麝香百合花净油化学成分香气评定及香气创拟

王 鹏 余 珍 彭隆金 易元芬 丁靖垲 (中科院昆明植物研究所,昆明650204)

摘 要

本文阐述了以審言百台鲜花为原料, 经浸提实验并对其浸膏、净油通过GC-MS 仅进行化 学 成 分 分析。净油共鉴定了四十个化学成分、同时对其香气进行了评定,并创拟了该花香气的香精。

Abstract

In this paper,40 constituents of lilium longifloum thunb absolute, were identified by GC-MS, and its main aromatic feature was stated. Application of the concrete in lilium fragrance had been carried out.

麝香百合(Lilium longiflorum Thu-nb)⁽¹⁾原产我国台湾,日本琉球群岛。由于其花大洁白十分适合于鲜切花生产,加之麝香百合花有其独特淡雅的香气,常作为观赏花出现在人们的生活中。中科院昆明植物所于1981年从日本引入种球,经栽培获得成功。麝香百合每亩可种约10000株,每株产花2—3朵,平均每朵单花重7.63g。 告每株以2朵花计,每亩可年产20000朵花,合计可收百合鲜化153kg。

鲜花按常法制取浸膏、净油后,用GC/MS 仪分析共鉴定了 40 个化学成分。 根 据净油成分及香气特点,创拟了两个百合香精。

一、实验部分

1. 浸膏、净油的提取

廢香百合鲜花采自本所植物园,鲜花采集时间为每日10时。以30—60℃ 重蒸石油醚常温下进行浸提,浸提实验共进行了6批次,所用鲜花总重为5720g,平均得率为0.213%。浸膏色状为桔黄色。

浸膏用无水乙醇处理经冷冻脱腊, 蒸除

乙醇后即得净油。

2. 净油化学成分分析

净油不再处理,直接取样进行气相气色 谱及色谱/质谱分析。

气相色谱分析:仪器为岛津 GC—9A。 SE—54石英毛细管柱,30m×0.25mm(美国 J&W 公司);柱温80—200℃,程序升温3℃/min;进样温度为230℃;进样量0.2μ1;分流比50:1;氦气柱前压6磅/平方英吋;FID检测;用CR—3A做面积归一化法定量。

色谱/质谱分析:色谱条件同前。质谱测定条件:EI—MS;离子源温度190℃;电子能量70eV;发射电流0.25mA;倍增器电压1500V;扫描周期1秒。仪器为Fn⁻nigan—4510GC/MS/DS联用仪。数据处理使用INCOS系统。各分离组分首先通过NIH/EPA/MSDS计算机谱库(美国国家标准局的NBBLIBRARY谱库)进行检索,并参考文献⁽²⁻³⁾以及对照本实验室用标准化合物制作的谱库对各质谱图进一步确认。

3. 麝香百合的香气评定

采用成分分析与嗅感器官相 结合的方

· 1 ·

法: 麝香百合属花香幽清香韵。香气淡雅, 似草兰、三叶草花兼有橙花、茉莉佯香气。 总体上香气略显单调,不及茉莉芬芳迷人。 具明显的水杨酸酯类、苯甲酸酯类物质香气 特征。

4. 麝香百合香气创拟。

该花香虽然单调,构成香气的物质成分 也较少,但其结构清晰,花香清芳怡人有特 色,仍不失为一个独特的香型。

其香气构成为:

/1. 清香: 水杨酸甲酯, 苯甲酸甲酯 样 清香, 似草兰、三叶草花样清。

- 一、主香 2. 鲜香: 似大花茉莉,晚香玉样 鲜, 以对甲酚甲醚, MA等为主。
 - \3. 醛香: 以壬醛一类香气为主。

1. 花香

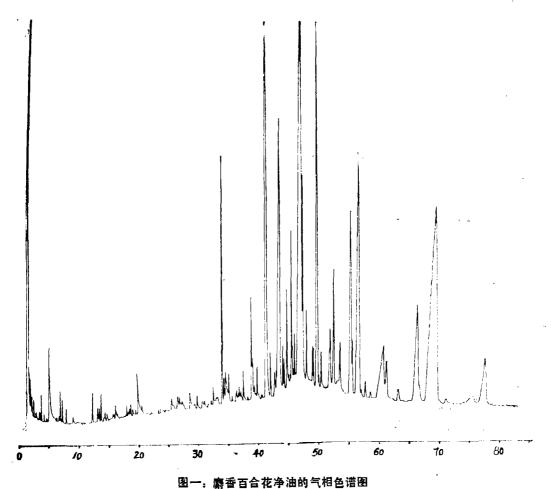
- / ① 橙花样,橙花叔醇,羟基香茅醛,铃兰醛来修饰。
- ② 金合欢样:用紫罗兰酮, 甲基紫罗兰酮来比拟。
- ③ 茉莉样清甜香:用二氢茉 莉酮酸甲酯,苯乙醇来修 流
- 2. 水杨酸苄酯样香气
 - 11. 膏香: 起定香及修饰底韵之作用。
- 2. 粉香: 以洋茉莉腊来增加、香 韵 三. 辅助香 及丰满度。
 - 3. 辛香, 提問联結花香, 如丁香酚 类。
 - 4. 动物香, 增高, 增浓, 定香。

