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ABSTRACT
Phyllaciduloids E (1) and F (2), two new cleistanthane diterpe-
noids, were isolated from the leaves of Phyllanthus acidus (L.)
Skeels (Phyllanthaceae). Their planar structures were established
by spectroscopic analysis and comparison with literature values.
The relative configurations of phyllaciduloids E and F were con-
firmed by DFT-NMR chemical shift calculations and subsequent
CP3 probability methods. Phyllaciduloids E and F were evaluated
for their cytotoxicity. However, no significant activities were
detected at concentrations up to 40lM.

ARTICLE HISTORY
Received 8 November 2020
Accepted 9 May 2021

KEYWORDS
Phyllanthus acidus;
cleistanthane diterpenoids;
quantum chemical
calculations; cytotoxicity

1. Introduction

The genus Phyllanthus, belonging to the family Phyllanthaceae, consists of more than
700 species (Tan et al. 2020), which is widespread in tropical and subtropical areas.
Among them, Phyllanthus acidus (L.) Skeels, a tropical and subtropical species com-
monly distributed in Malaysia, Thailand, Indonesia, Philippines, Vietnam, Laos, and
India, is also cultivated as a potential medicinal plant in the south of Yunnan province,
China (Tan et al. 2020). It is widely served as a valuable medicinal source to treat
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many diseases, such as inflammatory, bronchitis, asthma, rheumatism, hepatopathy
and diabetes in Asia, the Caribbean region, and Central and South America (Tan et al.
2020). Previous phytochemical studies on the leaves and roots of P. acidus mainly
resulted in the isolation and identification of several biological cleistanthane diterpe-
noids (Duong et al. 2017; Zheng et al. 2018; Duong et al. 2020), norbisabolane sesqui-
terpenoids (Vongvanich et al. 2000; Lv et al. 2014; Xin et al. 2020), and rare sulfonic
acid-containing flavonoids or normal flavonoids (Duong et al. 2018). Our further phyto-
chemical investigation of P. acidus (Lv et al. 2014; Zheng et al. 2018; Xin et al. 2020)
afforded two new cleistanthane diterpenoids, phyllaciduloids E (1) and F (2) from the
leaves. Their relative configurations were confirmed by DFT-NMR chemical shift calcu-
lations and subsequent CP3 probability methods. Herein, we report their structure elu-
cidation and cytotoxic activity against five human cancer cell lines.

2. Results and discussion

The ethanol extract of the leaves was repeatedly purified by column chromatography
on silica gel, and preparative or semi-preparative HPLC to yield two new compounds,
phyllaciduloids E (1) and F (2). Their structures were shown in Figure 1.

Compounds 1 and 2 exhibited the same molecular formula C20H28O4, as deduced
from the HRESIMS [m/z 331.1916 [M - H]- (1) and m/z 355.1883 [MþNa]þ (2)], indicat-
ing 7 indices of hydrogen deficiency. The 1H NMR spectrum of 1 exhibited signals due
to one terminal vinyl moiety (dH 6.58, 1H, ddd, J¼ 18.0, 11.9, 0.7 Hz; 5.52, 1H, dd,
J¼ 18.0, 2.0 Hz, and 5.64, 1H, dd, J¼ 11.9, 2.0 Hz), two oxygenated methines (dH 4.19,
1H, q, J¼ 3.5Hz; 3.13, 1H, d, J¼ 3.5 Hz) and four methyls (dH 1.94, 0.99, 1.11, and 1.73,
each 3H, s). The 13C NMR and DEPT spectra revealed 20 carbon resonances, consisting
of four methyls, three aliphatic and one olefinic methylenes, five methines (including
two oxygenated and two olefinic methines), and seven quaternary carbons (including
a carbonyl, three olefinic and one oxygen-bearing carbons). The aforementioned NMR
features of 1 were closely related to those of ovoideal E (Su et al. 2014; Duong et al.
2020), a known cleistanthane diterpenoid also isolated from the leaves of P. acidus.
The only difference was the occurrence of an additional oxymethine (dC 72.1, dH 4.19)
in 1 instead of an aliphatic methylene at C-2 in ovoideal E, indicating that compound
1 was a C-2 hydroxy analogue of ovoideal E. This was supported by the 1H�1H COSY
correlations of H-1/H-2/H-3 as well as the key HMBC correlations from H-2 to C-4 and

Figure 1. The structures of phyllaciduloids E (1) and F (2).
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C-10, from H-3 to C-5, from H-11 to C-8 and C-13, and from H-15 to C-8, C-13 and C-
14 (Figure S1).

