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Abstract

Plant life history is determined by two transitions, germination and flowering time, in which the
phosphatidylethanolamine-binding proteins (PEBPs) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1)
play key regulatory roles. Compared with the highly conserved TFL1-like genes, FT-like genes vary significantly in
copy humbers in gymnosperms, and monocots within the angiosperms, while sporadic duplications can be observed
in eudicots. Here, via a systematic analysis of the PEBPs in angiosperms with a special focus on 12 representative
species featuring high-quality genomes in the order Lamiales, we identified a successive lineage-specific but system-
atic expansion of FT-like genes in the families of core Lamiales. The first expansion event generated FT1-like genes
mainly via a core Lamiales-specific whole-genome duplication (cL-WGD), while a likely random duplication produced
the FT2-like genes in the lineages containing Scrophulariaceae and the rest of the core Lamiales. Both FT1- and FT2-
like genes were further amplified tandemly in some families. These expanded FT-like genes featured highly diverged
expression patterns and structural variation, indicating functional diversification. Intriguingly, some core Lamiales
contained the relict MOTHER OF FT AND TFL1 like 2 (MFT2) that probably expanded in the common ancestor of
angiosperms. Our data showcase the highly dynamic lineage-specific expansion of the FT-like genes, and thus pro-
vide important and fresh evolutionary insights into the gene regulatory network underpinning flowering time diversity
in Lamiales and, more generally, in angiosperms.

Keywords: Diversity, evolution, FLOWERING LOCUST T (FT), core Lamiales, phosphatidylethanolamine-binding protein (PEBP)
gene family, whole-genome duplication (WGD).
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Introduction

Flowering time, the transition from vegetative to reproductive
growth, is pivotal for reproductive success, and is tightly regu-
lated by a complex interaction between endogenous develop-
mental signals and exogenous environmental factors (Blazquez
and Weigel, 2000; Michaels et al., 2005). Flowering time in
the model Arabidopsis thaliana is regulated by a complicated
intrinsic gene-regulatory network (GRN) containing >300
floral regulators, among which both the florigen-encoding
FLOWERING LOCUS T (FT) and 1its antagonistic
anti-florigen-encoding TERMINAL FLOWER 1 (TFL1) be-
long to the same phosphatidylethanolamine-binding protein
(PEBP) gene family (Kardailsky ef al., 1999; Turck et al., 2008;
Fornara et al., 2010; Wickland and Hanzawa, 2015; Bouche
et al., 2016). PEBPs are highly conserved in bacteria, ani-
mals, and plants, in which the MOTHER OF FT AND TFL1
(MFT) like genes probably serve as the evolutionary ancestor
of both FT and TFL1 genes (Liu et al., 2016; Bennett and
Dixon, 2021; Jin et al., 2021; Tsoy and Mushegian, 2022). In
addition to flowering time regulation, MEFT-like genes feature
seed-specific expression and modulate seed oil/protein con-
tents and germination via the abscisic acid (ABA) and gibber-
ellic acid (GA) signaling pathways (Xi ef al., 2010; Nakamura
et al.,2011; Chen et al.,2018; Cai ef al.,2023). In gymnosperms
and some angiosperms, MFT-like genes seem to be duplicated
independently into MFT1 and MFT2 subfamilies (Hedman
et al., 2009; Bennett and Dixon, 2021). However, only some
angiosperm species maintain the MFT2-like genes.

The TFL1- and FT-like genes are exclusive to seed plants in-
cluding gymnosperms and angiosperms (Karlgren et al., 2011;
Klintenas et al., 2012; Liu et al., 2016). In the TFL1-like lin-
eage, TFL1, BROTHER OF FT AND TFL1 (BFT), and the
CENTRORADIALIS (ATC) homologs are floral repressors in
Arabidopsis (Kobayashi ef al., 1999; Mimida et al., 2001; Yoo
et al.,2010). The gymnosperm spruce contains one TFL1-like
gene and two FT-like genes, which however do not promote
flowering in Arabidopsis (Klintenas ef al.,2012; Liu et al.,2016).
Only in the angiosperm Arabidopsis and many other species
do FT and the FT paralog, TWIN SISTER OF FT (TSF), pro-
mote flowering (Michaels ef al., 2005;Yamaguchi ef al., 2005),
hence remaining a hot target gene in evolutionary analysis.

Current phylogenetic analyses identify a particular F1-/ike
gene expansion into five core lineages with further duplica-
tion into 12 conserved clades in grasses or monocots (Bennett
and Dixon, 2021). In dicots, duplication of FT-like genes has
not been identified at family or order level, though sporadic
reports on its amplifications and functional diversification can
be found (Kikuchi ef al., 2009; Kong et al., 2010; Huang et al.,
2012; Wickland and Hanzawa, 2015; Jiang ef al.,2022). Besides
their essential roles in flowering time regulation, F1-like genes
play essential roles in stomata movement, and tuber and bulb
formation (Kinoshita et al., 2011; Gonzalez-Schain et al., 2012;
Lee et al., 2013; Jing et al., 2023). Copy number variation in

FT-like genes seems to correlate tightly with domestication
in crops such as rice, maize, and soybean (Danilevskaya et al.,
2008; Itoh et al., 2010;Wu et al., 2017; Cai et al., 2020).

The order Lamiales comprises ~26 families, ~24 000 spe-
cies, and ~12% of eudicot plants, and has high value in terms
of economy, horticulture, and medicine, as well as morpho-
logical innovations (Tallent-Halsell and Watt, 2009; Li et al.,
2021; E Zhao et al.,2023). The snapdragon (Antirrhinum majus,
Plantaginaceae) serves as a model species for understanding mo-
lecular mechanisms underlying corolla zygomorphy and other
traits (Zhong and Kellogg, 2015), while Strobilanthes plants
(Acanthaceae) are known for their natural indigo and traditional
medicinal properties, together with the remarkable diversity in
flowering time behavior (Janzen, 1976; Splitstoser et al., 2016;
J.X. Zhao et al., 2023). However, very limited information is
available about the flowering genes in Lamiales. Here, based on
both sequences and genome syntenies, we identified a core
Lamiales (including Plantaginaceae and successive families)-
specific expansion of FT genes into FT'1- and FT2-like genes
with 12 high quality genomes. The expansion of FT1 genes is
tightly associated with a core Lamiales-specific whole-genome
duplication (cL-WGD), while the amplification of FT2
genes seems to be random at first followed by independent
tandem duplications. Both expansion events are followed by
strong expression and gene structure diversification. These data
are crucial for the understanding of the molecular and ge-
netic mechanisms underlying the flowering time diversity in
Lamiales, and more generally, in dicots of angiosperms.

Materials and methods

Comparative genomics and whole-genome duplication analyses

The most recent versions of genomes were used to construct orthol-
ogous gene families by OrthoFinder (v.2.0) (Emms and Kelly, 2019)
(Supplementary Table S1). Maftt (v7.490) was utilized to construct mul-
tiple sequence alignments of 316 single-copy orthologs among 15 species
(Katoh and Standley, 2013). RAXML software (v 8.2.12) was used to con-
struct the maximum-likelihood tree with the PROTGAMMAAUTO
model by employing sequence alignments with A. thaliana, Rosa wich-
uraiana, and Solanum tuberosum as outgroups (Stamatakis, 2014). The
MCMCTree program of PAML (v 4.9h) was applied to estimate diver-
gence time using protein alignments (Yang, 2007). Two calibration values
were selected from the TimeTree website (http://www.timetree.org).
For WGD analysis, the syntenic regions were found by MCscanX based
on all-to-all BLASTP results (Wang et al., 2012). WGDI and MultiAxon
Paleopolyploidy Search (MAPS) were also used to infer the occurrence
of WGD (Li et al., 2018; Li and Barker, 2020; Sun ef al., 2022).

Identification and analyses of the PEBP genes

To identify the PEBP genes of each Lamiales species, we retrieved the
HMM model (PF01161) of the PEBP domain from the Pfam database
(https://pfam.xfam.org) and searched the genome protein databases
with an e-value cut-off of 1.0xe™> using HMMER 3.1 software (Potter
et al.,2018). In addition, we used protein sequences AtFT (At1g65480.1),
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AtTSF (At4g20370.1), AtTFL1 (At5g03840.1), AtBFT (At5g62040.1),
and AtMFT (At1g18100.1) downloaded from TAIR (The Arabidopsis
Information Resource, www.arabidopsis.org) as query sequences to
blast against the local protein databases of 12 species (identities >30%
and e-values <1.0xe™"") to identify putative PEBP sequences. The genes
identified by both methods were considered as candidate PEBP family
genes and were then verified with Pfam and the CDD database to en-
sure the completeness of the PEBP domain. Redundant sequences or
sequences with an incomplete PEBP domain were excluded from the
following analyses. For the other 98 angiosperms species, PEBP-like genes
were identified by BLAST searches (e-values <1 X 107) against complete
genomes from Phytozome (https://phytozome.jgi.doe.gov). The Pfam
database was used to confirm that the target gene had a PEBP domain
(e-value <1e™'%).

Phylogenetic clustering analyses

PEBP-like sequences from 111 angiosperm species including 12 Lamiales
species were aligned using the protein sequences with the software
MAFFT (Katoh and Standley, 2013) with default parameters, and were
visualized and edited with Jalview (https://www.jalview.org/). Alignend
amino acid sequences were toggled to nucleotide sequences for phy-
logenetic analyses. Both IQ-TREE (v1.6.10) and RAXML were used
to construct the maximum-likelihood tree with the best-fit model
(Kalyaanamoorthy et al., 2017). The best-fit model for the PEBP-like
gene in Lamiales is GTR+F+RS8, while the GTR GAMMAI model was
used for the PEBP-like sequence from seed plants.

Gene structure, conserved protein domains, and motif analyses

The exon and intron locations of PEBP genes were determined by com-
paring the coding sequences with their genome sequences. To predict
protein motifs, the MEME (Multiple Expectation Maximization for
Motif) online tool (http://meme-suite.org/tools/meme) with optimum
motifs set from 6 to 15 and a maximum number of 10 motifs was used.
Conserved protein domains were analyzed using the NCBI CD-Search
Tool  (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)
with the PSSM model (maximum number of hits <500) and the Pfam
database with an e-value <1e¢™'’. The chromosome distributions of PEBP
genes were obtained based on genome gene model annotation files.
Finally, the gene structures, protein motifs, and chromosome locations
were visualized using the software TBtools (Chen et al., 2020).

Duplication and synteny analyses

To identify the synteny of PEBP family genes among species, synteny
analysis was conducted by performing all-to-all BLASTP comparisons
between the genomes of Lamiales species and the selected reference plant.
Additionally, self-blast was performed by comparing protein-coding
genes against their respective genomes using BLASTP. BLASTP hits
with e-values <le ' were utilized as input for MCScanX (Multiple
Collinearity Scan toolkit) to identify potential collinear blocks within
and between genomes of different species (Wang et al., 2012). Based on
the self-blast results, the duplicate_gene_classifier function was used to
predict the PEBP duplication type and collinearity according to proto-
cols described in the pipeline manuals. The phylogenetically clustered
gene sets were defined as syntenic only when a minimum of five genes
were collinear.

cis-Motif analyses

To investigate the conservation of the cis-regulatory model of FT genes
across different clades, the 2 kb upstream region of the start codon (ATG)
was extracted and sequences were submitted the to PlantCARE (http://

bioinformatics.psb.ugent.be/webtools/plantcare/html/) for prediction of
cis-regulator elements.

Expression analyses

Reference genomes, gene model annotation files, and RINA-seq data for
root, and two stages of stem and leaf were taken from a previous report
(Xu et al., 2020). The RNA reads were aligned to S. cusia genomes with
HISAT?2 (Kim et al.,2019). Then the TPM (transcripts per kilobase mil-
lion) of each gene was calculated based on the length of the gene and
read counts mapped to this gene.

