Article ID: 1005 - 0108(2004)01 - 0049 - 02

New polyhydroxy derivative of cyclohexane produced by *Streptomyces* sp.CS, a commensal microbe of *Maytenus hookeri*

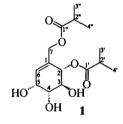
LU Chun-hua, HE Yi-neng, SHEN Yue-mao

(The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China)

Abstract: The chemical investigation on the fermentation extracts of *Streptomyces* sp. CS has resulted in the isolation of one derivative of oxygen substituted cyclohexane(1). The structure elucidation for 1 was carried out on the basis of HRFAB-MS and NMR data, and it was identified as 1-isobutyroxymethyl cyclohex-1(6)-ene-2, 3, 4, 5-tetrol-2-isobutyrate.

Key words: medicinal chemistry; structure elucidation; NMR; HRFAB-MS; *Streptomyces* sp. CS; *Maytenus hookeri* Loes

CLC number: Q936


Document code: A

A strain CS was obtained from the callus of *Maytenus hookeri*, and it was identified to be *Streptomyces* sp. on the genus level. Investigation on the secondary metabolites of this strain had led to the isolation of a new compound 1 from the crude extracts of the solid state fermentation by column chromatography and which was identified based on the NMR (HMBC, HMQC) and HRFAB-MS data.

Compound 1, $[\alpha]_D^{20} + 30.7^\circ$ (c 1.27, MeOH), was determined to have the molecular formula C_{15} $H_{24}O_7$ based on the high resolution positive fast atom bombardment mass spectrometry (HRFAB-MS m/z: 317.160 028, calcd: 317.159 864), and showed carbon-carbon double bond (1739 cm⁻¹) in the IR spectra. The ¹³C-NMR and DEPT spectra of 1 showed 15 carbon signals for four methyl, one methylene, seven methines, and three quaternary carbons, including two carboxyls at δ 177.3 and δ 176.5, respectively. A typical AB system characteristic signals at δ 4.63 and δ 4.50(d, each 1H, J = 13.2 Hz) were correlated with one methylene car-

bon at δ 63.0 in the HMQC experiment. The HM-

BC experiment showed that the protons at δ 4.63 and δ 4.50 had 1 H- 1 C long-range correlations with the carbons at δ :135.6(C-1), 73.0 (C-2) and 126.4(C-6), and that the proton at δ

5.49 correlated with the carbons at δ : 177.3 (C-1'), 135.6(C-1), 126.4(C-6). The HMBC experiment further showed the 1 H- 13 C long-range correlations between the proton at δ 5.97 and the carbons at δ 63.0(C-7) and δ 71.2(C-4), and between the proton at δ 4.34 and the carbons at δ : 135.6(C-1), 126.4(C-6), 71.2(C-4), and between the proton at δ 3.96 and δ 71.2(C-4) and δ 73.0(C-2), and between the proton at δ 5.49 and δ 135.6(C-1), δ 126.4(C-6) and δ 71.0(C-3), indicating that a six member ring unit existed in this structure, and that the methylene at δ 63.0(δ _H 4.50 and 4.63)

Received date: 2003 - 09 - 15

Foundation item: This work was supported by the Ministry of Science and Technology grant (2001 - 51); The National Natural Science Foundation of China (30070007); Chinese Academy of Sciences (KSCX2 - SW - 313); The Natural Science Foundation of Yunnan Province (99B0017G).

Biographies: LU Chun-hua (1975 –), female (Han nationality), was born in Shandong Province, Ph. D student of Kunming Institute of Botany, Chinese Academy of Sciences; SHEN Yue-mao (1965 –), male (Han nationality), was born in Anhui, professor, and was major in natural products of chemistry, Tel: (0871)5223111, E-mail: yshen@mail.kib.ac.cn.

was directly contacted with the carbon-carbon double bond. All these indicated a 2, 3, 4, 5-tetraoxygen substituted cyclohexene moiety^[1,2]. The coupling constants between the protons at δ 5.97 and 4.34 (J=4.4,4.8 Hz); δ 4.34 and 3.68(J=4.4,4.0 Hz); δ 3.68 and 3.96(J=10.4 Hz); δ 3.96 and 5.49(J=8.4,7.6 Hz)(Table 1)indicated the oxygen substitutions at C-2, C-3, C-4 and C-5 to be α , β , α and α , respectively, indicating that 1 had the same relative stereochemistry as piperenol A^[2]. In

addition, the NMR and MS data revealed two isobutyryl groups in 1. The $^1\text{H-}^{13}\text{C}$ long-range correlations between the proton at δ 5.49 and the carbon at δ 177.3(C-1'), and the protons at δ 4.50 and δ 4.63 and the carbon at δ 176.5 indicated that those two isobutyryls were linked with the carbons at δ 73.0(C-2) and δ 63.0(C-7), respectively. Therefore, compound 1 was elucidated to be 1-isobutyroxymethyl cyclohex-1(6)-ene-2, 3, 4, 5-tetrol-2-isobutyrate.

