白粉藤的木脂素和三萜成分*

王跃虎^{1,2}, 张仲凯³, 何红平¹, 高 锁^{1,2}, 孔宁川^{1,2}, 丁 铭³, 郝小江^{1**}

(1 中国科学院昆明植物研究所 植物化学与西部植物资源持续利用国家重点实验室,云南 昆明 650204; 2 中国科学院 研究生院,北京 100039; 3 云南省农业科学院 云南省农业生物技术重点实验室,云南 昆明 650223)

摘要: 从白粉藤(Cissus repens Lank)地上部分分离得到 5 个木脂素和 8 个三萜,其中一个木脂素是新化合物,它的结构通过波谱分析和碱水解的方法鉴定为: (+)-异落叶松树脂醇-9'-(2-对-香豆酰)-O- β -D-吡喃木糖苷 (1)。其余化合物分别是: (+)-异落叶松树脂醇-9'-O- β -D-吡喃木糖苷 (2),(+)-Lyoniside (3),(-)-开环异落叶松树脂醇-9-O- β -D-吡喃木糖苷 (4),(7'R, 8'S)-4'-hydroxy-3',5-dimethoxy-7',8'-dihydrobenzofuran-1-propanolneolignan-9'-O- β -D-xylopyranoside (5),木栓酮 (6),表木栓醇 (7),蒲公英赛醇乙酸酯 (8),熊果酸 (9), 2α -羟基乌索酸 (10),积雪草酸 (11),Niga-ichigoside F1 (12),羽扇豆醇 (13)。这些化合物都是首次从该植物中分离得到。

关键词: 白粉藤; 葡萄科; 木脂素; 五环三萜

中图分类号: () 946

文献标识码: A

文章编号: 0253-2700(2006)04-433-05

Lignans and Triterpenoids from Cissus repens (Vitaceae)*

WANG Yue-Hu^{1,2}, ZHANG Zhong-Kai³, HE Hong-Ping¹, GAO Suo^{1,2}, KONG Ning-Chuan^{1,2}, DING Ming³, HAO Xiao-Jiang^{1**}

(1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; 2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China;

3 Yunnan Key Laboratory of Agricultural Biotechnology, Yunnan Academy of Agriculture Sciences, Kunming 650223, China)

Abstracts: Five lignans and eight triterpenoids were isolated from the aerial parts of Cissus repens. Among them, a lignan, (+)-isolariciresinol-9'-(2-p-coumaric)-O- β -D-xylopyranoside (1), was new and its structure was established on the basis of spectroscopic methods and alkaline hydrolysis. Other compounds, (+)-isolariciresinol-9'-O- β -D-xylopyranoside (2), (+)-lyoniside (3), (-)-secoisolariciresinol-9-O- β -D-xylopyranoside (4), (7'R, 8'S)-4'-hydroxy-3', 5-dimethoxy-7', 8'-dihydrobenzofuran-1-propanolneolignan-9'-O- β -D-xylopyranoside (5), friedelin (6), epifriedelanol (7), taraxerol-3 β -acetate (8), ursolic acid (9), 2α -hydroxyursolic acid (10), asiatic acid (11), niga-ichigoside F1 (12) and lupeol (13), were found in the plant for the first time.

Key words: Cissus repens; Vitaceae; Lignans; Pentacyclic triterpenoids

Cissus repens Lamk., a climber, belongs to the family Vitaceae and distributes in Southern China and Taiwan, Guizhou and Yunnan Province. The roots

and stems of *C. repens* were used for treatment of snake bites, rheumatic pains and carbuncles in Chinese folk, and the latter were also employed to treat nephritis,

^{*} Foundation item: This work was financially supported by two grants from National Natural Science Foundation of China (No. 30370957) and Natural Science Foundation of Yunnan Province, P. R. China (No. 2003C0061M)

