
ELSEVIER

Contents lists available at ScienceDirect

Phytochemistry Letters

journal homepage: www.elsevier.com/locate/phytol

Cytotoxic steroidal glycosides from Paris rugosa rhizomes

Jian-Ke Jia ^{a,b,c}, Jun Yang ^{a,c}, Xing-Zhi Yang ^a, Ji-Feng Luo ^a, Xiao-Yan Duan ^a, Ying-Li Yang ^{a,b}, Jin-Fu Wan ^{d,*}, Yue-Hu Wang ^{a,c,**}

- ^a Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- ^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- ^c Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan 666303, People's Republic of China
- ^d Yunnan Institute of Materia Medica, Kunming 650111, People's Republic of China

ARTICLE INFO

Keywords: Melanthiaceae Paris rugosa Steroidal saponins Rugosarosides Cytotoxicity

ABSTRACT

Two previously undescribed steroidal saponins, rugosarosides A (1) and B (2), as well as 16 known compounds (3–18), were isolated from the rhizomes of *Paris rugosa* H. Li & S. Kurita (Melanthiaceae). Their chemical structures were elucidated based on extensive analyses of NMR and MS data and acidic hydrolyses. These isolates were evaluated for their cytotoxicity to five human cancer cell lines (HL-60, SW480, MDA-MB-231, A549, and A549/Taxol) and the normal human bronchial epithelial cell line BEAS-2B using the MTS test. Spirostanol saponins 6-12 and furostanol saponin 16 showed cytotoxic activity, with IC₅₀ values ranging from 0.13 to $3.88 \,\mu$ M. The furostanol saponins 14, 15, and 17 selectively inhibited HL-60, A549, and A549/Taxol cells (IC₅₀: $3.45-9.51 \,\mu$ M), with no cytotoxicity to SW480 and MDA-MB-231 cells (IC₅₀ > $40 \,\mu$ M).

1. Introduction

The genus *Paris* (Melanthiaceae) contains 26 species, some of which are commonly used medicinally in China and neighboring countries and which exhibit varied medicinal values (Dao et al., 2003; Ji, 2021). *Paris rugosa* H. Li & S. Kurita is widely distributed and cultivated in northwestern Yunnan. The Nu people in northwestern Yunnan use this plant to treat innominate swelling and pains, snake bites, and mumps (Wang et al., 2015; Yang et al., 2017).

The genus *Paris* contains mainly steroidal saponins. The structural characteristics of spirostanols and furostanols are mainly different in terms of whether ring F is opened, spirostanol steroidal saponins have strong cytotoxic activity, while furostanol steroidal saponins have low cytotoxic activity (Jia et al., 2024; Rawat et al., 2023). The chemical constituents of *P. rugosa* have been previously reported. Eleven undescribed steroidal saponins and ten known saponins were isolated and identified, and evaluated for their cytotoxicity to several human cancer cell lines (Yu et al., 2022). In our previous study, one new compound, pariposide G, and eight known compounds were isolated from *P. rugosa*. The antibacterial and antifungal activities of the compounds were

evaluated, and the results showed that ophiopogonin C' had strong inhibitory effects on *Candida albicans* (MIC₉₀ = $4.68 \pm 0.01 \,\mu\text{M}$) and on the fluconazole-resistant strain of *C. albicans* (MIC₉₀ = $4.66 \pm 0.02 \,\mu\text{M}$) (Duan et al., 2023).

To further explore the anticancer active ingredients of *P. rugosa*, we isolated 18 compounds from the plant's rhizomes including two new steroidal saponins (1 and 2, Fig. 1), 15 known steroidal saponins and one known phytosterol (3–18, Fig. S1), Their chemical structures were elucidated using spectroscopic methods, and their cytotoxic effects on six human cell lines—the leukemia cell line HL-60, the breast cancer cell line MDA-MB-231, the colon cancer cell line SW480, the lung adenocarcinoma cell line A549, the paclitaxel-resistant A549 (A549/Taxol) cell line, and the normal human bronchial epithelial cell line BEAS-2B—were evaluated. The compounds with high toxicity to cancer cells were screened out. The structural elucidation and bioassay results are reported.

^{*} Corresponding author.

^{**} Correspondence to: Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Kunming 650201, Chinese Academy of Sciences.

E-mail addresses: ybwanjf@163.com (J.-F. Wan), wangyuehu@mail.kib.ac.cn (Y.-H. Wang).

2. Results and discussion

2.1. Determining the structures of the isolated compounds

The *n*-BuOH-soluble fraction from the 70 % EtOH extract of *P. rugosa* rhizomes was chromatographed repeatedly on columns using silica gel G, reversed-phase (RP) C₁₈ silica gel, and Sephadex LH-20, followed by semipreparative high-performance liquid chromatography (HPLC) purification, which isolated two undescribed steroidal saponins, named rugosaroside A (1) and rugosaroside B (2), and sixteen known compounds (3-18). The known compounds were identified as pariposide G (Duan et al., 2023) (3), parisyunnanoside G (Kang et al., 2012) (4), parisyunnanoside I (Kang et al., 2012) (5), ophiopogonin C' (Hu et al., 1996) (6), polyphyllin I (Nohara et al., 1973) (7), formosanin C (Munday et al., 1993) (8), paris H (Miyamura et al., 1982) (9), paris saponin VII (Yang et al., 2003) (10), gracillin (Duan et al., 2023) (11), 17-hydroxygracillin (Chen and Zhou, 1984) (12), dianchonglouoside A (Wen et al., 2015) (13), methyl protogracillin (Hu et al., 1997) (14), protogracillin (Hu et al., 1997) (15), methyl protopolyphyllin I (Miyamura et al., 1982) (16), methyl protobioside (Ali et al., 2013) (17), and crustecdysone (Suksamrarn et al., 2002) (18) by comparing and matching their spectral data with published data.

¹H-¹H correlation spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC) are all nuclear magnetic resonance (NMR) spectroscopy techniques used in the field of organic chemistry for the structural elucidation of organic compounds. These techniques allow chemists to determine the connectivity between different proton or carbon nuclei within a molecule, which is crucial for determining the structure of an unknown compound.

