关键词云

成果统计

合作作者[TOP 5]

访问统计


  总访问量
 2990

  访问来源
    内部: 33
    外部: 2957
    国内: 2774
    国外: 216

  年访问量
 708

  访问来源
    内部: 2
    外部: 706
    国内: 686
    国外: 22

  月访问量
 165

  访问来源
    内部: 0
    外部: 165
    国内: 158
    国外: 7

访问量

访问量

1. People, money, and protected areas: the collection of the caterpil.. [1594]
2. Carbon monoxide enhances the chilling tolerance of recalcitrant Ba.. [894]
3. Deciphering the Protective Role of Nitric Oxide against Salt Stres.. [591]
4. Climate Change Adaptation Among Tibetan Pastoralists: Challenges i.. [568]
5. Climate change effects fruiting of the prize matsutake mushroom in.. [444]
6. Comparative morphology of leaf epidermis of Salix (Salicaceae) wit.. [392]
7. N-3-Oxo-Decanoyl-L-Homoserine-Lactone Activates Auxin-Induced Adve.. [378]
8. Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiar.. [377]
9. Genome-wide and molecular evolution analyses of the phospholipase .. [350]
10. Flexible and reversible responses to different irradiance levels d.. [343]
11. Polyploidy and new chromosome counts in Anaphalis (Asteraceae: Gna.. [343]
12. Plant knowledge of the Shuhi in the Hengduan Mountains, Southwest .. [337]
13. Isolation of Chemical Constituents from the Aerial Parts of Verbas.. [334]
14. 黄杞的化学成分研究 [331]
15. A Series of TA-Based and Zero-Background Vectors for Plant Functio.. [324]
16. Ecological stability during the LGM and the mid-Holocene in the Al.. [314]
17. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): delimitation,.. [313]
18. Livelihood and Conservation Aspects of Non-wood Forest Product Col.. [309]
19. Mao's heritage: Medicinal plant knowledge among the Bai in Shaxi, .. [306]
20. Phytochemical Variation in Fritillaria cirrhosa D. Don (Chuan Bei .. [305]
21. Matsutake Trade in Yunnan Province, China: An Overview [303]
22. Alpine steppe plant communities of the Tibetan highlands [289]
23. Physiological, biochemical and proteomics analysis reveals the ada.. [282]
24. Phylogeny and biogeographic diversification of Maianthemum (Ruscac.. [256]
25. Ingol and Ingenol Diterpenes from the Aerial Parts of Euphorbia ro.. [253]
26. GENETIC VARIATION IN WALNUTS (JUGLANS REGIA AND J. SIGILLATA; JUGL.. [250]
27. Flower evolution of alpine forbs in the open top chambers (OTCs) f.. [249]
28. A novel perspective on seed yield of broad bean (Vicia faba L.): d.. [239]
29. CHANGE IN FLORAL ORIENTATION IN ANISODUS LURIDUS (SOLANACEAE) PROT.. [237]
30. Karyomorphology of Maianthemum sensu lato (Polygonatae, Ruscaceae) [233]
31. A New Hysteranthous Species of Chelonopsis (Lamiaceae) from Southw.. [231]
32. Sexual interference in two Chamerion species with contrasting mode.. [229]
33. 温度对高山植物紫花针茅种子萌发特性的影响 [225]
34. Jatropholane-Type Diterpenes from Euphorbia sikkimensis [222]
35. Establishing long-term biodiversity assessment and monitoring in n.. [221]
36. ISOLATION AND CHARACTERIZATION OF 20 NEW MICROSATELLITE LOCI IN CO.. [219]
37. Chemical constituents of Viscum album var. meridianum [214]
38. Chemical Constituents of Excoecaria acerifolia and Their Bioactivi.. [212]
39. Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae): I.. [210]
40. Comparative Physiological and Proteomic Analyses of Poplar (Populu.. [209]
41. Nitric oxide and hydrogen peroxide are important signals mediating.. [208]
42. Selective seed abortion induced by nectar robbing in the selfing p.. [207]
43. 从事科研工作的几点观察与思考 [206]
44. Permanent Genetic Resources added to Molecular Ecology Resources D.. [206]
45. Molecular cloning and characterization of a novel SK3-type dehydri.. [205]
46. Fungal elicitor Pep-25 increases cytosolic calcium ions, H2O2 prod.. [203]