Sample collection, RNA extraction, and RT—-gPCR analysis

Sample of S. cusia were collected in June 2023 in Kunming Botanical
Garden (KBG), Kunming Institute of Botany, Chinese Academy of
Sciences (KIB, CAS).Young leaves, mature leaves, root, shoot apical meri-
stems (SAMs), and stems with three biological replicates were collected
and immediately frozen in liquid nitrogen for RNA extraction and re-
verse transcription followed by quantitative PCR (RT—qPCR) assays.The
OminiPlant RNA Kit (DNase I) (CW2598S; Cwbio, Beijing, China) was
used for extraction of total RNA. NovoScript® Plus All-in-one 1st Strand
cDNA Synthesis SuperMix (gDNA Purge) (E047-01; Novoprotein,
Shanghai, China) was used for reverse transcription. The quantitative
PCRs were performed with NovoStart®SYBR qPCR. SuperMix Plus
(E096-01; Novoprotein, Shanghai, China) on a QuantStudio™ 7 Flex
Real-Time PCR System (ThermoFisher). ScuPP2A (EVM0021025) was
used to normalize FT-like gene expression in S. cusia, while ScuACT2
(EVMO0028367) was used to validate the reproducibility of FT expres-
sion. The relative expression levels were calculated following the proce-
dures previously described (Hu ef al., 2014;Yu et al., 2023). Primers of the
five FT-like sequences were designed using TBtools (Chen et al., 2020)
and optimized with a trial test.

Results
PEBP gene evolution in angiosperms

In this study, we obtained 777 PEBP sequences from 117
species (covering six gymnosperms and all major eudi-
cot groups including 18 monocot species) with genomes
sequenced (Supplementary Table S2). A phylogenetic cluster-
ing revealed that, besides the known duplications in mono-
cots, FT expansions were readily identified in Fabales, Malvales,
Lamiales, and Sapindales, agreeing with previous reports (Fig. 1;
Supplementary Fig. S1; Supplementary Table S2) (Nishikawa
et al., 2007; Klintenas et al., 2012; Liu et al., 2016; Wu et al.,
2017; Bennett and Dixon, 2021; Jiang et al., 2022). For the
MFT genes, consistent with previous analyses (Hedman et al.,
2009; Bennett and Dixon, 2021), two distinct clades (MFT'1-
and MFT2-like) were identified in the basal and some of the
core eudicots.

Next, we focused on 12 species in the order of Lamiales (Fig.
2A; Supplementary Table S1). With Arabidopsis (Brassicales),
rose (Rosales), and potato (Solanales) as outgroups, a phyloge-
netic clustering grouped the 104 PEBP-like genes into three
major lineages, the MFT-, the TCB-, and the FT-like genes
(Fig. 2A; Supplementary Fig. S2; Supplementary Table S3),
agreeing well with the high conservation of these lineages in
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Fig. 1. Evolutionary pattern of PEBP proteins in angiosperms. A maximum-likelihood (ML) phylogeny based on 720 PEBP genes in 111 angiosperm
plants with MFT genes of Ginkgo bloba as the outgroup. Bootstrap values are shown with red (>75%), blue (between 50% and 75%), and black (<50%)
asterisks for major lineages. Colored shading marks the Lamiales MFT1s (dark moderate cyan), MFT2s (dark cyan), FT1s (strong green), FT2s (dark lime
green), BFT (bright blue), TFL1 (pure blue), and ATC (strong blue), and the lineages with colored lines show the genes from gymnosperms (pure red),
basal angiosperms (dark moderate orange), and monocots (pure orange), respectively.
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Fig. 2. Lineage-specific expansion of FT-like genes in core Lamiales. (A) An ML tree showing the clustering of PEBPs in Lamiales plants. Within major
clades (MFT-, FT-, and TCB-like), the Lamiales feature two specific branches (MFT2 and FT2) but share five (MFT1, FT1, BFT, TFL1, and CEN/ATC)
with Arabidopsis. A schematic representation drawn to scale of conserved protein motifs is shown next to each gene. (B) Evolutionary trajectory of 12

