Knowledge Management System of Kunming Institute of Botany,CAS
The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids | |
Dong,Shanshan; Liu,Min; Liu,Yang; Chen,Fei; Yang,Ting; Chen,Lu; Zhang,Xingtan; Guo,Xing; Fang,Dongming; Li,Linzhou; Deng,Tian; Yao,Zhangxiu; Lang,Xiaoan; Gong,Yiqing; Wu,Ernest; Wang,Yaling; Shen,Yamei; Gong,Xun; Liu,Huan; Zhang,Shouzhou | |
2021 | |
发表期刊 | HORTICULTURE RESEARCH |
ISSN | 2662-6810 |
卷号 | 8期号:1页码:38 |
摘要 | Magnolia biondii Pamp. (Magnoliaceae, magnoliids) is a phylogenetically, economically, and medicinally important ornamental tree species widely grown and cultivated in the north-temperate regions of China. Determining the genome sequence of M. biondii would help resolve the phylogenetic uncertainty of magnoliids and improve the understanding of individual trait evolution within the Magnolia genus. We assembled a chromosome-level reference genome of M. biondii using similar to 67, similar to 175, and similar to 154Gb of raw DNA sequences generated via Pacific Biosciences single-molecule real-time sequencing, 10X Genomics Chromium, and Hi-C scaffolding strategies, respectively. The final genome assembly was similar to 2.22Gb, with a contig N50 value of 269.11kb and a BUSCO complete gene percentage of 91.90%. Approximately 89.17% of the genome was organized into 19 chromosomes, resulting in a scaffold N50 of 92.86Mb. The genome contained 47,547 protein-coding genes, accounting for 23.47% of the genome length, whereas 66.48% of the genome length consisted of repetitive elements. We confirmed a WGD event that occurred very close to the time of the split between the Magnoliales and Laurales. Functional enrichment of the Magnolia-specific and expanded gene families highlighted genes involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, and responses to stimuli, which may improve the ecological fitness and biological adaptability of the lineage. Phylogenomic analyses revealed a sister relationship of magnoliids and Chloranthaceae, which are sister to a clade comprising monocots and eudicots. The genome sequence of M. biondii could lead to trait improvement, germplasm conservation, and evolutionary studies on the rapid radiation of early angiosperms. |
关键词 | ALIGNMENT IDENTIFICATION PHYLOGENY TOOL ANGIOSPERMS IMPROVEMENT ANNOTATION SUPPLEMENT SEARCH PLANTS |
DOI | 10.1038/s41438-021-00471-9 |
WOS记录号 | WOS:000624975000001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.kib.ac.cn/handle/151853/73052 |
专题 | 中国科学院昆明植物研究所 |
作者单位 | 1.Fairy Lake Bot Garden, Lab Southern Subtrop Plant Divers, Shenzhen 518004, Peoples R China 2.Chinese Acad Sci, Shenzhen 518004, Peoples R China 3.BGI Shenzhen, State Key Lab Agr Genom, Shenzhen 518083, Peoples R China 4.Nanjing Forestry Univ, Nanjing 210037, Peoples R China 5.Fujian Agr & Forestry Univ, Fuzhou 350000, Peoples R China 6.Univ British Columbia, Vancouver, BC, Canada 7.Xian Bot Garden, Xian 710061, Peoples R China 8.Zhejiang Agr & Forestry Univ, Hangzhou 311300, Peoples R China 9.Chinese Acad Sci, Kunming Bot Garden, Kunming 650201, Yunnan, Peoples R China 10.Univ Copenhagen, Dept Biol, DK-2100 Copenhagen, Denmark |
推荐引用方式 GB/T 7714 | Dong,Shanshan,Liu,Min,Liu,Yang,et al. The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids[J]. HORTICULTURE RESEARCH,2021,8(1):38. |
APA | Dong,Shanshan.,Liu,Min.,Liu,Yang.,Chen,Fei.,Yang,Ting.,...&Zhang,Shouzhou.(2021).The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids.HORTICULTURE RESEARCH,8(1),38. |
MLA | Dong,Shanshan,et al."The genome of Magnolia biondii Pamp. provides insights into the evolution of Magnoliales and biosynthesis of terpenoids".HORTICULTURE RESEARCH 8.1(2021):38. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论