^{**} Author for correspondance、 E-mail: haoxj@mail.kib.ac.cn
Received date: 2006-02-27, Accepted date: 2006-04-18
作者简介: 王跃虎(1970-)男,博士研究生,主要从事植物活性成分研究。

long-term cough and diarrhea (China National Bureau of Chinese Traditional Medicine, 1999). The components of the plant remain unknown as yet. In the present research, five lignans (1-5) and eight triterpenoids (6-13) were isolated from the aerial parts of the plant. Among them, a lignan, (+)-isolariciresinol-9'-(2-p-coumaric)-O- β -p-xylopyranoside (1), was new. This paper reports the structural elucidation of the new compound. In addition, the ¹³C NMR data of 4 were assigned for the first time. Compound 1 was obtained as a white amorphous powder and its molecular formula was deduced as $C_{34} H_{38} O_{12}$ by the $[\,M\text{-}H\,]^$ ion peak at m/z 637.2280 (calc. 637.2285) in the HRESIMS. The IR spectrum of 1 showed absorption bands for hydroxyl group (ν_{max} 3451 cm⁻¹), conjugated carbonyl (ν_{max} 1712 and 1632 cm⁻¹) and phenyl

ring (ν_{max} 1606 and 1515 cm⁻¹). In the ¹H- and ¹³C-NMR spectra of 1, the signals at δ_H 7.40 (d, J =8.5 Hz, 2H, H-2''' and H-6''') and 6.77 (d, J=8.5 Hz, 2H, H-3''' and H-5'''), and δ_c 131.0 (d, C-2''' and C-6''') and 116.7 (d, C-3''' and C-5''') were owing to the existence of a 4-hydroxyphenyl group. The signals at δ 7.60 (d, J = 15.9 Hz, 1H, H-7''') and 6.39 (d, J = 15.9 Hz, 1H, H-8''') showed the presence of a trans olefin bond in 1. There was a (+) or (-)-isolariciresinol-9'-0-β-D-xylopyranoside moiety in 1 by comparison of the ¹H and ¹³C NMR data of 1 with those in the literatures (Zuo et al, 2005; Zhang et al, 1999). The remained moiety contained a carbonyl, a trans olefin bond and a 4hydroxyphenyl group, which indicated that 1 bore a pcoumaric group. The linkage of the p-coumaric substi-

Fig. 1 Structures of compounds 1-13

tuent to 2"– OH was established by the HMBC spectrum, in which H-2" was correlated to the ester carbonyl carbon ($\delta_{\rm C}$ 167.4, C-9"). After basic hydrolysis of 1, (+)-isolariciresinol-9'-O- β -D-xylopyranoside was harvested and confirmed by TLC comparing with authentic samples and optical rotation ($[\alpha]_D^{19}$). Thus, the structure of 1 was elucidated as (+)-isolariciresinol-9'-(2-p-coumaric)-O- β -D-xylopyranoside.

Fig. 2 Key ¹H-¹H COSY (bold) and HMBC (arrow) correlations for 1

Experimental

General Experimental Procedures Column chromatography was performed over silica gel (200–300 and 300–400 mesh), silica gel H (10–40 μm; Qingdao Marine Chemical Ltd., Qingdao, P. R. China) and Sephadex LH–20 (40–70 μm; Amersham Pharmacia Biotech AB, Uppsala, Sweden). TLC was performed on precoated plates with silica gel F₂₅₄ (Qingdao). 1D and 2D spectra were recorded on BRUKER AM-400 and DRX-500 spectrometers. MS were measured on a VG Auto Spec-3000 mass spectrometer. Optical rotations were determined on a JASCO DIP370 digital polarimeter. IR spectra were recorded on a Bio-Rad FTS-135 infrared spectrophotometer. The UV spectrum was recorded on a Shimadzu double-beam 210A spectrometer.