Lamiales species shown with an ML tree based on 316 single-copy orthologous genes using three outgroup species (not shown here). Red circles mark
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the Jasminum-specific (JsaWGD) and core Lamiales- (including species from Antirrhinum majus in Plantaginaceae and species of other families) specific
cL-WGD events, respectively. Estimated divergence times at 95% probability are shown along each node. PEBP gene counts for each clade (MIFT genes
in light green, FT genes in light red, and TCB genes in light blue) are given in the right-hand panel. (C) Phylogenetic clustering of the FTs in Lamiales. (D)
Collinearity relationships of the FT1-like genes in Jsa, Ama, Bal, Scu, Pfo, and Cam. (E) Microsynteny pattern for FT2 genes in six Lamiales species. Note
that, despite the good synteny of surrounding regions, no sign of FT2-like genes is detected in Ama and Jsa. In (A-C), asterisks in red (=90%) and black
(between 50% and 89%) mark the bootstrap support values. In (D) and (E), some species may randomly or tandemly duplicate their FT genes.



Core Lamiales-specific expansion of FT in angiosperms | 3951

angiosperms (Fig. 1). We detected six PEBP genes in _Jasminum
sambac (Jsa) and the obligate parasite Striga hermonthica (She)
(Qiu et al.,2022), while we identified 12 genes in Andrographis
paniculate (Apa), Paulownia fortunei (Pfo), and Callicarpa americana
(Cam) (Fig.2B).A further analysis for conserved MEME motifs
identified seven motifs (1-7) ranging from 15 to 50 amino
acids in all lineages, with the numbers of exon ranging from
two to seven (CXNO00020111 and CXNO00025255 in Apa)
and most of the genes featuring four (Fig. 2A; Supplementary
Table S4). Synteny analyses showed good collinearity for each
sub-branch gene among six species, while no synteny was
detected between the expanded branch (FT2- and MFT2-
like) and the conserved branch (FI1'1- and MFT1-like) (Figs
2C-E, 3). In general, Lamiales plants featured a highly variable
number of PEBP genes with special expansions in FT (FT'1
and FT2) and MFT (MFT1 and MFT2) genes.

FT1 gene expansion correlates with a core Lamiales-
specific whole-genome duplication

Fourty-one FT-like genes present in the 12 Lamiales genomes
could be easily clustered into two groups: F11- and FT2-like
genes (Fig. 2C). All 12 species featured at least one FT'1-like in
J. sambac (JsaFT1; Oleaceae) and a maximum of three in B. alter-
nifolia (BalFT1.1, BalF'T1.2, and BalFT1.3; Plantaginaceae) and
S. cucia (SeuFT1.1, StuFT1.2, and SeuFT1.3; Acanthaceae) (Fig.
2B, C; Supplementary Table S5). A gene collinearity analysis
revealed a high level of synteny at the F1'1-like loci between Jsa
and the other five species (Ama, Bal, Scu, Pfo, and Cam), while
no synteny could be identified between any FT1- and F12-like
genes (Supplementary Figs S3, S4).

WGDs are known to affect genome sizes, chromosomes
numbers, and gene copy numbers in Lamiales, though whether
Lamiales share a common WGD remains unresolved (Lyko and
Wicke, 2021; Xu et al., 2022). Intriguingly, our detailed paleo-
polypoid analyses using a stable phylogeny framework revealed
that besides the known gamma (y) whole-genome triplication
(WGT) in the common ancestor of core eudicots, a specific
WGD in the common ancestor resulting in core Lamiales (cL-
WGD) but after speciation from J. sambac was observed (Fig.
2B; Supplementary Fig. S5). Furthermore, all synteny blocks
surrounding FT'1-like genes co-localized within the cL-WGD
blocks; thus the cL-WGD might have underlain the expansion
of the FT'1-like genes (Supplementary Fig. S6; Supplementary
Table S5). Interestingly, FT1-like genes were additionally and
tandemly duplicated in Bal and Pfo (Fig. 2D; Supplementary
Table S5).