The MS and NMR spectral features of compound 2 were quite similar to those of
compound 1. However, the 13C NMR chemical shift of C-8 for 2 was observed at upper
field (DdC �10.0 ppm), whereas resonances for C-7, C-9, and C-14 were shifted lower
field (DdC þ1.9, þ3.5, and þ3.3 ppm, respectively), when compared with those of com-
pound 1. These differences indicated that the two compounds are a pair of C-8 epi-
mers. The planar structures of 1 and 2 were thus constructed as shown in Figure 1.

The relative stereochemistry of 1 and 2 was established by the 13C chemical shifts
and ROESY experiment. Firstly, the similar 13C chemical shifts at C-2 and C-3 exhibited
same relative configuration at C-2 and C-3 in 1 and 2 to those of phyllanflexoid A
(Zhao et al. 2013). Furthermore, the ROESY correlations of H-3 with H-1b, H-5 and Me-
18, and of H-2 with H-3 and H-1b revealed their b-orientation, while the correlations
of H-1a with Me-19 and Me-20 revealed that all of these protons were a-orientation
(Figure S2). Unfortunately, no reliable NOESY correlations could be observed to deter-
mine the relative stereochemistry of the oxygen-binding quaternary carbon at C-8 in
both compounds.

In order to define the relative configuration at C-8 of 1 and 2, density functional
theory (DFT) NMR chemical shift calculations and subsequent CP3 probability method
were performed on two different candidates (8b-OH and 8a-OH) (Duong et al. 2020)
as shown in Figure S25, demonstrating the structural equivalence of diastereoisomer 1
with 99.0% probability, proposing the 8 R configuration of 1 and the 8S configuration
of 2. Their absolute configurations were further established as 2 R,3S,5S,10R by similar
Cotton effects in their CD spectra (Figures S11 and S21), which displayed positive
Cotton effects at approximately 220 nm and 250 nm in compounds 1 and 2 (Zhao et
al. 2013; Lv et al. 2015). Thus, the structures of 1 and 2 including their absolute config-
uration were established as shown in Figure 1 and given trivial names of phyllacidu-
loids E (1) and F (2), respectively.

Previously, cleistanthane-type diterpenoids from this genus exhibited potential or
selective cytotoxicities in vitro against several human tumor cell lines (Zhao et al.
2013; Duong et al. 2017; Zheng et al. 2018). Compounds 1 and 2 were evaluated for
cytotoxic activity on five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7,
and SW-480) using the MTS method (Zheng et al. 2018). However, no significant activ-
ities were detected at concentrations up to 40lM.

3. Experimental

3.1. General experimental procedures

Optical rotations were measured with a JASCO DIP-370 digital polarimeter. Circular
dichroism spectra were measured on a Chirascan instrument. UV data were obtained
on a Shimadzu UV-2401A spectrophotometer (Shimadzu, Kyoto, Japan). A BioRad FtS-
135 spectrophotometer (Bio-Rad, Richmond, CA, USA) was used for scanning IR spec-
trophotometry with KBr pellets. The NMR spectroscopic data were recorded on an
Avance III 600 NMR spectrometer (Bruker, Karlsruhe, Germany) with TMS as internal
standard, and chemical shifts (d) are expressed in ppm with reference to the TMS
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signal. ESIMS and HRESIMS analyses were measured on Agilent 1290 UPLC/6540 Q-TOF
mass spectrometer. Preparative or semi-preparative HPLC was performed on an Agilent
1100 HPLC (Agilent Technologies, Foster City, CA, USA) with Zorbax SB-C18 (21.2mm �
25 cm) or Zorbax SB-C18 (9.4mm � 25 cm) columns. Column chromatography was per-
formed using silica gel (200–300 mesh, Qingdao Marine Chemical, Inc., Qingdao, China),
MCI gel (75-150lm, Mitsubishi Chemical Corporation, Tokyo, Japan). Column fractions
were monitored by TLC visualized by spraying with 8% H2SO4 in ethanol.