Rugosaroside A (1) was assigned the molecular formula $C_{45}H_{68}O_{19}$, with 12 degrees of unsaturation, as determined using ^{13}C NMR data (Table 1) and a positive ion at m/z 935.4245 [M + Na]⁺ (calcd for $C_{45}H_{68}NaO_{19}$, 935.4247) in high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The ^{1}H and ^{13}C NMR data indicated the presence of five methyl groups [δ_{H} 1.73 (3 H, d, J=6.2 Hz) (belonging to rhamnose); 1.21 (3 H, s), 1.05 (d, J=6.8 Hz), 0.89 (3 H, s), and 0.67 (d, J=5.4 Hz) (belonging to aglycone)], one disubstituted double bond [δ_{H} 6.67 (1 H, d, J=8.5 Hz) and 6.33 (1 H, d, J=8.5 Hz); δ_{C} 136.6 (CH) and 130.9 (CH)], one trisubstituted double bond [δ_{H} 5.48 (1 H, dd, J=8.5 Hz) and 6.37 (1 H, dd, J=8.5 Hz); δ_{C} 136.6 (CH)

Table 1 1 H NMR (500 MHz) and 13 C NMR (126 MHz) data for compound 1 in pyridine- d_{5} (δ in ppm, J in Hz).

no.	$\delta_{ m H}$	$\delta_{ m C}$	no.	$\delta_{ m H}$	$\delta_{ m C}$
1α	2.25, m	33.1, CH ₂	glc′		
1β	1.66, m				
2α	2.20, m	29.9, CH_2	1'	4.80, d (7.5)	100.6, CH
2β	1.96, m				
3	4.45, m	73.6, CH	2 '	4.18, m	76.7, CH
4α	2.70, dd (14.0, 4.2)	33.3, CH ₂	3'	4.12, m	89.4, CH
4β	2.50, dd (14.0, 11.8)				
5		82.9, C	4'	4.11, m	69.3, CH
6	6.33, d (8.5)	136.6, CH	5′	3.66, m	77.7, CH
7	6.67, d (8.5)	130.9, CH	6′	4.30, m	62.1, CH_2
				4.23, m	
8		77.8, C	rha"		
9		144.0, C	1"	6.39, br s	102.1, CH
10		38.7, C	2"	4.86, m	72.4, CH
11	5.48, dd (5.3, 1.7)	119.4, CH	3"	4.55, m	72.8, CH
12α	1.98, m	41.5, CH ₂	4"	4.30, m	74.2, CH
12β	2.03, m				
13		41.6, C	5"	4.89, m	69.6, CH
14	2.08, dd (13.9, 5.8)	48.6, CH	6"	1.73, d (6.2)	18.7, CH ₃
15α	2.19, m	29.4, CH ₂	glc'''		
15β	1.94, m				
16	4.51, m	80.8, CH	1‴	5.09, d (7.6)	104.5, CH
17	2.00, m	61.6, CH	2‴	4.01, m	75.0, CH
18	0.89, s	17.2, CH_3	3‴	4.02, m	78.8, CH
19	1.21, s	25.5, CH ₃	4‴	4.10, m	71.5, CH
20	1.94, m	42.4, CH	5‴	4.18, m	78.6, CH
21	1.05, d (6.8)	14.6, CH ₃	6‴	4.55, m	62.4, CH ₂
				4.25, m	
22		109.5, C			
23	1.66, m	31.7, CH ₂			
24	1.56, m	29.2, CH ₂			
25	1.55, m	30.6, CH			
26	3.54, dd (10.6, 2.6)	67.0, CH ₂			
	3.41, dd (10.9, 10.6)				
27	0.67, d (5.4)	17.3, CH ₃			

5.3, 1.7 Hz); $\delta_{\rm C}$ 144.0 (C) and 119.4 (CH)], and three sugars [$\delta_{\rm H}$ 6.39 (1 H, br s), 5.09 (1 H, d, J=7.6 Hz), and 4.80 (1 H, d, J=7.5 Hz); $\delta_{\rm C}$ 104.5 (CH), 102.1 (CH), and 100.6 (CH)]. After acidic hydrolysis of 1, D-glucopyranose and L-rhamnopyranose were detected. Combined with the NMR data, two β -D-glucopyranosyl moieties and one α -L-

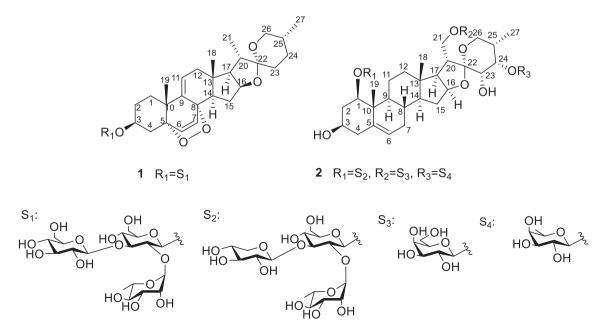


Fig. 1. Chemical structures of saponins 1 and 2 from Paris rugosa rhizomes.

rhamnopyranosyl moiety in the structure of 1 were confirmed.

By comparison of its NMR data with those of parisvanioside A (Yan et al., 2022), compound 1 was elucidated to be a steroidal saponin with the same aglycone of (25*R*)-spirost-6,11-diene-5 α ,8 α -epidioxy-3 β -ol, confirmed using the ¹H-¹H COSY correlations (Fig. 2; fragments a-e); with the HMBC correlations of H₃-19 with C-1, C-5, C-9, and C-10; H₂-4 with C-10; H-6 with C-4 and C-10; H-7 with C-9; H₂-15 with C-8; H₃-18 with C-12, C-13, C-14, and C-17; and H₃-21 and H₂-26 with C-22 (Fig. 2); and with the ROESY correlations of H-1 α /H-3, H-1 β /H₃-19, H₃-19/H-6, $H-7/H_3-18$, $H_3-18/H-20$, $H-20/H_2-23$, H-14/H-16, H-14/H-17, and H_3 -27/ H_2 -26 (Fig. 2). The sugar chain was determined to be an α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -O-[β -D-glucopyranosyl- $(1\rightarrow 3)$]- β -D-glucopy ranosyl moiety located at the 3-OH of the aglycone using the HMBC correlations of H-3 with C-1', H-1' with C-3, H-2' with C-1", H-1" with C-2', H-3' with C-1", and H-1" with C-3'. Therefore, the chemical structure of rugosaroside A (1) was determined to be (25 R)-spirost-6, 11-diene- 5α , 8α -epidioxy- 3β -ol 3- α -L-rhamnopyranosyl-(1→2)-O-[β -D -glucopyranosyl- $(1\rightarrow 3)$]- β -D-glucopyranoside.