Plant Material The aerial parts of *C. repens* were collected from Xishuangbanna, Yunnan Province of P. R. China, in August 2004. The plant was identified by professor De-Ding Tao (Kunming Institute of Botany, Chinese Academy of Sciences), and a voucher specimen was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and Isolation The aerial parts of *C. repens* (3.0 kg) were extracted thrice with EtOH (95%). The solvent was evaporated to give a residue, which was suspended in water and participated with petrol, EtOAc and n-BuOH successively. The EtOAc extract (23.8 g) was fractionated by silica gel column chromatography (CHCl₃-MeOH, 10:1, 5:1 and 3:1) to afford four major fractions (I-IV).

Fraction I was purified by repeat silica gel column chromatography (CHCl₃; petrol-EtOAc, 50:1; petrol-acetone, 30:1) to give 6 (161 mg), 7 (86 mg), 8 (5 mg) and 13 (77 mg). Fraction II was purified by repeated silica gel column chromatography (CHCl₃-acetone, 3:1–1:1; CHCl₃-MeOH, 20:1–10:1) to give 9 (14 mg), 10 (23 mg) and 11 (20 mg). Fraction III was purified by RP-18 (MeOH-H₂O, 50:50) and silica gel (CHCl₃-acetone, 1:2; EtOAc-acetone, 1:2) column chromatography to afford 1 (136 mg), 2 (22 mg) and 5 (8 mg). Fraction IV was purified by repeated silica gel (CHCl₃-MeOH, 8:1–3:1; CH-Cl₃-acetone, 1:5) and Sephadex LH-20 (MeOH) column chromatography to yield 3 (30 mg), 4 (5 mg) and 12 (13 mg).

(+)-Isolariciresinol-9'-(2-p-coumaric)-O- β -D-xylopyranoside (1). C_{94} H_{38} O_{12} , white amorphous powder (MeOH); $[\alpha]_D^{22}$ – 13.5° (MeOH, c 0.52); UV λ_{max}^{MeOH} (logs): 315.2 (4.28), 290.2 (4.26) nm; IR ν_{max}^{KBr} cm⁻¹: 3451, 1712, 1632, 1606, 1515, 1272, 1178, 1081, 1029; FABMS: m/z 637 [M-H]⁻; HRESIMS m/z 637.2280 [M-H]⁻ (calcd. for C_{94} H_{37} O_{12} : 637.2285); 1 H and 13 C NMR data see Table 1.

Table 1 1 H and 13 C NMR data of compound 1 (δ ppm, J Hz) a

atom	δ_{H}	$\delta_{\rm C}$	atom	δ_{H}	$\delta_{\rm C}$	atom	δ_{H}	$\delta_{\rm C}$
1		128.6s	3′		148.7s	5"	3.80(m,1H), 3.15 (m,1H)	66.7t
2		133.9s	4'		146.0s	1‴		126.9s
3	5.98 (s, 1H)	117.0d	5'	6.63 (d, 8.0, 1H)	113.6d	2"',6"	7.40 (d, 8.5, 2H)	131.0d
4		145.2s	6'	6.53 (d, 8.0, 1H)	123.3d	3‴,5‴	6.77 (d, 8.5, 2H)	116.7d
5		146.7s	7'	3.79 (m, 1H)	47.5d	4'"		160.9s
6	6.54 (s, 1H)	112.2d	8′	1.79 (m, 1H)	45.2d	7"	7.60 (d, 15.9, 1H)	146.4d
7	2.73 (m,1H),2.72 (m,1H)	33.5t	9′	3.82(m,1H), 3.11 (m,1H)	68.7t	8‴	6.39 (d, 15.9, 1H)	115.5d
8	1.94 (m, 1H)	38.8d	1"	4.29 (d, 8.0, 1H)	103.5d	9‴		167.4s
9	3.60 (m, 2H)	64.7t	2"	4.78 (t, 8.0, 1H)	75.0d	-OMe	3.68 (s, 3H)	56.2q
1'		133.9s	3"	3.53 (m, 1H)	75.9d	-OMe	3.71 (s, 3H)	56.4q
2'	6.57 (d, 1.3, 1H)	115.8d	4"	3.54 (m, 1H)	71.2d			

a: NMR data of 1 measured in CD₃OD at 500 MHz for proton and 125 MHz for carbon.