结合仪器对麝香百合净油的成分分析,使我们定性定量地认识了香气物质的组成。此外通过感官和"嗅觉语言"进行香气的艺术处理,在**力求香**型的协调和多样统一的基础上,创拟了该香型的两个香精配方列于表一以供参考。

二、结果与讨论

- 1. 采用 30—60℃ 重蒸石油醚浸提所得浸膏再经脱腊制成净油, 经色谱/质谱分析, 共鉴定了 40 个化合物, 占总量的 76.3% 见表二图一。其化学成分中烷烃、高碳烯酸、烯醛、烯烃类化合物较多, 显然这不是由浸提溶剂带入而属自身带有的化合物。鲜花里含有较多这一类化合物实不多见。其净油主成分并非过去报导的为甲酚、萜品醇等(4)。
- 2. 从分析结果上看芳香物质主要 为 水 杨酸苄酯、橙花椒醇、苯甲酸苄酯、甲酯、 苯乙醇、壬醛等。
- 3. 从总得率来看麝香百合浸膏得率较低,但其栽培及鲜花采集较为便利,不仅适合于鲜切花的生产,且花香清新淡雅,不失为一种有特色的天然香料。应注意的是生产成本较高。
- 4. 从栽培到提取,成分分析,香气评定及香气创积实验认识, 麝香百合有其独特的花香,其香型的创积,我们认为有一定的实用价值。

表一	麝香百合	香精参考配方	千分比((重量)
----	------	--------	------	------


序号	香料品名	No.1	No.2	各注
1.	柳酸苄酯	340	230	
2.	柳酸异戊酯	50	40	
3.	苯甲酸甲酯	10	5	
4.	冬 青 油	15	10	天然,合柳酸甲酯≥90%
5.	丁 香 酚	10	10	

序号	新 科 崩 名	No.1	No.2	备 注
6.	苯 甲 酸	30	_	
7.	安息香膏	20	5	云南版纳香料厂
8.	依 兰 油	10	10	
9.	铃 兰 醛	60	50	
10.	壬 醛10%	15	15	以D.E.P.为溶剂
11.	苯 乙 醇	10	35	
12.	对一甲酚甲醚10%	10	15	以D.E.P.为溶剂
13.	芳 樟 醇	40	60	
14.	甲基紫罗兰酮	30	-	
15.	二氢茉莉酮酸甲酯	40	-	
16.	D- 醇10%	10	-	以D.E.P.为溶剂
17.	苯 甲 醇	70	-	
18.	羟基香茅醛	80	100	•
19	803 檀 香	30	40	
20.	麝香百合浸膏	10	-	
21.	苯甲酸苄酯	60	-	
22.	洋茉莉醛	30	40	
23.	香 豆 紫	_	30	
24.	葵 子 麝 香		40	
25.	柏木油	-	20	
26.	赖伯当浸膏		10	
27.	香 根 油	-	10	
28.	甜橙油	_	40	
29.	香叶醇	_	35	_
30.	乙酸苄酯	_	40	•
31.	乙酸苏合香酯10%	_	10	以D.E.P.为溶剂
32.	紫罗兰酮	-	30	
33.	玫 瑰 醇	_	20	
34.	橙花叔醇	20	10	
35.	橡苔浸膏	_	10	