The biosynthetic pathway for rugosaroside A is proposed as shown in Fig. 3. Mevalonate (MVA) is an important biosynthetic pathway for the synthesis of steroids. MVA is a metabolic pathway for the synthesis of isoprene pyrophosphate and dimethylallyl pyrophosphate from acetyl-CoA. Squalene synthase (SQS) could catalyze the first dedicated step, converting two molecules of farnesyl diphosphate (FPP) into squalene, a key intermediate in the biosynthetic pathway of steroidal saponins. Squalene may be converted to 2,3-oxidosualene by squalene epoxidase (SQE). 2,3-Oxyoxidosualene could undergo a series of oxidations, cycloartenol synthase, reduction, and other modifications to form cholesterol. Finally, diosgenin may be generated under the action of the CYP450 (PpCYP90G4, PpCYP94D108, PpCYP94D109, and

PpCYP72A616) enzyme system (Gao et al., 2021). Diosgenin may be transformed into compound $\bf A$ under the action of dehydrogenase. Compound $\bf A$ may undergo a [4 + 2] reaction to form compound $\bf B$ under the action of oxidase (Ning et al., 2021), compound $\bf B$ may be converted into compound $\bf C$ under the action of dehydrogenase (Wang and Abe, 2024), and then compound $\bf C$ may be converted into rugosaroside $\bf A$ under the action of glycosyltransferases.

Rugosaroside B (2) has the molecular formula C₅₆H₉₀O₂₉ based on its ^{13}C NMR data (Table 2) and positive ion at m/z 1225.5497 [M - H] $^{-}$ (calcd for $C_{56}H_{89}O_{29}$, 1225.5495) in HR-ESI-MS. The 1H NMR spectrum shows resonances for five methyl groups at $\delta_{\rm H}$ 1.71 (3 H, d, J=6.1 Hz), 1.48 (3 H, d, J = 6.4 Hz), 1.35 (3 H, s), 1.08 (3 H, s), and 1.00 (3 H, d, J= 6.8 Hz); five anomeric protons at $\delta_{\rm H}$ 6.36 (1 H, br s), 5.08 (1 H, d, J=7.9 Hz), 4.90 (1 H, d, J = 7.6 Hz), 4.88 (1 H, d, J = 7.6 Hz), and 4.74 (1 H, d, J = 7.6 Hz); and one trisubstituted double bond at $\delta_{\rm H}$ 5.54 (1 H, br d, J = 5.8 Hz) (Table 2). Based on the spectra of sugars obtained after acidic hydrolysis of **2** and its NMR data, β -D-glucopyranosyl, α -L-rhamnopyranosyl, β -D-xylopyranosyl, β -D-galactopyranosyl, and β -D-fucopyranosyl groups in the structure of 2 were confirmed. The ¹³C NMR spectrum showed resonances for 56 carbon atoms, including one double bond ($\delta_{\rm C}$ 139.5 and 124.8), five methyl groups ($\delta_{\rm C}$ 19.3, 17.3, 16.9, 15.1, and 13.2), 11 sp³ methylenes (five oxygenated, δ_C 70.3, 67.3, 63.2, 62.4, and 61.5), 35 sp³ methines (29 oxygenated), and three sp³ quaternary carbons (one oxygenated, $\delta_{\rm C}$ 111.3). These NMR data were very similar to those of a known polyhydroxylated steroidal glycoside, padelaoside B (Zhang et al., 2009), with the exception of signals for one more hexose observed in 2.

According to the ¹H-¹H COSY correlations in the 2D spectra of **2** (Fig. 2), eight connections (**a**–**h**) were confirmed. The planar structure of the sapogenin was further deduced as spirost-5-ene-1,3,21,23,24-pentol

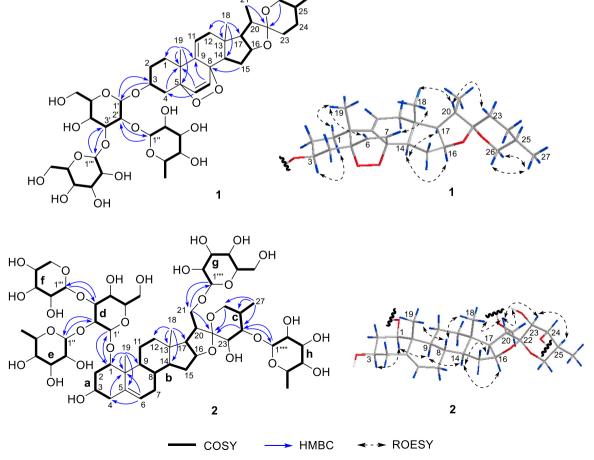


Fig. 2. Key 2D NMR correlations for compounds 1 and 2.