3.2. Plant material

The leaves of P. acidus were collected from Yuanjiang county of Yunnan Province,
People’s Republic of China, on May 2018. The identification of plant material was veri-
fied by Dr. En-De Liu. A voucher specimen (Kib-18-05-022) has been deposited in State
Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming
Institute of Botany, Chinese Academy of Sciences, P. R. China.

3.3. Extraction and isolation

The air-dried and powdered leaves of P. acidus (30 kg) were extracted with 95% aqueous
ethanol solution (100L� 3 times) under reflux (approximately 60 �C). The combined solu-
tion was concentrated in vacuo (at 45 �C) to yield a residue (4.5 kg), which was partitioned
further between water and EtOAc. The EtOAc part (2.0 kg) was subjected to a silica gel
column with a gradient elution of petroleum ether-EtOAc (20:1, 10:1, 8:1, 2:1, 1:1 and 0:1)
to yield six main fractions A-F. Further separation of fraction C (18g) on silica gel, eluted
with petroleum ether-acetone (8:2-1:2), afforded subfractions C1�C6. Fraction C2 (8:2,
1.0 g) was chromatographed repeatedly by preparative HPLC (25% MeCN-H2O, flow rate
12mL/min) and followed purified by semi-preparative HPLC (42% MeOH-H2O, flow rate
3mL/min) to yield compounds 1 (5.8mg) and 2 (4.2mg), respectively.

3.5. Cytotoxicity assays

Five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480) were
used in cytotoxic assay, which were obtained from ATCC (Manassas, VA, USA). Cells
were cultured in RMPI-1640 or DMEM medium (Biological Industries, Kibbutz Beit-
Haemek, Israel) supplemented with 10% fetal bovine serum (Biological Industries) at
37 �C in 5% CO2. The assay was performed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)- 2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) (Promega,
Madison, WI, USA) method. Briefly, cells were seeded into each well of a 96-well cell
culture plate. After 12 h of incubation at 37 �C, the test compound (40lM) was added.
After incubated for 48 h, cells were subjected to the MTS assay (Zheng et al. 2018).
Compounds with a growth inhibition rate of 50% were further evaluated under the
concentrations of 40, 8, 1.6, 0.32, and 0.064 lM in triplicate, with cisplatin and pacli-
taxel (Sigma, St. Louis, MO, USA) as positive controls. The IC50 value of each com-
pound was calculated with Reed and Muench’s method (Reed and Muench 1938).
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3.6. Spectroscopic data

Phyllaciduloid E (1): C20H28O4; yellow powder; [a]D
19.0 �7.17 (c 0.13, MeOH); UV (MeOH) kmax

(log E) 192 (4.22), 196 (3.12) nm; CD (c 0.18, MeOH) De197� 5.990, De219þ 1.106,
De247þ 3.679; IR (KBr) �max 3440, 2964, 2945, 2875, 1645, 1622, 1368, 1069, 1039, 590 cm

�1;
negative ESIMS m/z 331 [M - H]-; HRESIMS (negative ion mode) m/z 331.1916 [M - H]- (calcd
331.1915 for C20H27O4);

1H NMR (600MHz, CD3OD) dH 6.58 (1H, ddd, J¼ 18.0, 11.9, 0.7Hz,
H-15), 6.16 (1H, s, H-11), 5.64 (1H, dd, J¼ 11.9, 2.0Hz, H-16a), 5.52 (1H, dd, J¼ 18.0, 2.0Hz,
H-16b), 4.19 (1H, q, J¼ 3.5Hz, H-2), 3.13 (1H, d, J¼ 3.5Hz, H-3), 2.35 (1H, dt, J¼ 14.5, 3.1Hz,
H-7a), 2.17 (1H, dd, J¼ 13.7, 3.5Hz, H-1a), 1.94 (3H, s, H-17), 1.90 (1H, m, H-6a), 1.74 (1H, dd,
J¼ 13.7, 3.5Hz, H-1b), 1.73 (3H, s, H-20), 1.65 (1H, m, H-6b), 1.35 (1H, td, J¼ 14.5, 4.6Hz, H-
7b), 1.11 (3H, s, H-19), 1.06 (1H, dd, J¼ 12.6, 2.5Hz, H-5), 0.99 (3H, s, H-18); 13C NMR (125MHz,
CD3OD) dC 189.9 (C-12), 169.2 (C-9), 156.2 (C-14), 133.8 (C-15), 133.2 (C-13), 124.6 (C-11), 123.3
(C-16), 81.6 (C-8), 78.8 (C-3), 72.1 (C-2), 55.7 (C-5), 42.9 (C-1), 42.4 (C-10), 40.4 (C-4), 39.1 (C-7),
30.4 (C-18), 20.8 (C-20), 18.8 (C-6),17.8 (C-19), 12.6 (C-17).

Phyllaciduloid F (2): C20H28O4; yellow powder; [a]D
19.1 �46.39 (c 0.13, MeOH); UV

(MeOH) kmax (log E) 192 (4.01), 196 (4.11), 219 (3.93) nm; CD (c 0.16, MeOH)
De195� 24.932, De212þ 2.720, De247þ 11.492, De277� 7.245; IR (KBr) �max 3425,
2955, 2926, 2879, 1650, 1620, 1360, 1048, 998, 532 cm�1; positive ESIMS m/z 355
[MþNa]þ; HRESIMS (positive ion mode) m/z 355.1883 [MþNa]þ (calcd 355.1880 for
C20H28O4Na);

1H NMR (600MHz, CD3OD) dH 6.62 (1H, ddd, J¼ 18.0, 11.9, 0.7 Hz, H-15),
6.03 (1H, s, H-11), 5.65 (1H, dd, J¼ 11.9, 2.1 Hz, H-16a), 5.50 (1H, dd, J¼ 18.0, 2.1 Hz, H-
16b), 4.18 (1H, q, J¼ 3.6Hz, H-2), 3.14 (1H, d, J¼ 3.6 Hz, H-3), 2.34 (1H, dt, J¼ 13.8,
3.1 Hz, H-7a), 2.16 (1H, dd, J¼ 13.7, 3.6 Hz, H-1a), 2.05 (1H, dd, J¼ 13.0, 3.1 Hz, H-6a),
1.93 (3H, s, H-17), 1.79 (3H, s, H-20), 1.73 (1H, m, H-1b), 1.69 (1H, m, H-6b), 1.22 (1H,
td, J¼ 13.8, 4.3 Hz, H-7b), 1.12 (3H, s, H-19), 1.06 (1H, dd, J¼ 13.0, 2.4 Hz, H-5), 1.01
(3H, s, H-18); 13C NMR (125MHz, CD3OD) dC 189.7 (C-12), 172.7 (C-9), 159.5 (C-14),
134.1 (C-15), 129.7 (C-13), 123.4 (C-16), 121.4 (C-11), 78.8 (C-3), 72.0 (C-2), 71.6 (C-8),
55.8 (C-5), 42.8 (C-1), 42.5 (C-10), 41.0 (C-7), 40.3 (C-4), 30.3 (C-18), 22.4 (C-20), 18.5 (C-
6),17.7 (C-19), 12.5 (C-17).

3.7. Computational details

All DFT calculations were carried out using Gaussian 16 package. The stable conformations
were optimized at B3LYP/6-311þþG(2d,2p) level of theory, as confirmed by the absence
of imaginary frequencies at the same level. Theoretical 13C NMR chemical shifts were
deduced from the isotropic magnetic shielding tensors by using Gauge-Independent
Atomic Orbital (GIAO) methodology at B3LYP/6-311tG(d,p) (Duong et al. 2020). The CP3
probability was performed to assign the exact conformer using online implementation
available from http://www-jmg.ch.cam.ac.uk/tools/nmr/CP3/ (Grimblat et al. 2015).
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