Table 1 The HMQC and HMBC data for 1 in CDCl₃

No.	¹³ C-NMR(100 MHz)	¹ H-NMR(400 MHz)	HMBC(400 MHz)
1	135.6(s)		
2	73.0(d)	5.49(d, 1H, J = 7.6 Hz)	C-1, C-3, C-1'
3	71.0(d)	3.96(dd, 1H, J = 8.4, 10.4 Hz)	C-2, C-4
4	71.2(d)	3.68(dd, 1H, J = 4.0, 10.4 Hz)	
5	65.8(d)	4.34(dd, 1H, J = 4.4, 4.4 Hz)	C-1, C-4, C-6
6	126.4(d)	5.97(d, 1H, J = 4.8 Hz)	C-4, C-7
7	63.0(t)	4.63(d, 1H, J = 13.2 Hz)	C-1", C-2, C-6
		4.50(d, 1H, J = 13.6 Hz)	
1′	177.3(s)		
2'	34.0(d)	2.63(m, 1H)	C-1', C-3'
3'	18.8(q)	1.147(d, 1H, J = 7.2 Hz)	C-1', C-2', C-4'
4′	18.8(q)	1.152(d, 1H, J = 7.2 Hz)	C-1', C-2', C-3'
1″	176.5(s)		
2"	33.8(d)	2.55(m,1H)	C-1", C-3"
3″	18.8(q)	1.18(d, 1H, J = 7.2 Hz)	C-1", C-2", C-4"
4"	18.8(q)	1.18(d, 1H, J = 7.2 Hz)	C-1", C-2", C-3"

Polyhydroxyl cyclohexanes are only found in few plant families^[3,4], some *Streptomyces* and fungus^[5], and are reported to have tumour inhibitory, antileukemic and antibiotic activities^[6]. Compound 1 was a new polyhydroxyl cyclohexane derivative isolated from the fermentation of the title microorganism.

References:

- [1] Taneja SC, Koul SK, Pushpangadan P, et al. Oxygenated cyclohexanes from *Piper species* [J]. Phytochemistry, 1991, 30(3):871 874.
- [2] Koul JL, Koul SK, Taneja SC, et al. Oxygenated cyclohexanes from Piper cubeb [J]. Phytochemistry, 1996, 41(4):1097 - 1099.
- [3] Nkunya MHH, Weenen H, Koyi NJ, et al. Cyclohex-

- ane epoxides, (+)-pandoxide, (+)- β -senepoxide and (-)-pipoxide from *Uvaria pandensis* [J]. Phytochemistry, 1987, 26(9): 2563 2565.
- [4] Pancharoen O, Tunti WP, Taylor WC. Cyclohexane oxide derivatives from *Kaempferia angusifolia* and *Kaempferia species* [J]. Phytochemistry, 1989, 28 (4):1143-1148.
- [5] Son BW, Choi JS, Kim JC, et al. Parasitenone, a new epoxycyclohexenone related to gabosine from the marine-derived fungus Aspergillus parasiticus [J]. J Nat Prod, 2002, 65(5):794-795.
- [6] Kupchan SM, Hemingway RJ, Smith RM. Tumor inhibitors, XV. Crotepoxide, a novel cyclohexane diepoxide tumor inhibitor from *Croton macrostachys* [J]. J Org Chem, 1969, 34(11-12):3898-3902.

云南美登木共生放线菌菌株 CS 产生的新多羟基环己烷衍生物

鲁春华,何以能,沈月毛

(中国科学院昆明植物研究所西部植物化学和植物资源重点实验室,云南 昆明 650204)

摘 要:从云南美登木共生放线菌菌株(Streptomyces sp.)CS 的发酵产物中分离得一个新的多羟基环己烷衍生物,并通过波谱学特征鉴定化合物的结构为 1-isobutyroxymethyl cyclohex-1(6)-ene-2,3,4,5-tetrol-2-isobutyrate。 **关键词**:药物化学;结构鉴定;核磁共振波谱;高分辨质谱;放线菌菌株 CS;云南美登木