Fig. 3. Speculated biosynthetic pathway for rugosaroside A.

by the HMBC correlations from H₃-19 to C-1, C-5, C-9, and C-10; from H₂-4 to C-10; from H-6 to C-4 and C-10; from H₃-18 to C-12, C-13, C-14, and C-17; and from H₂-21, H-24, and H₂-26 to C-22. Based on the HMBC correlations of H-1 with C-1', H-1' with C-1, H-2' with C-1", H-1" with C-2', H-3' with C-1"', H-1"' with C-3', H₂-21 with C-1"", H-1"" with C-21, H-24 with C-1"", and H-1"" with C-24, the β -D-glucopyranose, α -L-rhamnopyranose, β -D-xylopyranose, β -D-galactopyranose, and β -D-fucopyranose were located at C-1, C-2', C-3', C-21, and C-24, respectively. The 1-OH and 3-OH configurations of the aglycone were assigned as $1\beta,3\beta$ based on the key ROESY correlations of H-1/H-3 and H-1/H-9 (Fig. 2). The C-23 and C-25 configurations were assigned as S by the key ROESY correlations of 23-OH/H-20 and H-23/H-25, which indicated that both H-23 and H-25 were in the axial orientation in ring F. The small coupling constant ($J_{23,24} = 2.7$ Hz) between H-23 and H-24 indicated that H-24 was in the equatorial conformation, implying that C-24 was in the Sconfiguration. Accordingly, the chemical structure of 2 (rugosaroside B) was determined to be $(1\beta,3\beta,23 S,24 S,25 S)-21-(\beta-D-galactopyr$ anosyloxy)-24-(β-D-fucopyranosyloxy)-3,23-dihydroxyspirost-5-en-1-yl $O-\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 2)$ - $O-[\beta$ -D-xylopyranosyl- $(1\rightarrow 3)]$ - β -Dglucopyranoside.

2.2. Cytotoxicity of the compounds toward cancer cell lines

The steroidal saponins from the genus *Paris* have good anticancer activity. Therefore, in this study, five human tumor cell lines, HL-60, MDA-MB-231, SW480, A549, and A549/Taxol cells, as well as normal BEAS-2B cells, were used to evaluate the *in vitro* cytotoxic activity of these 18 isolated compounds compared with the positive control drugs cisplatin and paclitaxel. The results of their cytotoxicity are shown in Table 3. Spirostanol saponins 6–12 and furostanol saponin 16 showed significant cytotoxic activity, with IC50 values ranging from 0.13 to 3.88 μ M. Furostanol saponins 14, 15, and 17 selectively inhibited HL-60, A549, and A549/Taxol cells (IC50: 3.45–9.51 μ M) but had no

cytotoxic effect on SW480 or MDA-MB-231 cells (IC₅₀ $> 40~\mu$ M). 5,8-Epidioxy (1 and 3) and polyhydroxylated spirostanol saponins (2, 4, 5, and 13) were inactive (IC₅₀ $> 40~\mu$ M). Compared with 17-hydroxygracillin (12), the activity of dianchonglouoside A (13) decreased, implying that 27-OH substitution has a disadvantage for activity. Compared with methyl protopolyphyllin I (16), methyl protobioside (17) has lower cytotoxic activity because of the loss of an α -L-arabinofuranose.

3. Conclusions

In conclusion, we identified 18 compounds from *P. rugosa*, with two undescribed steroidal saponins, rugosarosides A (1) and B (2). The spirostanol saponins ophiopogonin C' (6), polyphyllin D (7), formosanin C (8), paris H (9), paris saponin VII (10), gracillin (11), and 17-hydroxygracillin (12), and the furostanol saponin methyl protopolyphyllin I (16) showed significant cytotoxic activity. Furostanol saponins, methyl protogracillin (14), protogracillin (15), and methyl protobioside (17) selectively inhibited HL-60, A549, and A549/Taxol cells. The cytotoxicity of steroidal saponins is influenced by both the variety of aglycones and the sugar chains. The results of this study could promote the development and utilization of this plant.

4. Experimental

4.1. General experimental procedures

Optical rotations were recorded using a JASCO P-1020 polarimeter (Jasco Corp., Tokyo, Japan). Ultraviolet (UV) spectra were recorded on a Shimadzu UV-2401 PC spectrophotometer (Shimadzu, Kyoto, Japan). Electronic circular dichroism (ECD) spectra were recorded using a Chirascan CD spectrometer (Applied Photophysics Ltd., Leatherhead, UK). 1 H and 13 C NMR spectra were collected on Bruker DRX-500, Avance III-600, and Ascend TM 800 MHz NMR spectrometers (Bruker

Table 2 1 H (500 MHz) and 13 C (126 MHz) NMR data for compound **2** in pyridine- d_{5} (δ in ppm, J in Hz).

no.	$\delta_{ m H}$	$\delta_{ m C}$	no.	$\delta_{ m H}$	$\delta_{ m C}$
1	3.79, dd (12.1, 4.1)	84.6, CH	glc'		
2α	2.63, m	38.1, CH ₂	1'	4.74, d (7.6)	100.2, CH
2β	2.40, m				
3	3.74, m	68.1, CH	2 '	4.09, m	76.4, CH
4α	2.63, m	43.8, CH ₂	3'	4.01, m	88.3, CH
4β	2.66, m				
5		139.5, C	4'	3.83, t (9.3)	70.0, CH
6	5.54, br d (5.8)	124.8, CH	5′	3.75, m	77.7, CH
7α	1.41, m	31.8, CH ₂	6'	4.45, m	63.2, CH_2
7β	1.69, m			4.22, m	
8	1.45, m	33.1, CH	rha"		
9	1.58, m	50.3, CH	1"	6.36, br s	101.8, CH
10		42.8, C	2"	4.76, m	72.5, CH
11α	2.77, m	24.0, CH ₂	3"	4.57, m	72.5, CH
11β	1.49, m				
12α	1.84, m	$40.1, CH_2$	4"	4.29, m	74.2, CH
12β	1.42, m				
13		41.1, C	5"	4.79, m	69.6, CH
14	1.12, m	57.0, CH	6"	1.71, d (6.1)	19.3, CH_3
15α	1.78, m	32.4, CH ₂	xyl'''		
15β	1.45, m				
16	4.51, m	83.1, CH	1‴	4.90, d (7.6)	105.2, CH
17	1.88, m	58.3, CH	2‴	3.93, m	74.7, CH
18	1.08, s	16.9, CH_3	3‴	4.06, m	78.4, CH
19	1.35, s	15.1, CH ₃	4‴	4.10, m	70.7, CH
20	3.42, m	43.5, CH	5‴	4.24, m	67.3, CH ₂
				3.66, m	
21	4.51, m	70.3, CH ₂	gal''''		
	3.94, m				
22		111.3, C	1""	4.88, d (7.6)	105.4, CH
23	4.26, dd (10.5, 2.7)	70.7, CH	2""	4.48, m	72.6, CH
24	4.01, m	81.5, CH	3""	4.15, m	75.5, CH
25	1.87, m	35.1, CH	4""	4.55, m	70.3, CH
26	3.90, m	61.5, CH ₂	5""	4.09, m	77.1, CH
	3.32, dd (10.7, 4.5)				
27	1.00, d (6.8)	13.2, CH_3	6""	4.43, m	62.4, CH ₂
23-OH	5.86, d (10.5)		fuc""		
4'-OH	5.39, br s		1"""	5.08, d (7.9)	106.0, CH
6'-OH	5.72, t (5.3)		2"""	4.40, m	73.4, CH
6""-OH	6.49, t (5.4)		3"""	4.04, m	75.4, CH
4""'-OH	6.10, d (4.3)		4"""	3.94, m	72.9, CH
			5"""	3.69, m	71.5, CH
			6"""	1.48, d (6.4)	17.3, CH ₃

