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Are fungi-derived genomic
regions related to antagonism
towards fungi in mosses?

Introduction

Land plants have been intimately associated with fungi over the
course of their evolution. Because of their lack of sophisticated
protective structures, early land plants would conceivably have
required additional defense strategies against microbial pathogens,
including various fungi.On the other hand, a symbiotic association
between plants and fungi is instrumental to plant adaptation to
terrestrial environments (Selosse & Le Tacon, 1998; Bidartondo
et al., 2011;Martin et al., 2017). The crucial role of this partnership
is further evidenced by the widespread occurrence of mycorrhiza
(root–fungi association) in vascular plants, as well as mycorrhiza-
like fungal associations (MFAs hereafter) in nonvascular plants,
such as liverworts and hornworts (Wang&Qiu, 2006; Pressel et al.,
2014). Surprisingly, although fungal symbiosis is commonly
considered to be an ancestral trait for land plants (Wang & Qiu,
2006; Delaux et al., 2015), with the possible exception of the genus
Takakia (Boullard, 1988; Grosche et al., 2018), no MFAs have
been confirmed in other mosses (Pressel et al., 2014; Field et al.,
2015), the most diverse group of nonvascular land plants.

Here, we report two genomic regions in the nuclear genome of
the moss Physcomitrium patens, previously Physcomitrella patens
(Medina et al., 2019; Rensing et al., 2020), that contain mostly
fungi-specific genes and mobile genetic elements. These two
regions were identified in our genome screening for horizontally
acquired genes in P. patens. Available evidence indicates that these
fungi-specific genes are probably involved in the interaction
between mosses and fungi. We discuss how these fungi-specific
genes might have contributed to the defense against fungal and
other microbial pathogens, as well as the loss of MFAs in mosses.

Two genomic regions in P. patens include mostly
fungi-specific genes

The two genomic regions reported here are 513 and 111 kbp long,
respectively, and they are referred to as fungal region 1 (FR1) and
fungal region 2 (FR2). FR1 is located on chromosome 13, from
base pair position 14 225–527 422 bp, and contains 19 genes based
on the annotation of P. patens v3.3 (Fig. 1a; Supporting Informa-
tion Table S1) (Lang et al., 2018). With these genes as query, we
performed BLAST searches of NCBI nonredundant (nr) protein
sequences, JGI Fungal Genomics (MycoCosm), OneKP (One

Thousand Plant Transcriptomes, 2019), recently sequenced
charophytes and hornworts, as well as our own genome and
transcriptome data (Table S2; Methods S1). For eight of the 19
annotated genes, hits were mostly found in fungi and nonseed
plants, including mosses, liverworts and seedless vascular plants
(E-value threshold = 0.01); hits were also occasionally found in
bacteria and microbial eukaryotes (e.g. haptophytes and stra-
menopiles), but not in charophyte algae, the closest relatives of land
plants (Delwiche & Cooper, 2015), or in hornworts (Table S3).
Based on their sequence similarities, these genes could be roughly
classified into three families encoding: a heterokaryon incompat-
ibility protein (HET) domain that reportedly functions in the self/
nonself recognition system of filamentous fungi (PF06985; loci
Pp3c13_190, Pp3c13_650/Pp3c13_670, and Pp3c13_930); a
HopQ1-like protein (HLP) that may act as a virulence factor in
bacteria (Pp3c13_910); and a conserved hypothetical protein with
unknown function (Pp3c13_120, Pp3c13_300, and Pp3c13_690;
termed PpCF here for P. patens conserved fungal gene (CF))
(Fig. 1a; Table S1). Another eight genes are either specific to
P. patens or restricted to mosses and seedless vascular plants. The
remaining three genes in FR1 are truncated but actively transcribed
Ty1/Copia retrotransposons. FR2 contains 11 genes positioned
from 5180 386 to 5291 530 bp on chromosome 27 (Fig. 1b;
Table S1). Among them, seven genes from five loci contain a HET
domain (Pp3c27_8610, Pp3c27_8690/Pp3c27_8695,
Pp3c27_8710, Pp3c27_8740, Pp3c27_8810/ Pp3c27_8820), and
one encodes a hypothetical protein of unknown function
(Pp3c27_8730) that was only found in P. patens and two
ascomycete fungi (Aspergillus turcosus, Fusarium euwallaceae) (E-
value threshold = 0.01). Each of the remaining three annotated
genes either encodes a short peptide (< 53 amino acids) or appears
to be specific to P. patens. Both FR1 and FR2 contain additional
degenerated transposable elements (TEs) (Fig. S1). The possibility
that FR1 and FR2 represent a contamination could be excluded by
the following evidence (Notes S1): CG, CHG and CHH DNA
methylation (Fig. S1); homolog distribution of TEs from FR1 and
FR2 in other chromosomes of P. patens, and in liverworts and
lycophytes (Figs S2–S4); genetic linkagemap andbacterial artificial
chromosome/fosmid paired-end sequence data (Fig. S5); PCR
amplification and sequencing of FR1, FR2, and adjacent regions
(Fig. S6; Table S4); de novo sequencing and assembly of 12 other
mosses, including one high-quality genome from an unspecified
congeneric species (i.e. Physcomitrium sp.; Figs S7, S8).

