mitigate the ef.. [76]
95. Effects of herbivores and litter on Lithocarpus hancei seed germin.. [75]
96. Miocene Exbucklandia (Hamamelidaceae) from Yunnan, China and its b.. [75]
97. Desiccation and post-dispersal infestation of acorns of Quercus sc.. [72]
98. Lignified woods of Pinus (Pinaceae) from the late Miocene of centr.. [72]
99. The oldest Mahonia (Berberidaceae) fossil from East Asia and its b.. [67]
100. Fossil seeds of Euryale (Nymphaeaceae) indicate a lake or swamp en.. [66]

Downloads

1. Mapping non-wood forest product (matsutake mushrooms) using logist.. [207]
2. 物种——老问题新看法 [205]
3. Leaf architecture in Quercus subgenus Cyclobalanopsis (Fagaceae) f.. [165]
4. 基于叶缘分析法定量重建中国始新世植物群的年均温 [149]
5. Genetic diversity of an endangered aquatic plant, Potamogeton luce.. [144]
6. Parasitic loranthus from Loranthaceae rather than Viscaceae potent.. [143]
7. Land bridge and long-distance dispersal - Old views, new evidence [134]
8. A new species of Begonia (Begoniaceae) from Guangxi, China [127]
9. LEAF MARGIN ANALYSIS: A NEW EQUATION FROM HUMID TO MESIC FORESTS I.. [113]
10. Fossils of Quercus sect. Heterobalanus can help explain the uplift.. [110]
11. In search of the first flower: A Jurassic angiosperm, Archaefructu.. [110]
12. Photosynthetic performances of Quercus pannosa vary with altitude .. [102]
13. Large-scale phylogenetic analyses reveal fagalean diversification .. [95]
14. Integrating fossils in a molecular-based phylogeny and testing the.. [91]
15. Plant diversity and priority conservation areas of Northwestern Yu.. [88]
16. Systematics of Fagaceae: Phylogenetic tests of reproductive trait .. [88]
17. Phylogenetic studies of the core Alismatales inferred from morphol.. [87]
18. Rescuing the Sichou oak Quercus sichourensis in China [83]
19. Lectotypification and New Synonymy in Quercus subg. Cyclobalanopsi.. [79]
20. Geometric morphometrics: A powerful tool for the study of shape ev.. [77]
21. Biodiversity Conservation of the Genus Incarvillea Juss. (Bignonia.. [76]
22. Quantitative reconstruction of the Late Miocene monsoon climates o.. [76]
23. New fossil endocarps of Sambucus (Adoxaceae) from the upper Plioce.. [75]
24. Quantitative climate reconstructions of the late Miocene Xiaolongt.. [71]
25. Fossil nothofagaceous leaves from the Eocene of western Antarctica.. [70]
26. A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwes.. [70]
27. Elsholtzia litangensis sp nov (Lamiaceae) endemic to China [65]
28. The earliest fossil evidence of the Hamamelidaceae: Late Cretaceou.. [64]
29. Taxonomic notes on the genus Cyclobalanopsis (Fagaceae) [63]
30. Photosynthesis in relation to reproductive success of Cyptipedium .. [60]
31. Wood anatomy of Craigia (Malvales) from southeastern Yunnan, China [59]
32. Scanning electron microscopy of fruits in the West African Polygon.. [58]
33. The higher-level phylogeny of monocots based on matK, rbcL and 18S.. [56]
34. Agapetes subsessilifolia (Ericaceae), a new species from the easte.. [56]
35. Pinus prekesiya sp nov from the upper Miocene of Yunnan, southwest.. [56]
36. Molecular phylogeny of Incarvillea (Bignoniaceae) based on its and.. [56]
37. Using species distribution modeling to improve conservation and la.. [56]
38. Phylogeny and classification of Paris (Melanthiaceae) inferred fro.. [55]
39. Microula pentagona sp nov and M-galactantha sp nov (Boraginaceae) .. [55]
40. Continuous existence of Zanthoxylum (Rutaceae) in Southwest China .. [55]
41. Gas exchange and resource utilization in two alpine oaks at differ.. [51]
42. Revised taxonomy of selected fossil endocarp species in the Menisp.. [48]
43. Late Miocene southwestern Chinese floristic diversity shaped by th.. [47]
44. The intensification of the East Asian winter monsoon contributed t.. [46]
45. The evolution of Miocene climates in North China: Preliminary resu.. [45]
46. Paleoclimatic estimation reveals a weak winter monsoon in southwes.. [45]
47. The earliest fossil bamboos of China (middle Miocene, Yunnan) and .. [45]