Corporation, Karlsruhe, Germany). ESI-MS and HR-ESI-MS analyses were performed on HRESIMS data obtained using a Shimadzu LC/MS-IT-TOF mass spectrometer (Shimadzu, Kyoto, Japan). Gas chromatography (GC) was performed on an Agilent 8890 N apparatus with an HP-5 capillary column (30 mm \times 0.32 mm \times 0.25 μ m) for the trimethylsilylated hydrolysates analyses. Silica gel G (80-100 and 300-400 mesh, Qingdao Meigao Chemical Co., Ltd., Qingdao, China), RP C₁₈ silica gel (40–75 μm, Fuji Silysia Chemical Ltd., Aichi, Japan), and Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) were selected for column chromatography. Thin-layer chromatography spots were visualized under UV light at 254 nm and by dipping in 5 % H₂SO₄ in alcohol followed by heating. Semipreparative HPLC was performed on an Agilent 1200 series pump (Agilent Technologies, Santa Clara, USA) equipped with a diode array detector, an Agilent Zorbax RX-C₈ column (5 μ m, ϕ 9.4 × 250 mm), and an Agilent Zorbax SB-C₁₈ column (5.0 μ m, ϕ 9.4 × 250 mm). The absorbance from the MTS assay was measured with a Thermo Multiskan FC microplate reader (Waltham, MA, USA).

4.2. Plant material

The plant material was collected from local cultivation in Fugong County, Yunnan Province, China, in September 2020. The plant samples were identified as *Paris rugosa* H. Li & Kurita by Jun Yang, a technician at Kunming Institute of Botany, Chinese Academy of Sciences. A voucher

Table 3Cytotoxicity of steroidal saponins from *Paris rugosa* rhizomes.

Compound	HL-60	SW480	MDA-	A549	A549/	BEAS-
			MB-231		Taxol	2B
IC ₅₀ (μM)						
6	1.97 \pm	3.48 \pm	3.34 \pm	$3.09 \pm$	3.26 \pm	2.14 \pm
	0.04	0.10	0.06	0.05	0.13	0.14
7	1.04 \pm	$1.15~\pm$	$1.26~\pm$	$0.51~\pm$	0.61 \pm	0.64 \pm
	0.01	0.05	0.08	0.04	0.02	0.01
8	$0.23~\pm$	$0.17~\pm$	$0.26~\pm$	$0.19~\pm$	$0.13~\pm$	$0.14~\pm$
	0.01	0.01	0.01	0.00	0.00	0.00
9	3.28 \pm	2.42 \pm	$1.69 \; \pm$	0.82 \pm	0.84 \pm	$1.12\ \pm$
	0.14	0.12	0.10	0.03	0.04	0.06
10	2.54 \pm	0.94 \pm	2.68 \pm	$0.69\pm$	0.75 \pm	$0.61 \pm$
	0.11	0.01	0.16	0.04	0.04	0.03
11	$2.05~\pm$	$0.9 \pm$	$1.85~\pm$	$0.70 \pm$	$0.66 \pm$	$0.67 \pm$
	0.02	0.06	0.06	0.02	0.00	0.01
12	$3.23~\pm$	3.88 \pm	3.48 \pm	$2.93~\pm$	$3.19~\pm$	3.48 \pm
	0.09	0.08	0.04	0.17	0.03	0.12
14	7.06 \pm	> 40	> 40	3.68 \pm	3.70 \pm	26.45 \pm
	0.42			0.08	0.06	0.48
15	9.51 \pm	> 40	> 40	3.45 \pm	3.76 \pm	> 40
	0.78			0.08	0.07	
16	$2.10\ \pm$	3.49 \pm	$0.97 \pm$	$0.59 \pm$	$0.67~\pm$	$3.32~\pm$
	0.06	0.11	0.02	0.01	0.02	0.19
17	$4.69 \pm$	> 40	> 40	$3.57 \pm$	3.58 \pm	> 40
	0.18			0.07	0.20	
Cisplatin ^a	15.06 \pm	22.67 \pm	23.34 \pm	20.07 \pm	19.76 \pm	> 40
	0.30	0.73	0.46	0.30	0.45	
Paclitaxel ^a	< 0.008	< 0.008	< 0.008	< 0.008	$0.73~\pm$	0.71 \pm
					0.05	0.16

a Positive control

specimen (no. YJ2020007) was deposited at the Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences.

4.3. Extraction and isolation

The air-dried and powdered rhizomes of *P. rugosa* (4.1 kg) were extracted with 70 % EtOH (50 L each) at 80 °C three times (4 h, 3 h, and 3 h each). The combined extraction mixture was evaporated to yield the crude extract (1.4 kg), which was subsequently suspended in 16 L of water and then successively extracted with EtOAc (16 L \times 3) and *n*-BuOH (16 L \times 4). The organic layers were evaporated under reduced pressure to yield the EtOAc-soluble fraction (123.4 g) and the *n*-BuOH-soluble fraction (219.3 g).