Horizontal gene transfer of fungi-specific genes

Other than a fraction of lineage-specific or orphan genes, all other
genes in FR1 and FR2 were probably subjected to lateral
transmission. Retrotransposons have long been known to transfer
to, and amplify frequently in, plants and other eukaryotes (El
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Baidouri et al., 2014), and their presence in FR1 and FR2 is not
surprising, particularly given that TEs account for 57% of the
P. patens genome (Lang et al., 2018). Themore noteworthy finding
is the existence of three gene families with detectable homologs
mostly restricted to nonseed plants and fungi (i.e. PpCF,HLP and
HET domain-containing genes). Consistent with sequence simi-
larity comparisons, phylogenetic analyses show that these genes in
mosses and other land plants are most closely related to homologs
from different fungal lineages (Figs 2, S9–S12; Methods S1; Notes
S2). Such phyletic distributions and relationships are typically
indicative of historical horizontal gene transfer (HGT) events
between fungi and early land plants, although lineage-specific gene
loss remains a possible, but less parsimonious, scenario (Huang &
Gogarten, 2006) (also see Notes S2). Given their distribution in
both Ascomycota and Basidiomycota (and Mucoromycota for
CF ), which originated earlier than land plants (Berbee et al., 2017;
Lutzoni et al., 2018), we reason that these genes were probably
transferred from fungi to the most recent common ancestor of land
plants. In view of their affinities with different fungal lineages, the
three gene families, and possibly members of HET domain-
containing genes, might have been acquired independently and
later evolved into gene clusters in P. patens through genome
rearrangements; alternatively, they might have been derived from a
single HGT event, followed by lineage-specific duplication and
losses in both land plants and fungi. We note here that although
genes acquired from various sources exist in land plants (Hoang

et al., 2009; Yue et al., 2012; Maumus et al., 2014; Zhang et al.,
2020), the vast majority of reported HGT events involve
mitochondrial genes and/or parasitic plants (Davis & Xi, 2015;
Yang et al., 2016); HGT from fungi to land plants was once
considered to be extremely rare (Richards et al., 2009), though they
have been documented in multiple recent studies (Bowman et al.,
2017; Guan et al., 2018; Li et al., 2018; H. Wang et al., 2020; S.
Wang et al., 2020).Our finding suggests thatHGTof nuclear genes
from fungi to plants might occur either more frequently than
currently realized or in large fragments.

Some fungi-derived genes are highly responsive to
fungal and chitin treatments

Strikingly, all three gene families (i.e. CF,HLP and HET domain-
containing genes) appear to be functionally related to fungal
interactions with other organisms, either different fungi or host
plants. HLPs contain an inosine-uridine nucleoside hydrolase
domain and are homologous to the type III secretion system
effector HopQ1 of bacterial pathogens (Li et al., 2013). The HLP
in P. patens only shares 24–30% sequence identity with bacterial
HopQ1, but it was shown to induce plant immune responses when
ectopically expressed in the bacterium Pseudomonas syringae
(Piechocki et al., 2018). This evidence suggests the HLP genes in
fungi are probably involved in interactions with host plants.
Indeed, the moss HLP protein sequences share the highest

(a)

(b)

Fig. 1 Schematic illustration of the two large DNA fragments on chromosome 13 (FR1, 513 kb) (a) and chromosome 27 (FR2, 111 kb) (b) harboring genes of
potential fungal origin and mobile elements in Physcomitrella patens. The distribution of protein-coding genes in each fragment is shown at three levels: the
chromosome level, the scaffold level with the original annotation information of P. patens v3.3, and the scaffold level after removing the annotated
retrotransposons, moss-specific genes and incorrectly annotated genes. Colored boxes indicate protein-coding genes in each region with overlapping genes
shown in different colors. Numbers above the genes of fungal origin show the original gene identifiers according to P. patens genome annotation v3.3 in
Phytozome (e.g. 120 = Pp3c13_120).Mobile elements are illustrated by solid dark green lineswith length information. Also see Supporting Information Fig. S1
for JBrowse screenshots of the two genomic regions.