(+)-Isolariciresinol-9'-O- β -D-xylopyranoside (2). C_{25} $H_{32}\,O_{10}$, white amorphous powder (CHCl₃-MeOH); ESIMS m/z 491 [M-H]⁻; ¹³ C NMR data: same as the data reported in Zou *et al.* (2005).

(+)-Lyoniside (3). C_{27} H_{36} O_{12} , white amorphous powder (MeOH); $[\alpha]_D^{25} + 9.0^\circ$ (MeOH, c 0.45); ESIMS m/z 551 $[M-H]^-$; ¹³ C NMR data; same as the data reported in Inoshiri *et al* (1987).

(—)-secoisolariciresinol-9-*O*-β-*D*-xylopyranoside (4). $C_{25}H_{34}O_{10}$, colourless amorphous solid (MeOH); $[\alpha]_D^{19}-25.0^\circ$ (MeOH, c 0.60); ESIMS m/z 493 $[M-H]^-$; ^{13}C NMR data (400 MHz, CD₃OD) δ_C 148.8 (s, C-3 and C-3'), 145.5 (s, C-4 and C-4'), 134.0 (s, C-1'), 133.9 (s, C-1), 122.8 (d, C-6 and C-6'), 115.8 (d, C-5 and C-5'), 113.6 (d, C-2'), 113.5 (d, C-2), 105.2 (d, C-1"), 78.0 (d, C-3"), 75.0 (d, C-2"), 71.3 (d, C-4"), 70.2 (t, C-9), 67.0 (t, C-5"), 62.8 (t, C-9'), 56.9 (q, OMe×2), 44.4 (d, C-8'), 41.7 (d, C-8), 35.7 (t, C-7'), 35.6 (t, C-7); The data of optical rotation and 1H NMR are similar to those data reported in Lundgren *et al* (1985).

(7' R, 8' S)-4'-Hydroxy-3', 5-dimethoxy-7', 8'-dihydrobenzofuran-1-propanolneolignan-9'-O- β -D-xylopyranoside (5). $C_{25}H_{32}O_{10}$, colourless solid (acetone); FABMS m/z 491 [M-H]⁻; ¹³ C NMR data: same as the data repoted in Kouno *et al.* (1993).

Friedelin (6). C_{20} H_{50} O, colourless needles (CHCl₃); EIMS m/z [M]⁺ 426 (52%), 411 (12), 341 (7), 302 (25), 273 (100), 95 (83), 123 (93), 69 (81); ¹³ C NMR data: same as the data reported in Klass *et al* (1992).

Epifriedelanol (7). C_{30} H_{52} O, colourless flakes (CH-Cl₃); EIMS m/z [M]⁺ 428 (28%), 413 (29), 275 (90), 125 (92), 95 (100), 69 (84); ¹³ C NMR data: same as the data reported in Kundu *et al.* (2000).

Taraxerol-3β-acetate (8). $C_{52}H_{52}O_2$, colourless needles (CHCl₃); EIMS m/z [M]⁺ 468 (14%), 453 (10), 344 (50), 204 (100); ¹³C NMR data: same as the data reported in Li *et al* (1998).

Ursolic acid (9). C_{30} H_{48} O_3 , white amorphous powder (CHCl₃-MeOH); 13 C NMR data; same as the data reported in Yang and Zhao (2003).

 2α -Hydroxyursolic acid (10). C_{30} H₄₈ O₄, white amorphous powder (CHCl₃-MeOH); FABMS m/z 471 [M-H]⁻; ¹³ C NMR data: same as the data reported in Gao *et al.* (2004).

Asiatic acid (11). C_{30} H_{48} O_5 , white amorphous powder (MeOH); FABMS m/z 487 [M-H]⁻; ¹³ C NMR data; same

as the data reported in Zhang et al (1997).