47. Pollination ecology of Arnebia szechenyi (Boraginaceae), a Chinese.. [199]
48. Diversification of Livelihoods in a Society in Transition: A Case .. [193]
49. Denticulatains A and B: unique stilbene-diterpene heterodimers fro.. [190]
50. Transcriptome analysis reveals diversified adaptation of Stipa pur.. [187]
51. Reproductive allocation in a dioecious perennial Oxyria sinensis (.. [186]
52. Molecular phylogeny of Salix L. (Salicaceae) inferred from three c.. [186]
53. Walnuts among the Shuhi in Shuiluo, eastern Himalayas. Walnut (Jug.. [179]
54. Aporphine alkaloids from Clematis parviloba and their antifungal a.. [172]
55. Molecular cloning of a plasma membrane aquaporin in Stipa purpurea.. [171]
56. Equipped for Migrations Across High Latitude Regions? Reduced Spur.. [168]
57. Refugial isolation and range expansions drive the genetic structur.. [167]
58. Chemical Constituents from Clematis delavayi var. spinescens [166]
59. Two New Phenolic Glycosides from Viscum articulatum [166]
60. Karyological analyses of 33 species of the tribe Ophiopogoneae (Li.. [165]
61. A karyomorphological study on four species of Meconopsis Vig. (Pap.. [164]
62. Physiological and Proteomics Analyses Reveal the Mechanism of Eich.. [164]
63. Analyses of the oligopeptide transporter gene family in poplar and.. [163]
64. Genome-wide and molecular evolution analysis of the subtilase gene.. [160]
65. Comparative proteomics exploring the molecular mechanism of eutrop.. [160]
66. Cyclopeptides from three arctic caryophyllaceae plants, chemotaxon.. [154]
67. Cytotoxic prenylated bibenzyls and flavonoids from Macaranga kurzi.. [146]
68. Ring-widths of the above tree-line shrub Rhododendron reveal the c.. [143]
69. 青藏高原生态变化 [140]
70. 西藏东部牧民对藏药植物山莨菪的传统利用及环境适应意义(英文) [130]
71. Size-dependent gender modification in Lilium apertum (Liliaceae): .. [129]
72. Phylogenetics and evolution of phyllotaxy in the Solomon's seal ge.. [128]
73. 长柱重楼抗癌活性部位PFE-PT3的化学成分分离和鉴定方法 [127]
74. Comparative proteomic analysis reveals the role of hydrogen sulfid.. [126]
75. Chemical constituents from Euphorbia stracheyi and their biologica.. [124]
76. ISOLATION AND CHARACTERIZATION OF 19 NEW MICROSATELLITE LOCI IN CO.. [123]
77. Molecular Phylogeny of Ophiopogon (Asparagaceae) Inferred from Nuc.. [122]
78. 霜冻对昆明植物园维管植物危害的调查分析 [119]
79. 青藏高原特有植物露蕊乌头(毛茛科)从冰期避难所扩张后繁殖资源分配的变.. [110]
80. Molecular phylogeny of Faberia (Asteraceae: Cichorieae) based on n.. [108]
81. Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Tim.. [107]
82. Decentralization of Tree Seedling Supply Systems for Afforestation.. [106]
83. Chromosome numbers, karyotypes, and polyploidy evolution of Anapha.. [103]
84. Large or small? Rethinking China's forest bioenergy policies [98]
85. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enha.. [97]
86. AFP2 as the novel regulator breaks high-temperature-induced seeds .. [95]
87. Physiological and Proteomic Adaptation of the Alpine Grass Stipa p.. [94]
88. 不同居群紫花针茅响应干旱胁迫的生理和分子差异分析(英文) [86]
89. 粤蛇葡萄的化学成分及其抗血管生成活性研究 [83]
90. 草鞋木的化学成分研究 [82]
91. Common and Privatized: Conditions for Wise Management of Matsutake.. [77]
92. Cadmium Accumulation Characteristics in Turnip Landraces from Chin.. [76]
93. Genome-Wide Identification and Expression Analysis of the Cation D.. [75]
94. Widespread impact of horizontal gene transfer on plant colonizatio.. [69]
95. Genetic diversity in taro (Colocasia esculenta Schott, Araceae) in.. [63]
96. 蛋白质水平解析高山嵩草对青藏高原昼夜环境的响应(英文) [62]
97. Chromosome numbers and polyploidy in Leontopodium (Asteraceae: Gna.. [56]
98. Regarding the social-ecological dimensions of caterpillar fungus (.. [54]
99. 土党参的化学成分及其抗血管生成活性研究 [52]
100. 青藏大戟的化学成分研究 [52]