FT2 gene expansion differs from that of FT7 genes

The origin and duplication pattern for FT2-like genes differed
from those of the FT1-like genes. Except for Jsa and Ama,
which diverged early from the ancestors leading to Lamiales
(Fig. 2), the other 10 species had at least one F12-like gene

(Fig. 2C). Besides the fact that Apa and Scu had five and two
copies of FT2-like genes located on different chromosomes,
respectively, all FT2-like genes featured high levels of synteny
among species (Fig. 2E; Supplementary Fig. S3). However, no
synteny could be observed between any FT1- and FT2-like
genes (Supplementary Fig. S4). Furthermore, several FT2-
like expansions via additional independent tandem duplica-
tions were observed in Apa, Pfo, Llu, and Cam (Supplementary
Fig. S7; Supplementary Table S5). It seems that the FT2-like
gene on chromosome 5 of Cam is tandemly duplicated three
times (Supplementary Fig. S7). These data suggest that FT2-
like genes might have been duplicated independently first in
the common ancestor before the split of Scrophulariaceae and
other core Lamiales plants, and followed by additional inde-
pendent tandem duplications in some lineages. This differs
significantly from both the MFT2-like genes, which were very
probably relict due to their high sequence similarity to the
basal angiosperms (Fig. 3) (Hedman ef al., 2009; Bennett and
Dixon, 2021), and the TCB genes, which were probably dupli-
cated via WGD-mediated events (Supplementary Figs S8, S9).
Finally, a detailed synteny analysis did not detect any gene col-
linearity between the FT2-like genes in core Lamiales and the
duplicated FT genes in soybean and monocots (Supplementary
Fig. §10), again suggesting an independent expansion in these
species.

Relict nature of MFT2-like genes in Lamiales

Consistent with previous reports (Hedman et al.,2009; Bennett
and Dixon, 2021), we identified two groups of MFI-like genes
in Lamiales (MFT1- and MFT2-like; Fig. 3A). A sequence
alignment revealed that MFT2 featured identical amino acid
changes in the conserved PEBP domain, suggesting that the
these MFT2 genes might have undergone the same repli-
cation or experienced highly similar selection pressure (Fig.
3B). Interestingly, Lamiales MFT2 genes were phylogenetically
clustered with the MFT?2 genes from two basal angiosperms,
Nymphaea colorata (Nco) and Amborella trichopoda (Atr) and those
from eudicot plants. A synteny analysis detected no colline-
arity between the MFT'1- and MFT2-like genes, while a weak
synteny for both MFT1-like and MFT2-like genes could be
identified between species within the Lamiales (Fig. 3C, D).
Intriguingly, there was a strong gene collinearity between Ama
and the two basal angiosperms. A further synteny analysis of
the AmaMFT2-harboring segment in the Sin genome identi-
fied another DNA segment with high sequence collinearity
on chromosome 12 but without SinMFT2 (Supplementary
Fig. S11), an indication that, via an unknown mechanism,
SinMFT?2 might have translocated from chromosome 8 to 12.
Additionally, six, among the 12 Lamiales species, independently
had MFT2, suggesting that the maintenance of MFT2 genes
was very probably random in Lamiales. Hence, in contrast to
the fact that every species has maintained the MFT1-like genes,
some Lamiales have specifically lost the angiosperm-specific
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MFT2-like genes, a pattern reported in a previous study
(Bennett and Dixon, 2021).

High variation in expression and gene structures
followed FT gene expansion

Gene duplication followed by variations in gene expression and
even gene structure changes in promoters and exons—introns is
not rare in either model or non-model species (Blackman,2013;
Mao et al.,2016).To examine whether the F1-like gene expan-
sion was followed by variation in gene expression, we explored
S. cusia (Nees) Kuntze (Scu), an important herb and one of the
main natural indigo sources (Ballard, 2007; Gu et al., 2014).

