Artificial neural networks reveal a high-resolution climatic signal in leaf physiognomy | |
Li, Shu-Feng1,5; Jacques, Frederic M. B.1; Spicer, Robert A.3; Su, Tao1; Spicer, Teresa E. V.4; Yang, Jian4; Zhou, Zhe-Kun1,2![]() | |
2016-01-15 | |
Source Publication | PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY
![]() |
Volume | 442Pages:1-11 |
Abstract | The relationship linking leaf physiognomy and climate has long been used in paleoclimatic reconstructions, but current models lose precision when worldwide data sets are considered because of the broader range of physiognomies that occur under the wider range of climate types represented. Our aim is to improve the predictive power of leaf physiognomy to yield climate signals, and here we explore the use of an algorithm based on the general regression neural network (GRNN), which we refer to as Climate Leaf Analysis with Neural Networks (CLANN). We then test our algorithm on Climate Leaf Analysis Multivariate Program (CLAMP) data sets and digital leaf physiognomy (DLP) data sets, and compare our results with those obtained from other computation methods. We explore the contribution of different physiognomic characters and test fossil sites from North America. The CLANN algorithm introduced here gives high predictive precision for all tested climatic parameters in both data sets. For the CLAMP data set neural network analysis improves the predictive capability as measured by R-2, to 0.86 for MAT on a worldwide basis, compared to 0.71 using the vector-based approach used in the standard analysis. Such a high resolution is attained due to the nonlinearity of the method, but at the cost of being susceptible to 'noise' in the calibration data. Tests show that the predictions are repeatable, and robust to information loss and applicable to fossil leaf data. The CLANN neural network algorithm used here confirms, and better resolves, the global leaf form-climate relationship, opening new approaches to paleoclimatic reconstruction and understanding the evolution of complex leaf function. (C) 2015 Elsevier B.V. All rights reserved. |
Keyword | Artificial Neural Networks Climate Clamp Clann Fossil Leaf Physiognomy |
DOI | 10.1016/j.palaeo.2015.11.005 |
Indexed By | SCI |
Language | 英语 |
WOS ID | WOS:000369681300001 |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.kib.ac.cn/handle/151853/25959 |
Collection | 中国科学院东亚植物多样性与生物地理学重点实验室 |
Affiliation | 1.Chinese Acad Sci, Key Lab Trop Forest Ecol, Xishuangbanna Trop Bot Garden, Mengla 666303, Peoples R China 2.Chinese Acad Sci, Kunming Inst Bot, Key Lab Biogeog & Biodivers, Kunming 650204, Peoples R China 3.Open Univ, Ctr Earth Planetary Space & Astron Res, Environm Earth & Ecosyst, Milton Keynes, Bucks, England 4.Chinese Acad Sci, Inst Bot, State Key Lab Systemat & Evolutionary Bot, Beijing 100093, Peoples R China 5.Chinese Acad Sci, Nanjing Inst Geol & Paleontol, State Key Lab Paleobiol & Stratig, Nanjing 210008, Peoples R China |
Recommended Citation GB/T 7714 | Li, Shu-Feng,Jacques, Frederic M. B.,Spicer, Robert A.,et al. Artificial neural networks reveal a high-resolution climatic signal in leaf physiognomy[J]. PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY,2016,442:1-11. |
APA | Li, Shu-Feng.,Jacques, Frederic M. B..,Spicer, Robert A..,Su, Tao.,Spicer, Teresa E. V..,...&Zhou, Zhe-Kun.(2016).Artificial neural networks reveal a high-resolution climatic signal in leaf physiognomy.PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY,442,1-11. |
MLA | Li, Shu-Feng,et al."Artificial neural networks reveal a high-resolution climatic signal in leaf physiognomy".PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY 442(2016):1-11. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
1-s2.0-S003101821500(614KB) | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment