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based tool
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R-loops are chromatin structures consisting of anRNA:DNAhybrid

and the other single-stranded DNA, which widely exist among

genomes from bacteria to higher eukaryotes and participate in a

variety of biological processes (Zhou et al., 2022). Currently, a

variety of approaches to detect genome-wide R-loops have been

developed, and ssDRIP-seq (single-strand DNA ligation-based

library preparation from DNA:RNA hybrid immunoprecipitation,

followed by sequencing) is one of the widely utilized methods

(Xu et al., 2022). However, there are many limitations to

genome-wide R-loop mapping based on high-throughput

methods. For example, the activity of restriction enzymes for

genomic DNA fragmentation; the specificity and sensitivity of

antibodies applied in different methods; the technical errors

and biological variations; and the depth of sequencing could

affect the genome-wide R-loop profiles (Chedin et al., 2021).

Particularly, when performing genome-wide R-loop detection in

non-model organisms, the experimental condition must be re-

optimized,which is a time-consumingprocess. Therefore, the inte-

grated databases of R-loop and computational methods to predict

genome-wide R-loops can be used as an effective supplement to

the experimentalmethod.Until now, there havebeenseveral online

R-loop databases, such as R-loopDB (Jenjaroenpun et al., 2017),

R-loopBase (Lin et al., 2022), and RLBase (Miller et al., 2022). The

existing prediction methods include the thermodynamic method

(Huppert, 2008; Stolz et al., 2019); the pattern search method

QmRLFS-finder (Wongsurawat et al., 2012; Jenjaroenpun et al.,

2015); the formal grammar method rlooperplus (Jonoska

et al., 2021); and the hidden Markov model method skewR

(Ginno et al., 2012). However, a database and prediction tool to

support R-loop research in plants is still missing. To cope with

the challenge, we developed R-loopAtlas (Figure 1A and

Supplemental Figure 1) and deepRloopPre (Figure 1B).

R-loopAtlas contains the R-loop data of 254 plant species, among

which the R-loop data of Arabidopsis thaliana is obtained by

ssDRIP-seq and Karanyi DRIP-seq; the R-loop data ofOryza sativa

is obtained by ssDRIP-seq and Fang DRIP-seq; the R-loop data

of Zea mays and Glycine max are obtained by ssDRIP-seq; and

the R-loop data of 254 plant species are predicted by four

deepRloopPre models (the model trained with A. thaliana, with

extended A. thaliana, withO. sativa, and withD. rerio, respectively)

(Supplemental Tables 1 and 2). In addition, for A. thaliana, we

collected the ssDRIP-seq data from 53 samples, which were pro-

duced from different developmental stages, under different light

and temperature conditions, incthe presence of various biotic

and abiotic stresses (Supplemental Table 3).

Due to the shortcomings of four existing methods in predicting

plant R-loops, we developed a novel deep-learning tool based
M
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Note). Using the genome sequences of 254 species, we

predicted the R-loop data by deepRloopPre trained with four

models.

We conducted multiple analyses to assess the performance of

deepRloopPre. Firstly, we evaluated the R-loop profiles on trans-

posable elements (TEs) and protein-coding genes in O. sativa.

The predicted average R-loop level of TEs is consistent with the

results of ssDRIP-seq, which are distributed at the baseline

(Supplemental Figure 2A). Both the predicted sense R-loops

and the observed sense R-loops are concentrated near

the transcription start site (TSS) the transcription terminate

site, the predicted results of the antisense R-loops are also

consistent with those experimental data, and the R-loop

signals are both enriched at the TSS (Supplemental Figure 2B).

The abundance of antisense R-loops near the TSS has a

high correlation between prediction and sequencing data

(Supplemental Figure 2C, bottom). However, the correlation

between prediction and sequencing results of sense

R-loop abundance near the TSS and the transcription terminate

site is rather weak (Supplemental Figure 2C, top). Therefore,

the predicted profiles could well describe the distribution of

R-loops on the TEs and protein-coding genes.

Secondly, we used ssDRIP-seq data from rice tissues (flag

leaves, calli, spikes, and merge materials) to assess the precision

of predicted R-loop locations. Average precision, recall, preci-

sion, F1-score, and Jaccard are calculated to describe the accu-

racy of the model (Supplemental Note; Supplemental Figure 3).

We find that deepRloopPre trained with extended A. thaliana

has the best performance in both Watson and Crick strands.

For example, the predicted R-loops compare with merged

data, with an average precision 0.59, precision 0.64, recall 0.59,

Jaccard 0.38, and F1-score 0.61 in the Watson strand.