表二 麝香百合花净油化学成分

Peak No	成分	分子量	保留时间 (分)	含量 (%)
1.	2, 2, 4-三甲基庚烷	142	6.81	0.256
2.	2,5,5一三甲基庚烷	142	7.13	0.201
3.	2,3,6-三甲基庚烷	142	7.78	0.135
4.	2,3-二甲基-3-乙基戊烷	142	8.89	0.099
5.	2,5,6一三甲基辛烷	156	12.07	0.296
6.	2,2,6—三甲基辛烷	156	12.90	0.172
7.	2,3,6—三甲基辛烷	156	13.15	0.150
8.	2,5,7—三甲基辛烷	156	13.44	0.253
9.	苯 甲 醇	108	15.47	0.071
10.	苯甲酸甲酯	136	17.63	0.113
11.	壬 醛	142	18.34	0.105
12.	苯 乙 醇	122	19.55	0.560
13.	苯 甲 酸	122	19.91	0.074
14.	壬酸	1 58	26.27	0.181
15.	4一甲氧基苯甲酸	152	29.44	0.136
16.	4一甲氧基苯乙酸	166	32.13	0.188
17.	1-(4甲氧基苯基)丙酮2	1 64	32.83	0.071
18.	橙花椒醇	222	33.58	2.062
19.	对甲氧基桂酸甲酯	192	34.28	0.197
20.	十三碳烷	184	35.92	0.132
21.	检花叔醇乙酸酯	262	36.33	0.207
22.	苯甲酸苄酯	212	38.34	1.090
23.	十 四 碳 酸	228	38.59	0.444
24.	十 六 碳 醛	241	38.85	0.165
25.	十 五 碳 酸	242	39.28	0.291
26.	水杨酸苄酯	228	40.87	12.90
27.	棕 榈 酸 甲 酯	270	41.45	0.46
28.	9—十 六 烯 酸	254	42.15	0.32
29.	棕 榈 酸	256	43.04	8.58
30.	棕 榈 醇	242	43.51	0.62
31.	3,7,11一三甲基一2,6,10一十二碳三烯醇	216	43.73	0.53

Pack No). [†] Č	分	分子量	保留时间 (分)	含量(%)
32.	十八碳二烯酸甲酯		294	44.96	2.48
33.	十八碳三烯酸甲酯		292	45.44	1.27
34.	十八碳二烯酸		280	46.55	22.94
35.	十八碳三烯酸		278	47.47	1.24
36.	硬 脂 酸		284	47.73	0.76
37.	二十二碳烷		310	48.07	0.37
38.	二十三碳烷		324	49.33	7.98
39.	二十四碳烷		338	51.99	2.57
40.	二十五碳烷		352	54.81	5.62

(下转第8页)

- 5 •

搅拌转速的加快, 意味着强 化传 质 效果。可见, 当拌搅转速升高时, 反应时间直线下降, 说明加氢速度受到传质扩散的严重阻抑, 是一个传质控制的反应。

4. 原料纯度的影响。

固定温度为 165℃,压力为 5MPa, 搅拌转速为 750 转/分,采用香茅醛含量不同的原料进行加氢反应,得到如表四的结果。

表 四

原材香茅醛的含量%	反应时间 min	香茅醛 转化率%	加 香茅醇含量%	氢 产 香茅醛含量%	物 其它组分%	(A) 注:
68.9	18	98.0	67.5	1.5	31.0	原料为柠檬桉油收 购品
84.0	24	97.7	82.1	2.2	15.7	原料为柠檬桉叶油 精馏所得无色透明 液体

从表四可以看出,香茅醛的含量提高, 反应时间也相应延长,但香茅醛的转化率基 本不变。加氢产物经过滤、减压蒸馏后,香 茅醇的含量达90%以上,均符合食用规格⁽⁵⁾。 所以,原料不必预处理,而可以直接投料反 应,然后再提纯产品。这样既可减少一道工 序——原料的精馏,又避免了在加热精馏过 程中香茅醛的聚合、氧化等现象。

三、结论

- 1. 香茅醛催化加氢反应在低温时 属 动力学控制。升温至 165℃ 时,反 应 速 度 加快,转化率提高,且无明显的副反应发生。
- 2. 选择加氢反应压力在 5MPa 左右 为 宜。
- 3. 在温度为 165℃、压力为 5MPa下, 该反应是扩散控制。提高搅拌转速,反应速 度大为加快。
 - 4. 原料的香茅醛含量不影响加氢 反应

的结果,建议直接采用柠檬桉油作加氢原料。

四、存在问题

在进行色谱定量分析时,由于没有纯的 香茅醇作标准样,其校正因子采用香茅醛的 校正因子代替。

参考文献

- [1] 张承曾、汪清如编著《日用调香木》,轻工业出版社, 192、212, 1989。
- [2] 丁志生、龚隽芳编著《实用合成香料》, 上海科学技术出版社,66,1991。
- [3] 张运明、陈小鹏、唐亚贤,广西化工。 (4),6~9,1988。
- [4] 黄仲涛主编《基本有机化工理论基础》,化 学工业出版社,233~2。4,1980。
- [5] 济南市轻工研究所编译《合成食用香料手册》,轻工业出版社,50,1985。

(上接第5页)

参考文献

- [1] [4] 芮和恺、王正坤编著,《中国精油植物及其利用》。云南省科技出版社,494—495,1987。
 - [2] Heller SR, George WA, EPI/NIH

mass spectral data base, V01.1-2, Sup.I, Washington: USGPO, 1980.

[3] Yukawa Y.Spectral atlas of terpenes and the related compounds Inc.TOKYO Hirokawa Publishing Company, 1973.