New Phytologist (2020) 228: 1169–1175 � 2020 The Authors

New Phytologist� 2020 New Phytologist Foundationwww.newphytologist.com

LettersForum

New
Phytologist1170



percentage identities (up to 41%) with plant-associated fungi such
as the saprotroph Amorphotheca resinae, the leaf pathogen
Marssonina coronaria, and the ericoid mycorrhizal fungus
Meliniomyces variabilis. This pattern of gene distribution, with
the highest similarities to sequences from fungal pathogens and
symbionts, has also been observed for PpCF. Thus far, functional
information for CF is not available, but gene fusion with an N-
terminal HET domain was found in at least four homologous
sequences from mycorrhizal fungi Pisolithus tinctorius and
Pisolithus microcarpus (Fig. S13). As gene fusion often suggests
functional linkage (Yanai et al., 2001), it is likely that CFs are
functionally related to the HET domain in fungi. The HET
domain is the most common component of heterokaryon incom-
patibility genes (het) in the vegetative self/nonself recognition
system of filamentous fungi (Hall et al., 2010; Van der Nest et al.,
2014). Such a system allows hyphal fusion for individuals identical

at het loci, but induces programmed cell death (PCD)when hyphae
with different het alleles encounter (Paoletti & Clave, 2007).
Currently, the HET domain is believed to encode an effector for
PCD in fungal heterokaryon incompatibility (Paoletti & Clave,
2007). In P. patens, HET domain-containing genes are also
commonly distributed on other chromosomes; our analyses
identified at least 27 HET domain-containing genes from 22 gene
loci (Table S5; Fig. S14), most of which are combined with a C-
terminal sequence region of unknown function that is also present
in fungal homologs.

TheHETdomain-containing genes, alongwith PpCF andHLP,
are expressed in different tissues under various experimental
conditions in P. patens (Figs S1, S14–S17). The majority of HET
domain-containing genes have low expression levels. However,
Pp3c14_10 andPp3c27_8580 aremoderately to strongly expressed
in protonema, rhizoids, and gametophores (Figs S14, S15).
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Fig. 2 Molecular phylogenies of CF (a) and HopQ1-like protein (HLP) (b) proteins. The alignment length used for tree construction is 260 amino acids for CFs
and 277 amino acids for HLPs. Numbers above branches show bootstrap percentages and posterior probabilities from maximum-likelihood and Bayesian
analyses, respectively. Values < 70% inmaximum-likelihood analyses and < 0.9 in Bayesian analyses are not shown or indicated by dashes. Asterisks following
species names indicate sequences from transcriptomic data. Lineage information is indicated after vertical bars. The twoCFs fromPhyscomitrium sp. are 100%
identical to each other and share 95% identitywith Pp3c13_300v3.2 fromP. patens. These sequences forma groupwith 92%bootstrap support in Supporting
Information Fig. S9.
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Interestingly, Pp3c27_8710 and Pp3c12_12000 show more than
two-fold stronger expression under exudate treatment with
Gigaspora (Fig. S14), a genus of arbuscular mycorrhizal fungi.
These genes are also found to be more highly expressed in
quantitative reverse transcription polymerase chain reaction
(qRT-PCR) under the treatment of chitooctaose, a chitin
derivative (Galotto et al., 2020) (Fig. S16; Table S6). For the
16 genes for which data are present under both exudate and
chitin treatments, we observe that 15 are more highly expressed
under Rhizophagus exudate than in the control, while some are
either less or more highly expressed under Gigaspora or Botrytis
treatment (Fig. S18). The chitin treatment leads to genes either
more highly expressed at 1 and 6 h, or showing higher expression
after 1 h and lower expression after 6 h. Eight out of 16 genes
show a congruent pattern of apparent expression stimulation
under fungal treatment, while for the other eight genes there are
differences between the treatments. This pattern of expression
suggests a fine-grained response to different fungal treatments.
We note that those loci encoding two genes (marked with blue
boxes in Figs S14, S15) show a generally lower expression (Figs
S14, S15), but they show detectable expression under treatment
with both symbiotic and pathogenic fungal exudate (Fig. S14).
The low level of detected expression might be a result of the
challenge of representing conflicting gene models, sometimes on
opposite strands. However, these regions encoding potential
antisense RNAs might also constitute a defense system that
makes use of small RNAs. The PpCF and HLP genes (Fig. S17)
generally show stronger expression than the HET domain-
containing genes. Similar to the HET domain-containing genes,
three of the four PpCF and HLP genes show pronounced
expression under fungal exudate (Fig. S17).

Are fungi-derived genes related to antagonism
towards fungi in mosses?