Niga-ichigoside F1 (12). $C_{36}\,H_{58}\,O_{11}$, colourless needles (MeOH); FABMS m/z 665 [M-H]⁻; $^{13}\,C$ NMR data: same as the data reported in Seto *et al* (1984).

Lupeol (13). Colourless needles (petrol-EtOAc); determined by TLC with the authentic sample.

Weak alkaline hydrolysis of 1. Nine milligrams of 1 were dissolved in 20 ml solution (MeOH-H₂O, 1:1) containing appropriate Na₂CO₃ and hydrolyzed under reflux (2 h) at $45\,^{\circ}$ C. Then, the basic solution was evaporated in vacuo to dryness and separated by silica gel column chromatography eluted with CHCl₃-MeOH (10:1) to yield 6 mg of (+)-isolariciresinol-9'-O- β -D xylopyranoside detected by TLC and optical rotation, $[\alpha]_{D}^{19}$ + 40.6° (pyridine; c 0.60).

Acknowledgements: We thank Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, for its help to collect the plant materials.

References:

China National Bureau of Chinese Traditional Medicine (国家中药管理局), 1999. Zhonghua Bencao (5) (中华本草) [M]. Shanghai: Shanghai Science and Technology Press, 289—290

Gao HY (高慧媛), Wu B (吴斌), Li W (李文), et al, 2004.

Chemical constituents of *Chaenomeles sinensis* (Thouin) Koehne [J].

Chin J Nat Med, 2 (6): 351—353

Inoshiri S, Sasaki M, Hiroshi K, et al, 1987. Aromatic glycosides from Berchemia racemosa [J]. Phytochemistry, 26 (10): 2811— 2814

Klass J, Tinto WF, Mclean S, et al., 1992. Friedelane triterpenoids from Peritassa compta: Complete ¹H and ¹³C assignments by 2D nmr spectroscopy [J]. J Nat Prod., 55 (11): 1626—1630

Kouno I, Yanagida Y, Shimono S, et al., 1993. Neolignans and a phenylpropanoid glucoside from *Illicium difengpi* [J]. *Phytochemistry*, 32 (6): 1573—1577

Kundu JK, Rouf ASS, Hossain MN, et al., 2000. Antitumor activity of epifriedelanol from Vitis trifolia [J]. Fitoterapia, 71: 577—579

Li JX (李建新), Liu JT (刘巨涛), Jin YR (金永日), et al, 1998. Chemical constituents from stems and leaves of Rhodiola sachlinesis [J]. Zhongcaoyao (中草药), 29 (10): 659—661

Lundgren LN, Shen Z, Theander O, 1985. The constituents of conifer needles. Dilignol glycosides from *Pinus massoniana* Lamb. [J]. Acta Chem Scand, Ser B, 39: 241—248

Seto T, Tanaka T, Tanaka O, et al., 1984. β-Glucosyl eaters of 19α-hydroxyursolic acid derivatives in leaves of Rubus species [J]. Phytochemistry, 23 (12): 2829—2834

Yang XW (杨秀伟), Zhao J (赵静), 2003. Studies on the chemical constituents from *Rabdosia japonica* (Burm. f.) Hara var. glaucocalyx

(Maxim.) Hara [J]. Natural Product Research and Development (天然产物研究与开发), 15 (6): 490—493

Zhang ZZ (张治针), Guo DA (果德安), Li CL (李长龄), et al., 1999. Studies on the lignan plycosides from Gaultheria yunnanensis

[J]. Acta Pharmaceutica Sinica (药学学报), 34 (2): 128—131

Zhang GL (张国林), Zhou ZZ (周正质), Li BG (李伯刚), 1997.