The n-BuOH-soluble fraction (209.2 g) was applied to a silica gel column using CH $_2$ Cl $_2$ -MeOH (10:1–1:1) to yield seven additional fractions (Fr. I–Fr. VII). Fr. VII (162.0 g) was applied to a silica gel column using EtOAc-MeOH (10:1–1:1) to yield four fractions (Fr. VII-1–Fr. VII-4). Fr. VII-2 (6.1 g) was subjected to RP C $_{18}$ chromatography (MeOH+ $_{2}$ O, 10:90–100:0) to yield three fractions, namely, Fr. VII-2–1 (146.7 mg), Fr. VII-2–2 (84.9 mg), and Fr. VII-2–3 (334.0 mg). Fr. VII-2–1 (146.7 mg) was separated and purified on a silica gel column using CH $_{2}$ Cl $_{2}$ -MeOH (15:1–1:1) to yield **18** (35.0 mg). Fr. VII-2–2 (84.9 mg) was separated and purified on a silica gel column using CH $_{2}$ Cl $_{2}$ -MeOH (12:1–1:1) to yield **6** (12.0 mg). Fr. VII-2–3 (334.0 mg) was purified on a Sephadex LH-20 column (CH $_{2}$ Cl $_{2}$ -H $_{2}$ O, 1:1) to yield **7** (150.0 mg).

Fr. VII-4 (112.0 g) was subjected to RP C_{18} chromatography (MeOH- H_2O , 10:90–100:0) to yield four fractions Fr. VII-4–1 (0.8 g), Fr. VII-4–2 (18.6 g), Fr. VII-4–3 (13.3 g), and Fr. VII-4–4 (56.8 g). Fr. VII-4–1 (0.8 g) was isolated using Sephadex LH-20 column chromatography (MeOH) and then semipreparative HPLC (Agilent Zorbax RX- C_8 column, 5.0 μ m, ϕ 9.4 × 250 mm; ν = 2 mL/min, MeCN- H_2O , 20:80) to yield 4 (29.3 mg, t_R = 11.5 min) and Fr. VII-4–1–1 (9.1 mg, t_R = 9.3 min). VII-4–1–1 was subjected to semipreparative HPLC (Agilent Zorbax RX- C_8 column, 5.0 μ m, ϕ 9.4 × 250 mm; ν = 2 mL/min, MeCN- H_2O , 16:84) to yield 2

 $^{^{\}rm b}$ The inhibition rates of compounds 1–5, 13, and 18 were less than 50 % at 40 $\mu{\rm M}.$

(4.1 mg, $t_{\rm R}=43.1$ min) and 5 (4.3 mg, $t_{\rm R}=45.2$ min). Fr. VII-4–3 (13.3 g) was applied to a silica gel column using CH₂Cl₂-MeOH (8:1–1:1) to yield two fractions, Fr. VII-4–3–1 (8.3 g) and Fr. VII-4–3–2 (0.3 g). Fr. VII-4–3–1 (100 mg) was isolated by Sephadex LH-20 column chromatography (MeOH) and then by semipreparative HPLC (Agilent Zorbax SB-C₁₈ column, 5.0 μ m, ϕ 9.4 × 250 mm; ν = 2 mL/min, MeOH-H₂O, 80:20) to yield 15 (5.1 mg, $t_{\rm R}=9.7$ min) and 17 (9.3 mg, $t_{\rm R}=20.6$ min). Fr. VII-4–3–2 (0.3 g) was isolated using Sephadex LH-20 column chromatography (MeOH) and then by semipreparative HPLC (Agilent Zorbax SB-C₁₈ column, 5.0 μ m, ϕ 9.4 × 250 mm; ν = 2 mL/min, MeOH-H₂O, 70:30) to yield 16 (18.7 mg, $t_{\rm R}=17.5$ min) and 14 (23.3 mg, $t_{\rm R}=21.0$ min).

Fr. VII-3 (22.2 g) was subjected to RP C₁₈ chromatography (MeOH-H₂O, 10:90-100:0) to yield four fractions Fr. VII-3-1 (63.4 mg), Fr. VII-3-2 (312.3 mg), Fr. VII-3-3 (334.0 mg), and Fr. VII-3-4 (56.0 mg). VII-3-1 was subjected to Sephadex LH-20 column chromatography (MeOH) followed semipreparative HPLC (Agilent Zorbax SB-C₁₈ column, $5.0 \mu m$, ϕ 9.4 × 250 mm; v = 2 mL/min, MeOH-H₂O, 63:37) to yield **13** (4.5 mg, $t_{\rm R}=21.9$ min). Fr. VII-3–2 (312.3 mg) was subjected to Sephadex LH-20 column chromatography (CH₂Cl₂-MeOH, 1:1) and then semipreparative HPLC (Agilent Zorbax SB-C₁₈ column, 5.0 μ m, ϕ 9.4 \times 250 mm; ν = 2 mL/min, MeCN-H₂O, 43:57) to yield 3 (154.5 mg, $t_R = 24.7$ min). Fr. VII-3-3 (334.0 mg) was subjected to Sephadex LH-20 column chromatography (CH₂Cl₂-MeOH, 1:1) followed by semipreparative HPLC (Agilent Zorbax SB-C₁₈ column, 5.0 μ m, ϕ 9.4 × 250 mm; ν = 2 mL/min, MeCN-H₂O, 43:57) to yield 9 (2.1 mg, $t_R = 17.5$ min), 12 (7.3 mg, $t_R = 17.5$ min), 12 (7.3 mg, $t_R = 17.5$ min) 16.2 min), **10** (5.0 mg, $t_R = 13.8$ min), and **1** (4.5 mg, $t_R = 19.4$ min). Fr. VII-3-4 (56.0 mg) was purified by Sephadex LH-20 column chromatography (CH₂Cl₂-MeOH, 1:1) to yield compound 8 (5.2 mg) and Fr. VII-3-4-1 (16.0 mg). Fr. VII-3-4-1 (16.0 mg) was subjected to semipreparative HPLC (Agilent Zorbax SB-C $_{18}$ column, 5.0 $\mu m,~\phi$ 9.4 \times 250 mm; v = 2 mL/min, MeCN-H₂O, 55:45) to yield compound 11 $(3.1 \text{ mg}, t_{\text{R}} = 12.8 \text{ min}).$