This species features perennial polycarpic flowering behavior,

while its sister species S. biocullata Y.E Deng & J.R.I. Wood

shows perennial monocarpic mass flowering (Deng et al., 2010;
E Zhao et al., 2023). S. cusia had three FT'1-like genes (FT1.1,

FT1.2,and FT1.3) and two FT2-like genes (F12.1and F12.2)
(Fig. 4A-D). As expected, these five FT genes indeed featured
highly diversified expression in the five tissues examined (Xu
et al., 2020). StuFT2.2 showed the highest expression in both
young and old leaves, while ScuFT1.1 was expressed at a rela-

tively high level in young leaves followed by in old leaves (Fig.

4A). The other FT genes were barely detected or had very
low expression in all five tissues, indicating a strong expression
variation following the expansion. To verify this expression
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diversity, we collected five types of tissues and performed gene
expression analyses with RT—qPCR with both ScuPP2A and
ScuACT?2 as the references (Supplementary Table S6). Indeed,
these ScFT genes featured highly variable and tissue-specific
expression (Fig. 4B; Supplementary Fig. S12). An additional
exploration of gene expression in other species also confirmed
this pattern (Fig. 4A).

ScuFT genes featured significant sequence variation in both
coding and non-coding regions (Fig. 4C, D). Substantial amino
acid changes were present between the two groups of FTs es-
pecially within the conserved PEBP domain, but both featured
the Arabidopsis Y85, a position distinguishing the FT/TFL1
functions (Supplementary Figs S13,S14) (Hanzawa ef al., 2005;
Ahn et al., 2006). However, F1'1 genes differed significantly
in exon 4 from FT2 genes in segment B that encodes an ex-
ternal P-loop essential for functional activity (Ahn et al., 2000).
Additionally, FT2s showed a moderate variation in the con-
served domain, where the interaction with 14-3-3 bridge pro-
teins occurred, and in the ‘LYN triad’ motif that distinguishes
FT from the TFL1 in Arabidopsis (Taoka et al., 2011; Li et al.,
2015).

Intriguingly, SecuF'1'1.2 and SeuFT12.1 had five exons, while
the other three copies featured four exons, like the Arabidopsis
FT (Fig. 4C). Furthermore, various types of transposable ele-
ments (TEs) were present in introns of both ScuFT2 genes
(Fig. 4C; Supplementary Table S7). However, the presence of
enriched TEs seemed not to be specific for F12-like genes, as
several FT'1-like genes (SbaFT1, SinFT1.1, and PfoFT1) also
featured different types of TEs.

The expression variation was accompanied by changes in
sequences and cis-motifs within the 2 kb promoter region of
these ScFT genes (Fig. 4D). The ScuFT1.3 promoter con-
tained three light-responsive elements, while that of ScuFT2.2
featured the most enriched elements responding to all four
types of phytohormones together with two low-temperature-
responsive and nine light-related elements. Like ScuFT2.2,
SeuFT1.2 had two elements related to ABA, indicating that
both genes might respond to fluctuation in water availability,
an environmental factor probably limiting the natural distribu-
tion of Strobilanthes as most species in this genera live neigh-
bouring streams (Hu et al., 2011). However, whether these
elements play essential roles in expression variation awaits fur-
ther functional testing.

Discussion

Due to their essential roles in regulation of flowering time and
other developmental processes, PEBP gene expansions are not
really rare. Gymnosperms have two F1-like and one TFL1-like
group, but both F1- and TFL1-like genes in spruce act as flow-
ering repressors in A. thaliana (Karlgren et al., 2011; Klintenas
et al., 2012; Liu et al., 2016). In agreement with a recent re-
port (Bennett and Dixon, 2021), our detailed phylogenetic

clustering revealed that F-like genes are significantly ex-
panded in major lineages of monocots, especially in grasses
(Fig. 1). In Lamiales of the eudicots, two successive expansion
events generating the FT'1- and FT2-like clades seem to in-
volve independent mechanisms (Figs 1, 2, 5).