Chemical investigation of Morina chinensis [J]. Natural Product Research and Development (天然产物研究与开发), 9 (4): 10—13

Zuo GY (左国营), He HP (何红平), Hong X (洪鑫), et al., 2005. Chemical constituents of Spiraea japonica var. ovalifolia [J]. Acta Bot Yunnan (云南植物研究), 27 (1): 101—106

能源植物专题资料汇编 (后续)

能源植物经典文献:

Fröhlich A, Rice B, 2005. Evaluation of *Camelina sativa* oil as a feedstock for biodiesel production. *Industrial Crops and Products*. 21 (1): 25 - 31

Abderrahim Bouaid, et al., 2005. Pilot plant studies of biodiesel production using Brassica carinata as raw material. Catalysis Today. 106 (1-4): 193-196

Ashwani Kumar, Bioengineering of Crops for Biofuels and Bioenergy. http://bibd.uni-giessen.de/gdoc/2001/uni/p010012/kumar.pdf Gemma Vicente, et al., 2006. A Comparative Study of Vegetable Oils for Biodiesel Production in Spain. Energy & Fuels. 20 (1): 394-398 He Yuan Zhang, et al., 1996. Yellow nut-sedge (Cyperus esculentus L.) tuber oil as a fuel. Industrial Grops and Products. 5 (3): 177-181 Lewandowski I, et al., 2000. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy. 19 (4): 209-227 Jose' M. Encinar, et al., 1999. Preparation and Properties of Biodiesel from Cynara cardunculus L. Oil. Industrial & Engineering

Jose ' M. Encinar, et al., 1999. Preparation and Properties of Biodiesel from Cynara cardunculus L. Oil. Industrial & Engineering Chemistry Research. 38 (8): 2927 - 2931

Kallivroussis L, et al, 2002. The Energy Balance of Surflower Production for Biodiesel in Greece. Biosystems Engineering. 81 (3): 347-354 Massimo Cardone, et al, 2003. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass and Bioenergy. 25 (6): 623-636

Massimo Cardone, et al., 2002. Brassica carinata as an Alternative oil crop for the production of biodiesel in Italy: Engine Performance and Regulated and Unregulated Exhaust Emissions. Environmental Science & Technology. 36 (21): 4656 - 4662

Pilar Dorado M, et al., 2004. Optimization of alkali-catalyzed transesterification of Brassica carinata oil for biodiesel production. Energy & Fuels. 18 (1): 77 - 83

Foidl N, et al., 1996. Jatropha curcas L. as a Source for the production of biofuel in Nicaragua. Bioresource Technology. 58 (1): 77-82

Venendaal R, et al., 1997. European energy crops: a synthesis, Biomass and Bioenergy. 13 (3): 147-185

Bona S, et al., 1999. Oil crops for biodiesel production on Italy. Renewable Energy. 16 (1-4): 1053-1056

McLaughlin S, et al., 1999. Developing switchgrass as a bioenergy crop. In: Janick J (ed.), Perspectives on New Crops and New Uses. Alexandria: ASHS Press, VA, 282 - 299

Sanjib Kumar Karmee, Anju Chadha, 2005. Preparation of biodiesel from crude oil of *Pongamia pinnata*. *Bioresource Technology*. 96 (13): 1425 - 1429

Srilekha De, et al., 1997. Potential use of *Pedilanthus tithymaloides* Poit. as a renewable resource of plant hydrocarbons. *Botanical Bulletin of Academia Sinica*. 38 (2): 105 – 108

Ikwuagwu OE, et al., 2000. Production of biodiesel using rubber [Hevea brasiliensis (Kunth. Muell.)] seed oil. Industrial Crops and Products. 12 (1): 57-62

Karen Faupel, Al Kurki, 2002. Biodiesel: a brief overview. http://www.agroindonesia.comPublicationsbiodiesel.pdf

Al Kurki, et al., 2006. Biodiesel: the Sustainablility Dimensions. http://attra.ncat.org/attra-pub/PDF/biodiesel_sustainable.pdf

Dove Biotech LTD. Jatropha curcas L. an international botanical answer to biodiesel production & renewablie energy.

http://www.dovebiotech.com/pdf/JATROPHA%20CURCAS%20L.pdf

组织及网站:

The Jatropha System: http://www.jatropha.de/