Lastly, deepRloopPre was compared with other four prediction

tools using ssDRIP-seq data. We employed deepRloopPre

trained with A. thaliana, with extended A. thaliana, and with

O. sativa, and the parameters for the other four tools are

presented in Supplemental Table 6. Through the evaluation,

we found that deepRloopPre had a better performance

(Supplemental Figure 4). In addition, the results of QmRLFS-

finder and thermodynamic law methods have higher precision

and lower recall, indicating that some R-loops conform to the

QmRLFS-finder pattern and thermodynamic laws. The results

of rlooperplus and skewR methods have lower precision,
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Figure 1. R-loopAtlas construction and deepRloopPre framework.
(A) The dataset and construction of the R-loopAtlas.

(B) The deepRloopPre framework. Five convolutional blocks (ConvBlock) and a Bidirectional Long Short-TermMemory (BLSTM) form the basic structure

of the model. Each convolutional block includes a convolutional layer (Conv1D); a batch normalization layer (BatchNorm); an activation function layer

(legend continued on next page)
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indicating that not all G-rich and G-skew regions could form

R-loops. Through the model interpretation, we found that

deepRloopPre learned that purine-rich sequences are the key

characteristics of R-loops, and G and A enrichment sequences

could promote R-loop formation (Supplemental Figure 5;

Supplemental Note).

All these results demonstrate that deepRloopPre could accu-

rately predict locations and profiles of strand-specific R-loops

in the whole genome and that it has a better representation ability

for the plant R-loops (an IGV snapshot in Supplemental

Figure 2D). Furthermore, we compared the R-loop predicted by

the ssDRIP-seq trained model with the R-loop detected by

DRIP-seq and confirmed that training the model with only

ssDRIP-seq is reliable (Supplemental Note). Together, R-loops

predicted by deepRloopPre using four models from 254

species are recorded in R-loopAtlas.

Given that our database is comprised of a large amount of R-loop

data, a quick engine, which is under the navigation bar ‘‘browse,’’

is provided to browse all these R-loops (Supplemental Figure 6A).

R-loopAtlas also provides users a ‘‘search’’ function to query

R-loops from both observed data and predicted data by specific

gene name or chromosomal regions (Supplemental Figure 6B). In

addition, R-loopAtlas also provides sequence similarity search,

visualization, and data download. The prediction tool deep-

RloopPre that was used to generate predict R-loop data for 254

species is also integrated into our database (Supplemental

Figure 6C).

To better understand the characteristics of R-loops in plants, all

R-loop data of 254 plant species predicted by four models are

used for further analysis.

1) The percentage of R-loops in the genome predicted by

different models is not consistent (Supplemental Figure 7,

blue circle heatmap). Because different species have

distinctive sequences and genomic compositions, there

should be some bias when using different models based

on various species. Therefore, when predicting R-loops

on the target genome, it is recommended to choose

species models phylogenetically close to the target

(Supplemental Figures 8 and 9).

2) R-loop enrichment on TEs was found in 178 species pre-

dicted by the model trained with A. thaliana, and among

these 178 species, 154 species have TE R-loops that ac-

count for more than 50% of all R-loops. R-loop enrichment

on TEs was found in 152 species predicted by the model

trained with extended A. thaliana, and 131 out of them have

TE R-loops that account for more than 50% of all R-loops.

Besides,R-loopenrichmentonTEswas found in125species

predicted by themodel trained withO. sativa, and 111 out of

them have TE R-loops that account for more than 50% of all

R-loops. Moreover, R-loop enrichment on TEs was found in

110 species predicted by themodel trainedwithD. rerio, and

84 out of them have TE R-loops that account for more than
(ReLU); a max pooling layer (MaxPooling1D); and a dropout layer (Dropout).

convolution filters (F); the size of the convolution filters (K); the pooling length (P

max pooling so that the final predicted profile and location resolution is 128 b

outputs R-loop profiles by regression task and R-loop locations by classificat

M

50% of all R-loops (Supplemental Figure 7, red tag and

brown circle heatmap). These data suggested that R-loops

of these species might mainly form on TEs.

In the future, R-loopAtlas will be periodically updated, such as

increasing the availability of new high-throughput data generated

by ssDRIP-seq or other methods and providing more prediction

data by deepRloopPre with new genome sequences. In addition,

we are planning to develop a new function based on deep-

RloopPre, which will add a comprehensive model trained by tran-

scriptome and epigenome data. This future tool would predict the

R-loop dynamics at different stimuli, developmental stages, and/

or tissues, which would be more helpful for investigating R-loop

biology in plants.

In summary, R-loopAtlas collects and displays comprehensive in-

formation of the observed and predicted R-loops in plants. The

tools, such as deepRloopPre, JBrowse, Blast, and search func-

tion, can make full use of these information. We believe that R-

loopAtlas will be a useful, easily accessible, and comprehensive

database for R-loop studies in plants. R-loopAtlas is available at

http://bioinfor.kib.ac.cn/R-loopAtlas/ to all users without any

login or registration restrictions. deepRloopPre code is available

at https://github.com/PEHGP/deepRloopPre.
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