Rugosaroside A (1): White amorphous powder, $[\alpha]_D^{25}$ –28 (*c* 0.2, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε): 323 (2.03), 274 (2.51), 216 (3.54); ECD (*c* 0.08, MeOH) $\lambda_{\rm max}$ (Δε) 217 (+10.04) nm; ¹H and ¹³C NMR data, see Table 1; ESI-MS m/z 935 [M + Na]⁺; HR-ESI-MS m/z 935.4245 [M + Na]⁺ (calcd for C₄₅H₆₈NaO₁₉, 935.4247).

Rugosaroside B (2): White amorphous powder, $[a]_{\rm D}^{25}$ –43 (*c* 0.2, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ε) 279 (2.19), 253 (2.58); 1 H and 13 C NMR data, see Table 2; ESI-MS m/z 1249 [M + Na] $^{+}$; HR-ESI-MS m/z 1225.5497 [M – H] $^{-}$ (calcd for C₅₆H₈₉O₂₉, 1225.5495).

4.4. Acid hydrolysis and GC analysis of the sugar moieties in the new compounds

Compounds 1 and 2 (each 2 mg) were heated with 2 M HCl (2 mL) at 90 °C for 5 h. The reaction mixture was partitioned with EtOAc (2 mL \times 3). The aqueous layer was concentrated and dissolved in 1 mL of anhydrous pyridine and treated with 1 mg of L-cysteine methyl ester hydrochloride. The mixture was subsequently stirred at 60 °C for 1 h. After the reaction mixture was cooled, 1.0 mL of trimethylsilyl imidazole was added, and the mixture was heated at 60 $^{\circ}$ C for 1 h. The upper layer was analyzed using GC with an initial column temperature of 180 °C, after which the temperature was programmed to 275 °C at a rate of 3 °C/min. The carrier gas was N₂ (1 mL/min), and the flame ionization detector (FID) was operated at 250 °C. The retention times for authentic sugars after derivatization were 14.79 min (L-xylopyranose), 15.66 min (L-rhamnopyranose), 15.93 (D-rhamnopyranose), 15.94 min (D-fucopyranose), 16.73 min (L-fucopyranose), 19.0 min (D-xylopyranose), 19.03 min (D-glucopyranose), 19.5 min (L-glucopyranose), 19.62 min (D-galactopyranose), and 20.30 min (L-galactopyranose). The sugars of the new compounds were identified according to their retention times. By comparison, the sugars of compound 2 were L-rhamnopyranose, Dgalactopyranose, D-fucopyranose, D-glucopyranose, and D-xylopyranose;

the sugars of compound 1 were L-rhamnopyranose and D-glucopyranose.

4.5. MTS assay for cytotoxicity

The cytotoxic effects of compounds **1–18** on the proliferation of HL-60, SW-480, MDA-MB-231, A549, A549/Taxol, and BEAS-2B cells *in vitro* were tested using a 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2*H*-tetrazolium (MTS; Promega, Beijing, China) assay. These cell lines were obtained from the ATCC (Manassas, VA, USA).

MTS experiments were performed as described in previous studies (Mosmann, 1983). In general, a single-cell suspension was prepared with culture medium containing 10 % fetal bovine serum (DMEM), and 3 000–15 000 cells per well were inoculated into 96-well plates at a volume of 100 μ L per well. The cells were inoculated and cultured for 12–24 hours. After incubation at 37 °C for 12 h, the sample to be tested was added. The cancer cell lines were exposed to five different concentrations of test extracts or compounds, each at a concentration of three portions. After incubation at 37 °C for 48 h, MTS (20 μ L) solution and DMEM (100 μ L) were added. The cells were continually incubated for 2–4 h. The absorbance was measured at a detection wavelength of 492 nm, and the cytotoxicity was expressed as the IC₅₀ (Reed and Muench, 1938).

CRediT authorship contribution statement

Jian-Ke Jia: Writing – review & editing, Writing – original draft, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation. Jun Yang: Resources, Investigation, Formal analysis. Xing-Zhi Yang: Software, Methodology, Investigation. Xiao-Yan Duan: Resources, Methodology. Ying-Li Yang: Resources. Ji-Feng Luo: Resources. Jin-Fu Wan: Visualization, Validation, Supervision. Yue-Hu Wang: Writing – review & editing, Project administration, Investigation, Funding acquisition, Formal analysis, Data curation.

Declaration of Competing Interest

The authors have no conflicts of interest associated with this study to declare.

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 32070361) and the Yunnan Provincial Science and Technology Department, China (No. 202203AP140007).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.phytol.2024.07.011.

References

- Ali, Z., Smillie, T.J., Khan, I.A., 2013. Cholestane steroid glycosides from the rhizomes of Dioscorea villosa (wild yam). Carbohyd. Res. 370, 86–91. https://doi.org/10.1016/j. carres.2012.12.022.
- Chen, C.X., Zhou, J., 1984. Studies on the saponin components of plants in Yunnan X. two new steroidal saponins of *Paris axialis*. H. Li. Acta Bot. Yunnan 6, 111–117.
- Dao, Z.L., Long, C.L., Liu, Y.T., 2003. On traditional uses of plants by the Nu people community of the Gaoli-gong Mountains, Yunnan Province. Biodivers. Sci. 11, 231–239.
- Duan, X.Y., Yue, M.C., Yang, J., Bai, X., Luo, J.F., Li, H., Wang, Y.H., 2023. Chemical constituents from *Paris rugosa* rhizomes and their antimicrobial activities. China J. Chin. Mater. Med. 48, 2981–2988. https://doi.org/10.19540/j.cnki.cjcmm.20230122.201.
- Gao, J.X., Chen, Y.G., Li, D.S., Lin, L., Liu, Y., Li, S.H., 2021. Cloning and functional characterization of a squalene synthase from *Paris polyphylla* var. *yunnanensis*. Chem. Biodivers. 18 https://doi.org/10.1002/cbdv.202100342.