The first expansion into FT11-like genes occurred in the
common ancestor leading to core Lamiales and was very prob-
ably due to the cL-WGD as all these FT'1-like genes shared
rather good collinearity and the duplicated FT1 genes co-
localized within the genomic segments retained following the
cL-WGD (Fig. 2). This type of expansion happens frequently,
as seen in both Fabales and some species of Brassicales in angio-
sperms and in gymnosperms (Fig. 1) (Wang et al., 2015; Liu
et al., 2016; Panchy et al., 2016; Li et al., 2023). Accompanying
the FT'1-like gene expansions, both ATC- and BF1-like genes
were co-expanded in core Lamiales (Fig. 5).

The second FT12-like gene expansion differed from that of
the FT'1-like genes. This event was observed in lineages in-
cluding Scrophulariaceae and the rest of the core Lamiales, but
not in the Plantaginaceae (Figs 2, 5). F12-like genes shared no
synteny to either FT'1 genes of Lamiales or other angiosperm
FT genes, an indication of random duplication, though the
exact mechanisms needs further analysis. However, all FT2-like
genes shared high levels of genome synteny, indicating that the
generation of F12-like genes might be via one event present in
the common ancestor after the split of Plantaginaceae from core
Lamiales and inherited since then. Of course, random duplica-
tion of FT genes is not really rare, as a similar Rosoidae-specific
expansion has been observed in rose and its relatives (Jiang
et al., 2022).

Following the copy number expansion, both FT1 and FT2
genes featured significant sequence, gene structure, cis-motif,
and gene expression variation, a pattern which has been fre-
quently reported for both PEBP and other genes (Fig. 4) (Liu
et al., 2016; Jiang et al., 2022; Niu et al., 2022). Our analyses
demonstrated a strong diversity in the five FT genes during
different developmental stages and in different tissues of S. cusia
and several other species examined, and this was accompanied
occasionally by variation in both gene structure and cis-motifs,
and hence very probably represents functional differentiation
(Mao et al., 2016). However, these raise the questions of which
FT encodes the real florigen and what the other FT genes
do. In contrast to the SeuFT1 genes, the relatively high ex-
pression of both ScuFT2 genes in mature leaves seems to be
consistent with the pattern for Arabidopsis florigen-encoding
FT, and thus might act as potential florigen(s) in S. cusia. It
is noteworthy that, except position Y85 of AthFT, ScuFT2s
differ from ScuFT1s in the key motifs of all important domains
(Supplementary Figs S13, S14), hence whether they act as the
real florigen needs further experimental assays.

In general, both cL-WGD and random events are likely to
underlie the PEBP gene expansions in Lamailes, while tandem
duplications additionally enrich this diversity. Though yet to
be verified further, some evidence has shown that FT can be
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induced by low temperatures, consequently promoting out-
of-season flowering in Olea europaca (Haberman et al., 2017).
Therefore these variations including the cis-motifs in promot-
ers of different FT" genes clearly constitute a molecular basis for
the high diversification of Lamiales plants and their adaptation
to the ever-changing environment.
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Fig. S11. Synteny for MFT2 blocks between Antirrhinum
majus (Ama) and Sesamum indicum (Sin).

$20z Jaquisldes Gz uo Jesn Ateiqr] ABojouyos | @ 8ousiog [euoneN Aq 0bSS9.2/976E/E LIS /8114e/gxl/woo dnoolwepeoe//:sdiy wo.ll papeojumod


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae176#supplementary-data

3956 | Zhao et al.

Fig. S12. RT—qPCR assay with ScuAct2 as a reference con-
firms the highly diversified expression of the ScFT genes in
five different tissue types.

Fig. S13. Protein sequence alignments with structural fea-
tures annotated for the conserved position Arabidopsis Y85 in
exon 2, 14-3-3 interaction surfaces (in two parts, a and b), the
P-loop motif, and the ‘LYN triad’.

Fig. S14. Alignments of the FT1s and FT2s identify con-
served motifs.
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