下载量

1. People, money, and protected areas: the collection of the caterpil.. [208]
2. Flexible and reversible responses to different irradiance levels d.. [155]
3. Carbon monoxide enhances the chilling tolerance of recalcitrant Ba.. [155]
4. Isolation of Chemical Constituents from the Aerial Parts of Verbas.. [146]
5. Plant knowledge of the Shuhi in the Hengduan Mountains, Southwest .. [144]
6. Deciphering the Protective Role of Nitric Oxide against Salt Stres.. [132]
7. Alpine steppe plant communities of the Tibetan highlands [105]
8. Livelihood and Conservation Aspects of Non-wood Forest Product Col.. [98]
9. Climate change effects fruiting of the prize matsutake mushroom in.. [94]
10. Matsutake Trade in Yunnan Province, China: An Overview [92]
11. Climate Change Adaptation Among Tibetan Pastoralists: Challenges i.. [88]
12. Ingol and Ingenol Diterpenes from the Aerial Parts of Euphorbia ro.. [87]
13. Polyploidy and new chromosome counts in Anaphalis (Asteraceae: Gna.. [77]
14. 青藏高原生态变化 [70]
15. Karyomorphology of Maianthemum sensu lato (Polygonatae, Ruscaceae) [69]
16. A New Hysteranthous Species of Chelonopsis (Lamiaceae) from Southw.. [68]
17. Phylogeny and biogeographic diversification of Maianthemum (Ruscac.. [67]
18. Chemical constituents of Viscum album var. meridianum [67]
19. ISOLATION AND CHARACTERIZATION OF 20 NEW MICROSATELLITE LOCI IN CO.. [66]
20. N-3-Oxo-Decanoyl-L-Homoserine-Lactone Activates Auxin-Induced Adve.. [63]
21. CHANGE IN FLORAL ORIENTATION IN ANISODUS LURIDUS (SOLANACEAE) PROT.. [62]
22. Genome-wide and molecular evolution analyses of the phospholipase .. [58]
23. Comparative morphology of leaf epidermis of Salix (Salicaceae) wit.. [55]
24. Selective seed abortion induced by nectar robbing in the selfing p.. [55]
25. GENETIC VARIATION IN WALNUTS (JUGLANS REGIA AND J. SIGILLATA; JUGL.. [54]
26. Walnuts among the Shuhi in Shuiluo, eastern Himalayas. Walnut (Jug.. [54]
27. Chemical Constituents from Clematis delavayi var. spinescens [53]
28. Establishing long-term biodiversity assessment and monitoring in n.. [50]
29. Phytochemical Variation in Fritillaria cirrhosa D. Don (Chuan Bei .. [49]
30. Chemical Constituents of Excoecaria acerifolia and Their Bioactivi.. [48]
31. Aporphine alkaloids from Clematis parviloba and their antifungal a.. [47]
32. Mao's heritage: Medicinal plant knowledge among the Bai in Shaxi, .. [46]
33. Fungal elicitor Pep-25 increases cytosolic calcium ions, H2O2 prod.. [46]
34. Molecular phylogeny of Koenigia L. (Polygonaceae: Persicarieae): I.. [46]
35. A Series of TA-Based and Zero-Background Vectors for Plant Functio.. [44]
36. Jatropholane-Type Diterpenes from Euphorbia sikkimensis [43]
37. 从事科研工作的几点观察与思考 [43]
38. Sexual interference in two Chamerion species with contrasting mode.. [40]
39. Karyological analyses of 33 species of the tribe Ophiopogoneae (Li.. [38]
40. Physiological, biochemical and proteomics analysis reveals the ada.. [38]
41. Transcriptome analysis reveals diversified adaptation of Stipa pur.. [38]
42. Reproductive allocation in a dioecious perennial Oxyria sinensis (.. [37]
43. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): delimitation,.. [37]
44. Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiar.. [36]
45. Molecular phylogeny of Salix L. (Salicaceae) inferred from three c.. [35]
46. 黄杞的化学成分研究 [33]
47. Two New Phenolic Glycosides from Viscum articulatum [32]
48. Analyses of the oligopeptide transporter gene family in poplar and.. [32]
