Knowledge Management System of Kunming Institute of Botany,CAS
Estimating climate-induced 'Nowhere to go' range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models | |
Rana,Santosh Kumar; Rana,Hum Kala; Luo,Dong; Sun,Hang | |
2021 | |
发表期刊 | ECOLOGICAL INDICATORS |
ISSN | 1470-160X |
卷号 | 121页码:107127 |
摘要 | Global climate change threatens the range and resilience of species in the major biodiversity, particularly those in mountain regions. As the climatic conditions at high altitudes becomes suitable for colonization, many alpine plants experiences novel competitive pressures along as well as range-shift limitations along alpine peaks. To estimate climate-induced 'Nowhere to go' scenarios, we modelled habitat suitability for the Himalayan Incarvillea Juss. and its subgenera using a multi-model median (MMM) ensemble species distribution modelling (eSDM). This model incorporated 13 climatic and other 15 environmental variables with n = 542 spatially rarefied occurrence records of the Incarvillea species. Meanwhile, contributions of environmental factors to ecological divergence were statistically verified using principal component analysis (PCA) and discriminant function analysis (DFA). Finally, the geographic range was projected under n = 4 different climatic scenarios and analysed for plausible range shifts. The niche divergence test suggested larger ecological differentiation within the genus and subgenera by climatic rather than environmental variables. In response to climatic factors, the consensus projection resulted in a wide range of suitability for Incarvillea across the three foremost Biodiversity hotspots of Asia. The spatio-temporal projection of the Incarvillea species in the Hengduan Mountains expand their range north-westward in future without diminishing their range size under climate warming, but not promisingly occupied niche range as anticipated by the Nowhere to go hypothesis. Therefore, a better understanding of the potential range of the genus Incarvillea and its subgenera envisioned through solely climate-induced variables might provide better insights to biogeographers in understanding geographic range amalgamating climate change adaptation and biodiversity conservation in the biodiversity hotspots. |
关键词 | Biomod2 Climate change Ensemble species distribution modelling Incarvillea Nowhere to go Range shifts HENGDUAN MOUNTAINS CHANGE IMPACTS ELEVATION PLANTS PHYLOGEOGRAPHY PERFORMANCE VALIDATION MAXIMUM BIAS |
DOI | 10.1016/j.ecolind.2020.107127 |
WOS记录号 | WOS:000604891100002 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.kib.ac.cn/handle/151853/73434 |
专题 | 中国科学院昆明植物研究所 |
作者单位 | 1.Chinese Acad Sci, Kunming Inst Bot, Key Lab Plant Divers & Biogeog East Asia, Kunming 650201, Yunnan, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Rana,Santosh Kumar,Rana,Hum Kala,Luo,Dong,et al. Estimating climate-induced 'Nowhere to go' range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models[J]. ECOLOGICAL INDICATORS,2021,121:107127. |
APA | Rana,Santosh Kumar,Rana,Hum Kala,Luo,Dong,&Sun,Hang.(2021).Estimating climate-induced 'Nowhere to go' range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models.ECOLOGICAL INDICATORS,121,107127. |
MLA | Rana,Santosh Kumar,et al."Estimating climate-induced 'Nowhere to go' range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models".ECOLOGICAL INDICATORS 121(2021):107127. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论