- Hu, K., Dong, A., Yao, X., Kobayashi, H., Iwasaki, S., 1996. Antineoplastic agents I: three spirostanol glycosides from rhizomes of *Dioscorea collettii* var. hypoglauca. Planta Med. 62, 573–575. https://doi.org/10.1055/s-2006-957978.
- Hu, K., Dong, A.J., Yao, X.S., Kobayashi, H., Iwasaki, S., 1997. Antineoplastic agents II: four furostanol glycosides from rhizomes of *Dioscorea collettii* var. hypoglauca. Planta Med. 63, 161–165. https://doi.org/10.1055/s-2006-957636.
- Ji, Y.H., 2021. A monograph of Paris (Melanthiaceae). Science Press, Beijing.
- Jia, J.K., Yang, J., Yang, X.Z., Luo, J.F., Duan, X.Y., Yang, Y.L., Wan, J.F., Wang, Y.H., 2024. Polyhydroxylated spirostanol saponins from the rhizomes of *Paris dulongensis*. Chem. Biodivers., e202400980 https://doi.org/10.1002/cbdv.202400980.
- Kang, L.P., Liu, Y.X., Eichhorn, T., Dapat, E., Yu, H.S., Zhao, Y., Xiong, C.Q., Liu, C., Efferth, T., Ma, B.P., 2012. Polyhydroxylated steroidal glycosides from *Paris polyphylla*. J. Nat. Prod. 75, 1201–1205. https://doi.org/10.1021/np300045g.
- Miyamura, M., Nakano, N., Toshihiro, N., Toshiaki, T., Toshio, K., 1982. Steroid saponins from Paris-Polyphylla Sm-supplement. Chem. Pharm. Bull. 30, 712–718.
- Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.
- Munday, S.C., Wilkins, A.L., Miles, C.O., Holland, P.T., 1993. Isolation and structure elucidation of dichotomin, a furostanol saponin implicated in hepatogenous photosensitization of sheep grazing Panicum dichotomiflorum. J. Agric. Food Chem. 41, 267–271. https://doi.org/10.1021/jf00026a025.
- Ning, Y.H., Tian, H.L., Gui, J.H., 2021. Biogenesis-guided synthesis and structural revision of sarocladione enabled by ruthenium-catalyzed endoperoxide fragmentation. Angew. Chem. Int. Ed. 60, 11222–11226. https://doi.org/10.1002/ anje 202101451
- Nohara, T., Yabuta, H., Suenobu, M., Hida, R., Miyahara, K., Kawasaki, T., 1973. Steroid glycosides in *Paris polyphylla* SM. Chem. Pharm. Bull. 21, 1240–1247. https://doi. org/10.1248/cpb.21.1240.
- Rawat, J.M., Pandey, S., Rawat, B., Rai, N., Preeti, P., Thakur, A., Butola, J.S., Bachheti, R.K., 2023. Traditional uses, active ingredients, and biological activities of

- $\label{eq:partial_polyphylla} Paris polyphylla Smith: a comprehensive review of an important himalayan medicinal plant. J. Chem. 2023, 7947224 https://doi.org/10.1155/2023/7947224.$
- Reed, L.J., Muench, H., 1938. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497. https://doi.org/10.1093/oxfordjournals.aje. a118408.
- Suksamrarn, A., Kumpun, S., Yingyongnarongkul, B., 2002. Ecdysteroids of Vitex scabra stem bark. J. Nat. Prod. 65, 1690–1692. https://doi.org/10.1021/np0201990.
- Wang, H.B., Abe, I., 2024. Recent developments in the enzymatic modifications of steroid scaffolds. Org. Biomol. Chem. 22, 3559–3583. https://doi.org/10.1039/ d4ob00327f
- Wang, Y.H., Niu, H.M., Zhang, Z.Y., Hu, X.Y., Li, H., 2015. Medicinal values and their chemical bases of *Paris*. China J. Chin. Mater. Med 40, 833–839.
- Wen, Y.S., Ni, W., Qin, X.J., Yan, H., Chen, C.X., Hua, Y., Cheng, Y.C., He, L., Liu, H.Y., 2015. Steroidal saponins with cytotoxic activity from the rhizomes of Paris polyphylla var. yumanensis. Phytochem. Lett. 12, 31–34. https://doi.org/10.1016/j. phytol.2015.02.011.
- Yan, H., Ni, W., Yu, L.L., Xiao, L.G., Ji, Y.H., Liu, H.Y., 2022. Parisvaniosides A–E, five new steroidal saponins from *Paris vaniotii*. Steroids 177, 108949. https://doi.org/ 10.1016/j.steroids.2021.108949.
- Yang, D.J., Lu, T.J., Hwang, L.S., 2003. Isolation and identification of steroidal saponins in *Taiwanese Yam* cultivar (*Dioscorea pseudojaponica* Yamamoto). J. Agric. Food Chem. 51, 6438–6444. https://doi.org/10.1021/jf030390j.
- Yang, Y.G., Zhang, J., Zhang, J.Y., Wang, Y.Z., 2017. Research progress in chemical constituents in plants of *Paris L*. and their pharmacological effects-All Databases. Chin. Tradit. Herb. Drugs 47, 3301–3323.
- Yu, L.L., Wang, S., Wang, J., Yan, H., Ni, W., Liu, H.Y., 2022. Steroidal saponin components and their cancer cell cytotoxicity from *Paris rugosa*. Phytochemistry 204, 113452. https://doi.org/10.1016/j.phytochem.2022.113452.
- Zhang, T., Liu, H., Liu, X.T., Chen, X.Q., Wang, Q., 2009. Steroidal saponins from the rhizomes of *Paris delavayi*. Steroids 74, 809–813. https://doi.org/10.1016/j. steroids.2009.04.012.