49. Cyclopeptides from three arctic caryophyllaceae plants, chemotaxon.. [31]
50. Ecological stability during the LGM and the mid-Holocene in the Al.. [31]
51. Physiological and Proteomics Analyses Reveal the Mechanism of Eich.. [31]
52. 霜冻对昆明植物园维管植物危害的调查分析 [30]
53. Pollination ecology of Arnebia szechenyi (Boraginaceae), a Chinese.. [29]
54. Flower evolution of alpine forbs in the open top chambers (OTCs) f.. [29]
55. Comparative proteomic analysis reveals the role of hydrogen sulfid.. [28]
56. Ring-widths of the above tree-line shrub Rhododendron reveal the c.. [28]
57. Refugial isolation and range expansions drive the genetic structur.. [27]
58. 青藏高原特有植物露蕊乌头(毛茛科)从冰期避难所扩张后繁殖资源分配的变.. [24]
59. Diversification of Livelihoods in a Society in Transition: A Case .. [24]
60. Chemical constituents from Euphorbia stracheyi and their biologica.. [23]
61. Cytotoxic prenylated bibenzyls and flavonoids from Macaranga kurzi.. [23]
62. Decentralization of Tree Seedling Supply Systems for Afforestation.. [21]
63. Molecular cloning and characterization of a novel SK3-type dehydri.. [21]
64. 长柱重楼抗癌活性部位PFE-PT3的化学成分分离和鉴定方法 [21]
65. Chromosome numbers, karyotypes, and polyploidy evolution of Anapha.. [20]
66. A novel perspective on seed yield of broad bean (Vicia faba L.): d.. [20]
67. 温度对高山植物紫花针茅种子萌发特性的影响 [20]
68. Genome-wide and molecular evolution analysis of the subtilase gene.. [20]
69. Molecular Phylogeny of Ophiopogon (Asparagaceae) Inferred from Nuc.. [18]
70. Nitric oxide and hydrogen peroxide are important signals mediating.. [18]
71. 粤蛇葡萄的化学成分及其抗血管生成活性研究 [18]
72. A karyomorphological study on four species of Meconopsis Vig. (Pap.. [17]
73. Genetic diversity and structure of a traditional Chinese medicinal.. [17]
74. Genetic diversity in taro (Colocasia esculenta Schott, Araceae) in.. [17]
75. Size-dependent gender modification in Lilium apertum (Liliaceae): .. [16]
76. Physiological and Proteomic Adaptation of the Alpine Grass Stipa p.. [16]
77. Common and Privatized: Conditions for Wise Management of Matsutake.. [16]
78. 草鞋木的化学成分研究 [15]
79. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enha.. [15]
80. Comparative Physiological and Proteomic Analyses of Poplar (Populu.. [14]
81. Phylogenetics and evolution of phyllotaxy in the Solomon's seal ge.. [14]
82. Chromosome numbers and polyploidy in Leontopodium (Asteraceae: Gna.. [14]
83. Proteasome-Mediated Degradation of FRIGIDA Modulates Flowering Tim.. [14]
84. Large or small? Rethinking China's forest bioenergy policies [13]
85. Widespread impact of horizontal gene transfer on plant colonizatio.. [13]
86. Comparative proteomics exploring the molecular mechanism of eutrop.. [13]
87. ISOLATION AND CHARACTERIZATION OF 19 NEW MICROSATELLITE LOCI IN CO.. [13]
88. Denticulatains A and B: unique stilbene-diterpene heterodimers fro.. [12]
89. Permanent Genetic Resources added to Molecular Ecology Resources D.. [12]
90. Molecular phylogeny of Faberia (Asteraceae: Cichorieae) based on n.. [11]
91. 蛋白质水平解析高山嵩草对青藏高原昼夜环境的响应(英文) [11]
92. 不同居群紫花针茅响应干旱胁迫的生理和分子差异分析(英文) [11]
93. 西藏东部牧民对藏药植物山莨菪的传统利用及环境适应意义(英文) [11]
94. Cadmium Accumulation Characteristics in Turnip Landraces from Chin.. [11]
95. 青藏大戟的化学成分研究 [10]
96. Proteome response of wild wheat relative Kengyilia thoroldiana to .. [8]
97. Regarding the social-ecological dimensions of caterpillar fungus (.. [6]
98. 土党参的化学成分及其抗血管生成活性研究 [5]
99. Cadmium phytoremediation potential of turnip compared with three c.. [5]
100. Genome-Wide Identification and Expression Analysis of the Cation D.. [5]