The presence of the HET domain, PpCF, and other fungi-derived
genes in mosses raises a fascinating question: why do mosses
maintain genes that otherwise are specific to fungal activities? To
date,most fungi-derived genes inmosses have not been investigated
intensively, but it is worthwhile to speculate on their functional
roles. It is possible that some of these genes have been coopted by
mosses for activities not directly related to fungi. This is evidenced
by the expression of Pp3c14_10 and Pp3c27_8580 during the
various developmental stages of P. patens (Figs S14, S15). On the
other hand, some other fungi-derived genes might have been
recruited by mosses to regulate or counteract the activities of fungi
or other microbes, in addition to their roles in other processes. This
second possibility is in line with the role of the HLP gene in plant
antimicrobial responses (Piechocki et al., 2018) and supported by
similar cases documented in the literature (Chou et al., 2015; Di
Lelio et al., 2019). For example, endogenous viralDNAs are known
to contribute significantly to the immunity of host animals against
viral infection (Aswad&Katzourakis, 2012). In P. patens, remnant
sequences of giant viruses are thought to provide protection from
nucleocytoplasmic viruses (Lang et al., 2018). Likewise, the
Fusarium head blight resistance gene Fhb7 in wheatgrasses of the

genusThinopyrumwas acquired from fungal endophytes (H.Wang
et al., 2020).

Other than the ectopic induction of plant immune response by
HLP and the potential functional link between CF and the HET
domain, additional lines of evidence are consistentwith the possible
role of these fungi-derived genes in moss defense. Importantly, het
genes are known to transfer between species, and acquired het genes
may indeed induce PCD in filamentous fungi (Paoletti et al., 2006;
Wichmann et al., 2008). The het-c gene, which encodes a
transmembrane protein, is one of the best-studied het genes in
fungi. In Neurospora crassa, het-c forms the heterokaryon incom-
patibility system through nonallelic interactions with the closely
linked pin-c gene, which contains the HET domain (Kaneko et al.,
2006).Homologs of het-c, however, are also found in certain strains
of the phytopathogenic bacterium Pseudomonas syringae, probably
resulting from past HGT (Wichmann et al., 2008). Ectopic
expression of bacterial het-c homologs inN. crassa induces PCD of
hyphae, suggesting that P. syringaemight have acquired het-c to kill
fungal cells to obtain nutrients (Wichmann et al., 2008). We note
here the other similarities of these genes in fungi and mosses. For
instance, HET domain-containing genes are highly amplified and
diverse in both groups. The HET domain has been proposed to
evolve in fungi initially for pathogen recognition and host defense
(Paoletti & Saupe, 2009). Interestingly, several HET domain-
containing loci in P. patens (e.g. Pp3c13_930, Pp3c13_970) are
located adjacent to loci encoding leucine-rich repeat receptor-like
kinases (e.g., Pp3c13_960 and Pp3c13_990), major players in
pathogen-associatedmolecular pattern recognition of plant immu-
nity (Tena et al., 2011). Furthermore, several HET domain-
containing genes are highly upregulated under the treatment of
chitin, salicylic acid, and jasmonic acid, common signals of plant
defense against pathogens and herbivores (Fig. S16).

Conclusions and perspectives

The acquisition ofPpCF,HLP andHETdomain-containing genes,
which are seemingly specific to fungal activities, is surprising. The
available evidence suggests that some of these genes might be
involved in the interactions between mosses and fungi, probably as
a defense mechanism in mosses. Such evidence is consistent with
the idea that mosses and other bryophytes possess alternative
defense strategies contributed by HGT from fungi and bacteria
(Ponce deLeon&Montesano, 2017). These genesmight have been
lost secondarily from certain mosses but retained in other
bryophytes or nonseed vascular plants, as often observed for
resistance-related genes in plants (Zhao et al., 2018; Zhang et al.,
2019). Given the likely antagonistic nature of these fungi-related
genes, it is tempting to speculate whether they have possibly
contributed to the loss of MFAs in mosses, particularly in light of
the role of the HET domain in PCD of hyphae in filamentous
fungi, which include mycorrhiza-like fungi. The loss of MFAs in
mosses might also involve lineage-specific structural innovations
and physiological processes (Field et al., 2015). Nonetheless, many
questions remain to be answered. For instance, theHET domain in
fungi contains three motifs of 15–30 amino acids with unknown
functions (Paoletti & Clave, 2007). If some HET domain-
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containing genes are indeed involved in defense in mosses, further
investigations areneededonwhether all threemotifs are required and
whether these genes are intended for certain fungal groups or specific
types of pathogens. Such informationmay help us to understand the
existence of moss genes with a truncated HET domain (Table S5)
and the presence of certain fungal pathogens and endophytes in
mosses (Davey & Currah, 2006; U’Ren et al., 2010; Chen et al.,
2018). Ultimately, gene knockout and other detailed functional
investigations are required to uncover the role of these fungi-related
genes in mosses. Such detailed functional investigations should also
provide a better understanding of the importance of HGT in plant
evolution, as well as in the interplay among genetic integration,
organismal interaction and counteraction.
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