48. Karyomorphology of Incarvillea (Bignoniaceae) and its implications.. [43]
49. Leaf physiognomy and climate: Are monsoon systems different? [43]
50. New insights into the species problem [43]
51. Climatic envelope of evergreen sclerophyllous oaks and their prese.. [42]
52. First discovery of Cucubalus (Caryophyllaceae) fossil, and its bio.. [42]
53. A new Quercus species from the upper Miocene of southwestern China.. [41]
54. First fossil of Pterolobium (Leguminosae) from the Middle Miocene .. [40]
55. Photosynthetic performances of transplanted Cypripedium flavum pla.. [38]
56. A hypothesis on cupule evolution and the evidence from molecular p.. [37]
57. Ditaxocladus (extinct Cupressaceae, Cupressoideae) from the Upper .. [37]
58. Micropropagation of Cypripedium flavum through multiple shoots of .. [36]
59. A new subgenus of Incarvillea (Bignoniaceae) [36]
60. Late Miocene vegetation dynamics under monsoonal climate in southw.. [35]
61. Neogene climate evolution in Eastern Eurasia with special referenc.. [34]
62. Environmental heterogeneity decides bio-heterogeneity of the Spira.. [32]
63. Sladenia integrifolia (Sladeniaceae), a new species from China [31]
64. A New Species of Tsuga (Pinaceae) based on Lignified Wood from the.. [31]
65. The first fossil Microsoroid fern (Palaeosorum ellipticum gen. et .. [30]
66. A global-scale test for monsoon indices used in palaeoclimatic rec.. [29]
67. Rates of Water Loss and Uptake in Recalcitrant Fruits of Quercus S.. [28]
68. Major declines of woody plant species ranges under climate change .. [25]
69. Evolutionary History of Atmospheric CO2 during the Late Cenozoic f.. [25]
70. Variations in Leaf Morphological Traits of Quercus guyavifolia (Fa.. [25]
71. 中中新世气候适宜期环境变化:来自中国西南部湖泊沉积地球化学的证据 [25]
72. Paris xichouensis, a new combination of Trilliaceae from China [24]
73. SYSTEMATIC SIGNIFICANCE OF THE DEVELOPMENT AND ANATOMY OF FLOWERS .. [24]
74. A Miocene leaf fossil record of Rosa (R-fortuita n. sp.) from its .. [24]
75. Regional constraints on leaf physiognomy and precipitation regress.. [23]
76. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integr.. [23]
77. Habitat, climate and potential plant food resources for the late M.. [23]
78. A tropical forest of the middle Miocene of Fujian (SE China) revea.. [22]
79. Fire dynamics under monsoonal climate in Yunnan, SW China: past, p.. [22]
80. NEW MIDDLE MIOCENE FOSSIL WOOD OF WATARIA (MALVACEAE) FROM SOUTHWE.. [21]
81. Fossil seeds of Euryale (Nymphaeaceae) indicate a lake or swamp en.. [21]
82. Miocene Exbucklandia (Hamamelidaceae) from Yunnan, China and its b.. [21]
83. A new positive relationship between pCO(2) and stomatal frequency .. [19]
84. Warm-cold colonization: response of oaks to uplift of the Himalaya.. [19]
85. Evolution of stomatal and trichome density of the Quercus delavayi.. [18]
86. Rubus (Rosaceae) diversity in the late Pliocene of Yunnan, southwe.. [18]
87. Fossil fruits of Ailanthus confucii from the Upper Miocene of Wens.. [17]
88. Large-scale dataset from China gives new insights into leaf margin.. [17]
89. The first fossil record of ring-cupped oak (Quercus L. subgenus Cy.. [17]
90. Endemic wild ornamental plants from northwestern Yunnan, China [16]
91. The oldest Mahonia (Berberidaceae) fossil from East Asia and its b.. [16]
92. Desiccation and post-dispersal infestation of acorns of Quercus sc.. [16]
93. The first megafossil record of Goniophlebium (Polypodiaceae) from .. [16]
94. Lignified woods of Pinus (Pinaceae) from the late Miocene of centr.. [15]
95. Gradual expansion of moisture sensitive Abies spectabilis forest i.. [14]
96. Peaches Preceded Humans: Fossil Evidence from SW China [13]
97. Artificial neural networks reveal a high-resolution climatic signa.. [13]
98. Fossil leaves of Buxus (Buxaceae) from the Upper Pliocene of Yunna.. [13]
99. MIOCENE LEAVES OF ELAEAGNUS (ELAEAGNACEAE) FROM THE QINGHAI-TIBET .. [12]
100. Distribution of Cenozoic plant relicts in China explained by droug.. [12]